

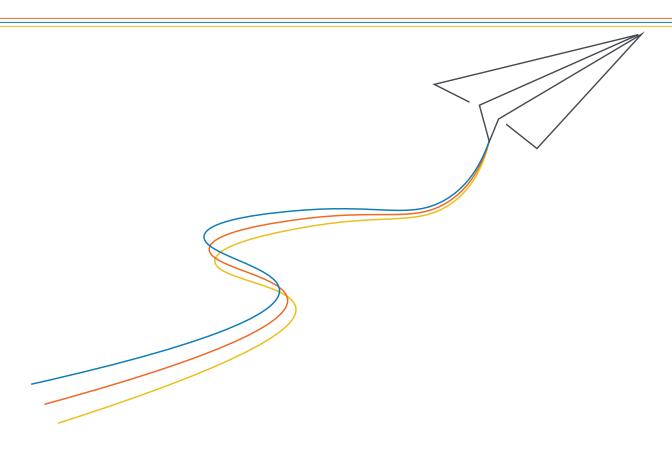
AIRPORT SPONSOR CERTIFICATION

I certify that the information I have provided above is, to the best of my knowledge, correct. I also recognize and agree that no construction activity, including but not limited to site preparation, demolition, or land disturbance, shall proceed for the above proposed project(s) until FAA issues a final environmental decision for the proposed project(s), and until compliance with all other applicable FAA approval actions (e.g., ALP approval, airspace approval, grant approval) has occurred.

James Hay		
James Hay (Feb 23, 2021 13:37 CST)	02/23/2021	
SIGNATURE	DATE	
James Hay		
NAME		
Director of Development		
TITLE		
Memphis-Shelby County Airport Authority	901-922-8224	
AFFILIATION	PHONE #	

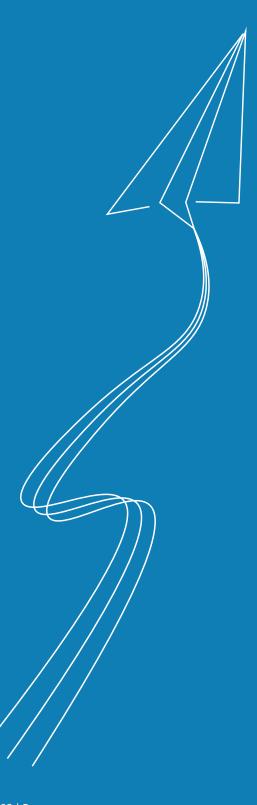
EXECUTIVE SUMMARY	ES01	
EXECUTIVE SUMMARY	ES02	
PURPOSE AND NEED OF THE PROPOSED ACTION	ES02	
PROPOSED ACTION	ES02	
NO ACTION ALTERNATIVE	ES07	
ENVIRONMENTAL ASSESSMENT	ES07	
IMPACTS	ES07	
DETERMINATION	ES08	
FINDING OF NO SIGNIFICANT IMPACT	ES12	
SECTIONS 1.0 AND 2.0	01	
1.0 INTRODUCTION	02	
1.1 PROJECT BACKGROUND	02	
1.2 PURPOSE AND NEED	03	
1.3 ENVIRONMENTAL ASSESSMENT	04	
1.4 AGENCY COORDINATION AND PUBLIC INVOLVEMENT	04	
2.0 PROPOSED ACTION AND ALTERNATIVES	04	

2.1 PROPOSED ACTION ALTERNATIVE	04
2.1.1 Site Preparation	04
2.2 NO ACTION ALTERNATIVE	05
2.3 ALTERNATIVES CONSIDERED BUT ELIMINATED	05
	0(
SECTION 3.0	06
3.0 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES	07
3.1 AIR QUALITY	08
3.1.1 Regulatory Setting	8
3.1.2 Affected Environment	09
3.1.3 Environmental Consequences	
3.1.3.1 Proposed Action	
3.1.4 Mitigation	
3.2 BIOLOGICAL RESOURCES	12
3.2.1 Regulatory Setting	12
3.2.2 Affected Environment	
3.2.3 Environmental Consequences	
3.2.3.1 Proposed Action	
3.2.3.2 No Action Alternative	
3.3 CLIMATE	19
3.3.1 Regulatory Setting	19
3.3.2 Affected Environment	19
3.3.3 Environmental Consequences	
3.3.3.1 Proposed Action	
3.4 COASTAL RESOURCES	22
3.4.1 Regulatory Setting	22
3.4.2 Affected Environment	
3.4.3 Environmental Consequences	
3.4.3.1 Proposed Action	
3.4.4 Mitigation	
3.5 DEPARTMENT OF TRANSPORTATION ACT, SECTION 4(F)	22
3.5.1 Regulatory Setting	22
3.5.2 Affected Environment	
3.5.3 Environmental Consequences	
3.5.3.1 Proposed Action	
3.5.3.2 No Action Alternative	24


3.6 FARMLANDS	24
3.6.1 Regulatory Setting	24
3.6.2 Affected Environment	
3.6.3 Environmental Consequences	24
3.6.3.1 Proposed Action	
3.6.3.2 No Action Alternative	
3.6.4 Mitigation	25
3.7 HAZARDOUS MATERIALS, SOLID WASTE, AND POLLUTION PREVENTION	27
3.7.1 Regulatory Setting	27
3.7.2 Affected Environment	
3.7.2.1 Identification of Contaminated Sites	
3.7.2.2 Identification of Solid and Hazardous Waste Disposal Capacity	
3.7.3 Environmental Consequences	
3.7.3.1 Proposed Action	
3.7.3.2 No Action Alternative	
3.7.4 Mitigation	
3.8 HISTORICAL, ARCHITECTURAL, ARCHEOLOGICAL, AND CULTURAL RESOUP	RCES 33
3.8.1 Regulatory Setting	
3.8.2 Affected Environment	
3.8.3 Environmental Consequences	
3.8.3.1 Proposed Action	
3.8.3.2 No Action Alternative	
3.9 LAND USE	36
3.9.1 Regulatory Setting	
3.9.2 Affected Environment	
3.9.3 Environmental Consequences	
3.9.3.1 Proposed Action	
3.9.3.2 No Action Alternative	
5.9.4 Willigation	40
3.10 NATURAL RESOURCES AND ENERGY SUPPLY	40
3.10.1 Regulatory Setting	
3.10.2 Affected Environment	
3.10.3 Environmental Consequences	
3.10.3.1 Proposed Action	
3.10.3.2 No Action Alternative	
3.11 NOISE AND NOISE COMPATIBLE LAND USE	43
3.11.1 Regulatory Setting	
3.11.3 Environmental Consequences	
3.11.3.1 Proposed Action	
3.11.3.2 No Action Alternative	
3.11.4 Mitigation	

3.12 SOCIOECONOMICS, ENVIRONMENTAL JUSTICE, AND CHILDRI ENVIRONMENTAL HEALTH AND SAFETY RISKS	EN'S 46
3.12.1 Regulatory Setting	
3.12.2 Affected Environment	
3.12.2.1 Socioeconomics	
3.12.2.2 Environmental Justice	49
3.12.2.3 Children's Environmental Health and Safety Risk	49
3.12.3 Environmental Consequences	
3.12.3.1 Socioeconomics	
3.12.3.2 Environmental Justice	
3.12.3.3 Children's Environmental Health and Safety Risk	
3.12.3.4 No Action Alternative	
3.13 VISUAL EFFECTS	51
3.13.1 Regulatory Setting	
3.13.2 Affected Environment	
Visual Resources and Visual Character	
3.13.3 Environmental Consequences	
3.13.3.1 Proposed Action	
Light Emissions	
Visual Character	55
3.13.3.2 No Action Alternative	
3.13.4 Mitigation	55
3.14 WATER RESOURCES	55
3.14.1 Regulatory Setting	55
3.14.2 Affected Environment	55
3.14.2.1 Wetlands and Surface Waters	
3.14.2.2 Floodplains	
3.14.2.3 Groundwater	
3.14.2.4 Wild and Scenic Rivers	
3.14.3 Environmental Consequences	
3.14.3.2 Floodplains	
3.14.3.3 Groundwater	
3.14.3.4 Wild and Scenic Rivers	
3.14.4 No Action Alternative	
3.14.5 Mitigation	60
SECTIONS 4.0 AND 5.0	61
4.0 CONCLUSIONS	62
5.0 LIST OF PREPARERS	63
5.1 LIST OF AGENCIES AND PERSONS CONSULTED	63

SECTION 6.0	64
6.0 ABBREVIATIONS AND ACRONYMS	65
SECTION 7.0	67
7.0 REFERENCES	68
ATTACHMENT 1 - Agency Coordination and Scoping Letters Correspondence	72
ATTACHMENT 2 - Air Quality Information	136
ATTACHMENT 3 - Biological Resources Information	150
ATTACHMENT 4 - Farmlands Information	183
ATTACHMENT 5 - Hazardous Materials, Solid Waste, and Pollution Prevention Information	214
ATTACHMENT 6 - Historical	756
ATTACHMENT 7 - Noise and Noise Compatible Land Use Information	
ATTACHMENT 8 - EJSCREEN Report	
ATTACHMENT 9 - Water Resources Information	1038
TABLES AND CHARTS	
Table 1 - Proposed Action Emission Estimates and De Minimis Thresholds (in Tons per Year)	11
Table 2 - Federal/State Threatened, and Endangered or Special Status Species for Shelby County	16
Table 3 - Proposed Action Greenhouse Gas Emissions and Carbon Dioxide Equivalent Threshold	21
Table 4 - Summary of Socioeconomic Statistics in Affected Environment	48
Table 5 - Summary of Short-Term and Long-Term Impacts	62
FIGURES	
Figure 1 - Site Location Map	ES04
Figure 2 - Site Map	
Figure 3 - Conceptual Site Plan	ES06
Figure 4 - Aerial Aquatic Resources Map	ES13
Figure 5 - TN Historical Commission Surveyed Sites	14
Figure 6 - Prime Farmland Map	26
Figure 7 - Estimated Fill Areas	30
Figure 8 - Estimated Haul Road Location	
Figure 9 - Land Use Zoning Map	
Figure 10 - Engineering Site Plan	54



EXECUTIVE SUMMARY

Draft Environmental Assessment Report Memphis Shelby County Airport Authority East Holmes Road Site Preparation June 2021

EXECUTIVE SUMMARY

PURPOSE AND NEED OF THE PROPOSED ACTION

The Proposed Action consists of the preparation of approximately 245-acres of vacant land (the Site) owned by the Memphis-Shelby County Airport Authority (MSCAA) in Memphis, Shelby County, Tennessee (Figures 1 and 2). A reasonably foreseeable connected action includes the redevelopment of the vacant Site, by private companies with an interest in constructing cargo holding or distribution facilities. A Proposed Site Plan identifies the potential for approximately 1.5 million square feet (sf) of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). The Proposed Site Plan is a conceptual design and may change to meet the need of specific needs of long-term tenants. The preparation of the vacant Site by MSCAA, future redevelopment of the Site as cargo holding or distribution facilities, and long-term operation of the future facilities are evaluated in this Draft Environmental Assessment (EA) Report as the Proposed Action.

The purpose of the Proposed Action is to return an approximately 245-acre MSCAA-owned vacant Site to productive economic use while maintaining compatibility with surrounding land uses and Memphis International Airport (MEM) operations, including aircraft noise. The need is generated by the MSCAA's mission with respect to land holdings, to comply with grant assurances, integrate compatible land uses, promote operational and financial efficiency, and spur economic development opportunities for MEM and the surrounding area. Under the current scenario, the MSCAA owns and maintains the approximately 245-acre vacant Site. The need to comply with grant assurances, promote operational and financial efficiency, and spur economic benefit is not met under the current scenario.

PROPOSED ACTION

The Site is located on the south side of East Holmes Road and the west side of Swinnea Road in Memphis, Tennessee, approximately 1 mile south of MEM, at the Tennessee/Mississippi state line (Figure 2). The Site is not contiguous with airport the Security Identification Display Area (SIDA). The Site is also located within a 50-square-mile area, termed "Airport City" in the Memphis Aerotropolis Airport City Master Plan (Master Plan) (Memphis 2014). The Master Plan, developed by the City of Memphis, The Department of Housing and Urban Development, and the Greater Memphis Chamber, describes Airport City as an area that "faces pervasive

blight, obsolescence, commercial disinvestment, and an oversupply of unproductive, vacant and underutilized land" (Memphis 2014). The project will have negligible impacts on MEM flight operations and is consistent with the Master Plan (Memphis 2014).

To mitigate for previously unacceptable aircraft noise, the Site, was purchased using federal grant funds as part of an Airport Improvement Program (noise buyout program) from the late 1980s to the early 2000s. Due to measures taken to reduce aircraft noise, a portion of the Site is located outside of the 65-decibel noise contour (MEM 2015). Approximately half of the Proposed Action Site is located within the 65-decible noise contour. The northwest portion of the Site remains within the 70-decibel noise contour (MEM 2015). By accepting federal grant funds to purchase the Site and mitigate for unacceptable aircraft noise, MSCAA is obligated to certain grant assurances. FAA Grant Assurance #31c relates to the financial self-sufficiency of the airport. It indicates that land shall be considered to be needed for airport purposes under this assurance if (1) it may be needed for aeronautical purposes (including runway protection zones) or serve as noise buffer land, and (2) the revenue from interim uses of such land contributes to the financial self-sufficiency of the airport (85 Federal Register [FR] 12048).

The MSCAA proposes to prepare the approximately 245-acre Site for redevelopment by overseeing tree removal, Site grading, utility main extensions, and construction of stream crossings to allow for future site pad development by private companies. Proposed Site preparation activities are anticipated to reflect the conceptual design depicted in Figure 3. However, should changes occur to the Proposed Site design, additional impacts will be addressed through the applicable permitting and processes. The MSCAA proposed to oversee the extension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings, and placement of fill to bring future building pads,

parking lots, and driveways to required elevations. Approximately 220,000 cubic yards of soil will be required to prepare the Proposed Action Site for the proposed buildings, driveways, and parking lots. It is anticipated that the fill material would come from the Proposed Action Site, resulting in a balance of material at the Site. One temporary stream crossing is proposed for construction purposes and one permanent steam crossing is proposed Action Site. Construction associated with Site preparation is estimated to last between 6 to 9 months.

Reasonably foreseeable connected actions include construction of facilities by a private developer(s) and long-term operation of future facilities by a MEM tenant(s). Construction associated with future facilities at the Site is estimated to last between 6 to 9 months. Site developers and tenants have not been identified at this time. The assumptions for routine operation of the Proposed Action include movement of approximately 240 distribution trucks and approximately 200 employee vehicles accessing the facilities 24 hours per day.

The Proposed Action is consistent with planning efforts conducted to date. The Proposed Action furthers the goals defined in the Memphis Airport Area Land Use Study Final Report adopted by the City of Memphis and Shelby County in 1992. The study was the result of a multi-year land use planning effort involving the MSCAA and five local governments: the City of Memphis and Shelby County, Tennessee; the cities of Southaven and Horn Lake in Mississippi; and DeSoto County, Mississippi. Public involvement included meetings, workshops, and mailings reaching approximately 15,000 citizens within the 90-square-mile study area. The goal of the Memphis Airport Area Land Use Study Final Report was to carry out or facilitate the recommended noise mitigation actions that required the adoption of plans, land use policies, and ordinances by units of local government, including changes in zoning.

Figure 1 - Site Location Map

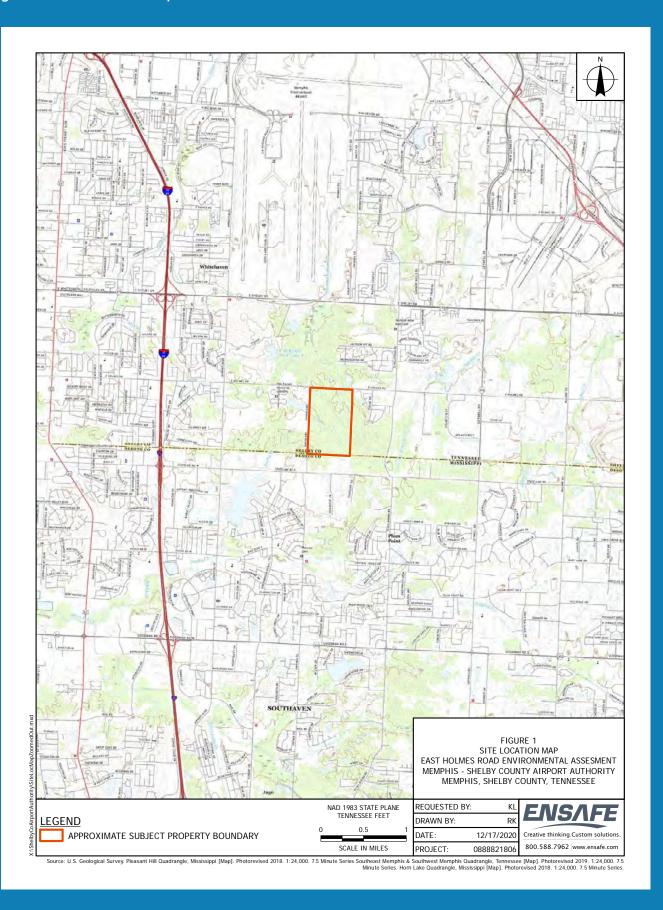


Figure 2 - Site Map

Figure 3 - Conceptual Site Plan

NO ACTION ALTERNATIVE

Under the No Action Alternative, the MSCAA would not prepare the airport-owned land and private companies would not construct cargo holding or distribution facilities at the Site. Under the No Action Alternative, the Site would not meet the need of the Proposed Action. The Site would remain unproductive vacant land and would not contribute to operational efficiency or economic benefit, or be developed under a land use compatible with aircraft noise. The Site would continue to contribute to the current supply of underproductive and underutilized vacant land within the Airport City area. Two additional sites owned by the MSCAA were evaluated for the project but were eliminated from further consideration based on a lack of compliance with the site evaluation factors, as discussed in Section 2.3.

ENVIRONMENTAL ASSESSMENT

The FAA is the lead federal agency and is preparing this Draft EA Report in accordance with the National Environmental Policy Act (NEPA); Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations Parts 1500- 1508); FAA Order 1050.1F, Environmental Impacts: Policies and Procedures; and FAA Order 5050.4B, NEPA Implementing Instructions for Airport Actions.

IMPACTS

This Draft EA Report evaluated impacts to each of the resource areas in two phases: construction of the proposed facilities (6 to 9 months) and long-term operation of the proposed facilities. When compared to the No Action Alternative, the Proposed Action may create short-term (lasting during construction) or long-term (greater than 5 years) impacts affecting various resource areas. Impacts are also identified as either adverse or beneficial. This Draft EA Report uses the following terms in assessing impacts resulting from the Proposed Action.

Negligible Impact:

A resource area would not be affected, or the impacts would be at or below the level of detection, and changes would not result in any measurable or perceptible consequences.

Minor Short-Term Impact:

Impacts on a resource area would be detectable for a short period (during construction), localized, and of minor consequence to the overall sustainability of the resource. Mitigation measures, required to offset adverse short-term impacts, would be achievable and would be in addition to compliance with existing regulations, design planning, or best management practices.

Minor Long-Term Impact:

Impacts on a resource area would be detectable for a longer term (typically more than 5 years) and associated with the long-term operation of the Proposed Action. Mitigation measures, required to offset adverse long-term impacts, would be achievable and more extensive than those considered for minor short-term adverse impacts.

Significant Impact:

Impacts on a resource area would be longterm and would have substantial consequences for the sustainability of a resource area or region. A determination of significant impacts would warrant an Environmental Impact Statement.

DETERMINATION

This Draft EA Report describes the following resource areas and assesses the potential for the Proposed Action to affect these resource areas: air quality; biological resources; climate; coastal resources; United States Department of Transportation (U.S. DOT) Act, Section 4(f); farmlands; hazardous materials; historical, architectural, archaeological, and cultural resources; land use; natural resources and energy supply; noise and noise-compatible land use; socioeconomics, environmental justice, and children's environmental health and safety risks; visual effects; and water resources.

Based on the analysis presented in this Draft EA Report and coordination to date with project agencies, the Proposed Action would result in both short-term and long-term impacts to the assessed resources areas, when compared to the No Action Alternative. However, no significant impacts to any resource area are anticipated through the undertaking of the Proposed Action. As a result of the Proposed Action, the following determinations of impacts were made.

Identified Negligible Impact: The Proposed Action was determined to have a negligible impact on the following resource areas, when compared to the No Action Alternative: coastal resources; farmlands; historical, architectural, archaeological, and cultural resources; and land use.

Identified Minor, Short-Term Impacts: Minor, short-term impacts have been identified, when compared to the No Action Alternative, for the following resource areas, due to the short-term construction phase of the Proposed Action: air quality, biological resources, climate, farmlands, hazardous materials, solid waste, and pollution prevention, natural resources and energy supply, noise and noise-compatible land use, socioeconomics, environmental justice, and children's environmental health and safety risks, visual effects, and water resources. The identified minor adverse impacts will be avoided or minimized

though compliance with existing regulations, design planning and best management practices, therefore mitigation measures are not proposed.

- Minor, short-term adverse air quality impacts are anticipated during the construction phase of the Proposed Action. Incremental impacts on air quality are related to the generation of fugitive dust and mobile source emissions from construction-related activity. The Proposed Action is presumed to conform with the State Implementation Plan, and is not anticipated to exceed applicable de minimis thresholds.
- Minor, short-term adverse biological impacts are anticipated during the Site preparation through removal of vegetation where required, alteration of wetlands, and disturbance of wildlife using the Site from operational light or noise. Overall, approximately 77 acres of the approximately 245-acre Site will be disturbed (Figure 4). Site design planning has been incorporated to avoid the majority of the aquatic features present at the Site. Best management practices to address erosion and sediment will be implemented and maintained during construction activities.
- Minor, short-term adverse climate impacts are anticipated during the construction phase of the Proposed Action. Incremental impacts to climate are related to mobile source emissions from construction-related activity. The Proposed Action is not anticipated to exceed the carbon dioxide equivalent threshold of 25,000 metric tons per year.
- The Proposed Action will result in minor, short-term adverse impacts to Prime Farmlands relating to the conversion of land currently zoned as Conservation Agriculture. However, the Tennessee United States Department of Agricultural (USDA),

determined the proposed project does not significantly impact Prime Farmland and/or farmland of statewide importance in the county since only 0.0656% will be converted.

- The Proposed Action will result in minor short-term adverse impacts on hazardous materials, solid waste, and pollution prevention, primarily relating to an increase in impervious surface. The anticipated impacts will be minimized though compliance with existing regulations, design planning and best management practices.
- The Proposed Action will have minor short-term adverse impacts on natural resources and energy supply consumed during the construction phase of the Proposed Action; however, the anticipated consumption need will not exceed available supplies or result in significant adverse impacts to natural resources or energy supplies.
- Minor, short-term adverse noise and noise-compatible land use impacts are anticipated during the construction phase of the Proposed Action. Construction is proposed to occur only during daytime (business) hours for 6 to 9 months. The resulting construction noise is considered temporary and will not result in significant impacts to surrounding land uses.
- Minor, short-term beneficial impacts with respect to socioeconomics could be realized through an increase in job availability during the short-term construction phase of the Proposed Action.
- The Proposed Action Site is in an area with a larger percentage of minority and low-income populations, when compared to state and national percentages. Therefore, the short-term adverse impacts identified in the Draft EA Report

- are further considered through the lens of socioeconomics, environmental justice and children's environmental health and safety risk. This Draft EA Report has identified minor, short-term adverse impacts to resources areas, when compared to the No Action Alternative; however, the identified impacts are not anticipated to lead to disproportionately high and significant adverse impacts for the surrounding population or impact the physical or natural environment in a way that is unique to the surrounding population. Disproportionately high and adverse effects, in the form of unacceptable aircraft noise impacts to this area, have been previously mitigated. In addition, the identified impacts are not anticipated to lead to a disproportionate health or safety risk to children, relating to asthma, unintentional injuries, developmental disorders, or cancer.
- Minor, short-term adverse visual effects impacts are anticipated during the 6- to 9- month construction phase of the Proposed Action. The conceptual design planning includes siting the proposed facilities to allow for the greatest distance between the proposed facilities and adjacent parcels, while avoiding impacts to onsite aquatic resources.
- Minor, adverse short-term impacts to water quality are associated with the Proposed Action based on Site disturbance associated with construction and an increase in impervious surface at the Site. The Proposed Action, in its current configuration, is anticipated to impact Stream 1, Wet Weather Conveyances 1, 2, 3, and 9, Wetlands 8 and 9, and Pond 1 (Figure 4). The proposed impact includes the installation of two, approximately 30-foot stream crossings at Stream 1: one permanent and one temporary, construction-related stream crossing. The tem-

porary stream crossing installed during construction as a haul route would be removed after construction is completed. The impacts to aquatic resources resulting from the Proposed Action, in its current configuration, does not trigger Tennessee Department of Environment and Conservation (TDEC) or United States Army Corps of Engineers (USACE) permit thresholds requiring mitigation. However, it should be noted that the Proposed Site Plan is based on conceptual site design planning. Should changes occur to the Site design, any additional impacts will be addressed through the same TDEC and USACE permit process. Further, the Proposed Action is anticipated to result in approximately 72.5 acres of new impervious surface at the Site. The requirements for National Pollutant Discharge Elimination System permit and Stormwater Pollution Prevention Plan will be required to minimize impacts to water resources. The Proposed Action is not anticipated to result in significant adverse impacts to water resources

Identified Minor Long-Term Impacts: Minor, long-term impacts have been identified, when compared to the No Action Alternative, for the following resource areas, due to the long-term operation of a distribution/e-commerce fulfillment facility: air quality, biological resources, climate, farmlands, hazardous materials, solid waste, and pollution prevention, land use, natural resources and energy supply, noise and noise-compatible land use, and socioeconomics, environmental justice, and children's environmental health and safety risks, visual effects, and water resources. The identified minor adverse impacts will be avoided or minimized though compliance with existing regulations, design planning and best management practices, therefore mitigation measures are not proposed.

 Minor, long-term adverse air quality impacts are anticipated during the operation of the Proposed Action. Incremental im-

- pacts on air quality will be related to the generation of mobile source emissions associated with cargo holding or distribution facilities, including daily movement and idling of fleet vehicles and employee vehicles. The Proposed Action is presumed to conform with the State Implementation Plan, and is not anticipated to exceed applicable *de minimis* thresholds.
- Minor, long-term adverse biological impacts are anticipated through removal of vegetation where required, alteration of wetlands, and disturbance of wildlife using the Site from operational light or noise. Overall, approximately 77 acres of the approximately 245-acre Site will be disturbed (Figure 4). Site design planning has been incorporated to avoid the majority of the aquatic features present at the Site. Best management practices to address erosion and sediment will be implemented and maintained during construction activities.
- Minor, long-term adverse climate impacts are anticipated during the operation of the Proposed Action. Incremental impacts on air quality will be related to the generation of mobile source emissions associated with the long-term operation of a cargo holding or distribution facilities. The Proposed Action is not anticipated to exceed the carbon dioxide equivalent threshold of 25,000 metric tons per year.
- The Proposed Action will result in minor, long-term adverse impacts to Prime Farmlands relating to the conversion of land currently zoned as Conservation Agriculture. However, the Tennessee USDA, determined the proposed project does not significantly impact Prime Farmland and/or farmland of statewide importance in the county since only 0.0656% will be converted.
- The Proposed Action will result in minor, long-term adverse impacts on hazardous materials, solid waste, and pollution pre-

vention, primarily relating to an increase in impervious surface. The anticipated impacts will be minimized though compliance with existing regulations, design planning and best management practices.

- The Proposed Action will result in minor, long-term adverse impacts to land use. There would be a change in land use under the Proposed Action from Conservation Agriculture likely to Employment District. Proposed Action Site will adhere to the Memphis and Shelby County Unified Development Code (Memphis 2010). The operation of cargo holding or distribution facilities will follow local zoning ordinances and permitting processes of City of Memphis and Shelby County government The Proposed Action is not in conflict with the objectives of federal, regional, state, or local land use plans, policies, or controls for the area. The Proposed Action is in compliance with FAA Grant Assurances.
- The Proposed Action will have minor, long-term adverse impacts on natural resources and energy supply consumed through operation of the Site; however, the anticipated consumption need will not exceed available supplies or result in significant adverse impacts to natural resources or energy supplies.
- Minor, long-term adverse noise impacts are anticipated due to operation the Proposed Action, when compared to the No Action Alternative. The Proposed Action will contribute to an increase in connected actions that support the shipment of goods, including truck transit. However, the modeled outdoor sound contours representing a worst-case operation scenario where half of the fleet trucks are assumed to be heavy trucks (i.e. tractor trailers), do not exceed 65 decibels. The

- Proposed Action would not have a significant adverse impact with respect to noise and noise-compatible land use. As part of the Draft EA, a Traffic Generation Report was completed, which determines if a Traffic Impact Study will be required for the Proposed Action. The East Holmes Road Site Preparation Trip Generation Report and Traffic Analysis Memorandum indicates that a Traffic Impact Study will be required during the City of Memphis Plan Review process, based on the expected vehicle trip generation. However, the forthcoming seven-lane expansion of East Holmes Road, as defined in the Tennessee Department of Transportation, Project Identification Number 107040.00, will result in ample capacity to accommodate site-generated trips and will not result in significant adverse impact to neighborhood or regional traffic.
- Minor, long-term beneficial impacts with respect to socioeconomics could be realized through an increase in job availability and tax revenue through the operation of future cargo holding or distribution facilities. The Proposed Action will also meet the identified need to financial efficiency and spur economic development opportunities for MEM and the surrounding area.
- Minor, long-term adverse visual effects impacts are anticipated for the operation of the Proposed Action. The presence of future cargo holding or distribution facilities will permanently alter the Site and viewshed from adjacent areas. Vegetation along the perimeter of the Site, will reduce the potential for significant adverse impacts of light emissions encroachment into the surrounding parcels. Nighttime security lighting and vehicle lighting associated with the movement of fleet and employee vehicles 24 hours per day will result in light emissions. Exterior

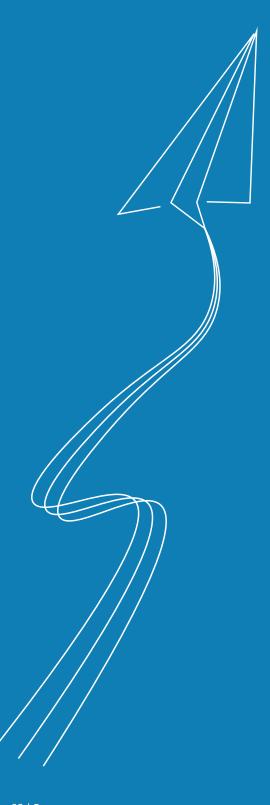
security lighting would remain directional and focus on exterior entrances, bay doors, and parking lots to minimize adverse offsite impacts of lighting such as light trespass and obtrusive light. Lighting will comply with Article 4 – General Development Standards of the Memphis and Shelby County Unified Development Code for outdoor site lighting and FAA requirements for lighting within a flight path.

Minor, adverse long-term impacts to water quality are associated with the Proposed Action based on, the permanent alteration of streams and wetlands, and an increase in impervious surfaces at the Site. The impacts to water resources will be minimized though compliance with existing regulations, alternation of steam and wetland permitting, design planning, and best management practices to minimize the impacts to the fullest The Proposed Action, extent possible. in its current configuration, is anticipated to impact Stream 1, Wet Weather Conveyances 1, 2, 3, and 9, Wetlands 8 and 9, and Pond 1 (Figure 4). The proposed impact includes the installation of two, approximately 30-foot stream crossings at Stream 1: one permanent and one temporary, construction-related stream crossing. The impacts to aquatic resources resulting from the Proposed Action, in its current configuration, does not trigger Tennessee Department of Environment and Conservation (TDEC) or United States Army Corps of Engineers (USACE) permit thresholds requiring mitigation. Further, the Proposed Action is anticipated to result in approximately 72.5 acres of new impervious surface at the Site. The requirements for National Pollutant Discharge Elimination System permit and Stormwater Pollution Prevention Plan will be required to minimize impacts to water resources. The Proposed Action is not anticipated to result in significant adverse impacts to water resources

FINDING OF NO SIGNIFICANT IMPACT

Implementation of the Proposed Action as analyzed in this Draft EA Report would not constitute a major federal action that would have significant impact on the human environment, within the meaning of Section 102(2)(C) of the National Environmental Policy Act of 1969. This analysis presented in this Draft EA Report indicates that a Finding of No Significant Impact is appropriate, and that an Environmental Impact Statement is not required.

Figure 4 - Aerial Aquatic Resources Map



SECTIONS 1.0 AND 2.0

Section 1.0 Introduction Section

Section 2.0 Proposed Action and Alternatives Draft Environmental Assessment Report Memphis Shelby County Airport Authority East Holmes Road Site Preparation June 2021

1.0 INTRODUCTION

1.1 PROJECT BACKGROUND

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245 acre tract of vacant land (the Site) for future development as cargo holding or distribution facilities. The lead federal agency for the undertaking is the Federal Aviation Authority (FAA). The Proposed Action consists of preparing the Site for future development and leasing the Site for non aviation, airport tenant use. The MSCAA owns and operates Memphis International Airport (MEM), as well as two general aviation airports. The MSCAA is self-funded and receives no local tax revenue.

The Site is located on the south side of East Holmes Road and the west side of Swinnea Road in Memphis, Tennessee, approximately 1 mile south of MEM, at the Tennessee/Mississippi state line (Figures 1 and 2). The Site is not contiguous with the airport Security Identification Display Area (SIDA). A physical address does not yet exist for the entire Site; it is comprised three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The surrounding land consists of a mix of vacant, forested land, commercial industrial development, and places of worship.

The purpose of the Proposed Action is to prepare the Site for future development by private companies with an interest in constructing cargo holding or distribution facilities. A Proposed Site Plan identifies the potential for approximately 1.5 million square feet (sf) of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). The Proposed Action will meet MSCAA's need to productively utilize land holdings and comply with grant assurances, while maintaining compatibility with MEM operations, including aircraft noise. Following Site preparation, the MSCAA intends to lease the Site thereby returning it to productive use and enhancing operational and financial efficiency, while ensuring development that is compatible with aircraft noise. According to the MEM Part 150 Study Update Noise Exposure Maps, the airspace above the Site is located within a main MEM aircraft flight path (MEM 2015). The project will have negligible impacts on MEM flight operations and is consistent with the Memphis Airport Area Land Use Study Final Report (Memphis 1992), the Memphis Aerotropolis Airport City Master Plan (Memphis 2014).

The proposed Site preparation includes tree removal, grading, utility main extensions, and construction of stream crossings to allow for future site pad development by pri-

vate companies. The MSCAA proposed to oversee the extension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. Construction associated with Site preparation is estimated to last between 6 to 9 months.

A reasonably foreseeable connected action includes the construction of cargo holding or distribution facilities by a private developer(s) and long-term operation of future facilities by a MEM tenant(s). Construction associated with future facilities at the Site is estimated to last between 6 to 9 months. Site developers and tenants have not been identified at this time.

The preparation of the Site and reasonably foreseeable non-aviation development triggers the FAA policies and procedures to ensure agency compliance with the National Environmental Policy Act (NEPA) (42 United States Code [U.S.C.] §§ 4321-4335), the requirements set forth in the Council on Environmental Quality (CEQ), Title 40, Code of Federal Regulations (CFR), parts 1500-1508, Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act (CEQ Regulations); FAA Order 1050.1F, Environmental Impacts: Policies and Procedures; FAA Order 5050.4B, National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions; and United States Department of Transportation (U.S. DOT) Order 5610.1D, Procedures for Considering Environmental Impacts. The following sections provide a detailed analysis of this project in the form of a Draft Environmental Assessment (EA) to assist in determining if this project's Proposed Actions will have significant environmental impacts.

1.2 PURPOSE AND NEED

The purpose of the Proposed Action is to prepare the approximately 245-acre MSCAA-owned vacant Site for future development by private companies with an interest in constructing cargo holding or distribution facilities. The Proposed Action is located within a 50-square-mile area, termed "Airport City" in the *Memphis Aerotropolis Airport City Master Plan* (Master Plan) (Memphis 2014). The Master Plan, developed by the City of Memphis, The Department of Housing and Urban Development, and the Greater Memphis Chamber, describes Airport City as an area that "faces pervasive blight, obsolescence, commercial disinvestment, and an oversupply of unproductive, vacant and underutilized land" (Memphis 2014).

The need is generated by the MSCAA's mission with respect to land holdings, to comply with grant assurances, integrate compatible land uses, and promote operational and financial efficiency for MEM and its tenants. The Proposed Action will meet MSCAA's need to productively utilize land holdings and comply with grant assurances, while maintaining compatibility with MEM operations, including aircraft noise. According to the MEM Part 150 Study Update Noise Exposure Maps, the airspace above the Site is located within a main MEM aircraft flight path (MEM 2015). Following Site preparation, the MSCAA intends to lease the Site thereby returning it to productive use and enhancing operational and financial efficiency, while ensuring development that is compatible with aircraft noise.

To mitigate for previously unacceptable aircraft noise, the Site, was purchased using federal grant funds as part of an Airport Improvement Program (noise buyout program) from the late 1980s to the early 2000s. Due to measures taken to reduce aircraft noise, a portion of the Site is located outside of the 65-decibel noise contour (MEM 2015). Approximately half of the Proposed Action Site is located within the 65-decible noise contour. The northwest portion of the Site remains within the 70-decibel noise contour (MEM 2015). By accepting federal grant funds to purchase the Site and mitigate for unacceptable aircraft noise, MSCAA is obligated to certain grant assurances. FAA Grant Assurance #31c relates to the financial self-sufficiency of the airport. It indicates that land shall be considered to be needed for airport purposes under this assurance if (1) it may be needed for aeronautical purposes (including runway protection zones) or serve as noise buffer land, and (2) the revenue from interim uses of such land contributes to the financial self-sufficiency of the airport (85 Federal Register [FR] 12048).

1.3 ENVIRONMENTAL ASSESSMENT

NEPA requires federal agencies to evaluate and consider environmental impacts for projects that utilize federal funding. The level of documentation required depends on the level of such environmental impacts. An EA is used to determine if a federal action would result in significant impact on the human environment. An Environmental Impact Statement (EIS) is prepared for federal actions that have been determined through an EA to have significant impact on the human environment. The FAA determined that an EA is the appropriate level of documentation for the preparation of the vacant Site and reasonably foreseeable future development at the Site on East Holmes Road in Memphis, Shelby County, Tennessee.

1.4 AGENCY COORDINATION AND PUBLIC INVOLVEMENT

A Notice of Availability of the Draft EA was published in The Commercial Appeal on June 25, 2021 and in The Memphis Daily News on June 22 and June 23, 2021. The public notice was posted on the MEM Facebook page and MEM Twitter account on June 22, 2021. The Draft EA Report was also available for download at the MEM website, https://www.flymemphis.com/environment, and is available upon request to facilitate public access. Members of the public were able to comment on the Draft EA within 30 days of the published notice.

2.0 PROPOSED ACTION AND ALTERNATIVES

This section describes the two alternatives evaluated in this Draft EA Report: the Proposed Action Alternative and the No Action Alternative. Also included in this section is a discussion of the alternatives considered but eliminated from further consideration.

2.1 PROPOSED ACTION ALTERNATIVE

The Proposed Action consists of preparing the Site for future development and leasing the Site for construction and operation of cargo holding or distribution facilities. The Proposed Action will have negligible impacts on MEM flight operations and is consistent with the *Memphis Airport Area Land Use Study Final Report* (Memphis 1992), the *Memphis Aerotropolis Airport City Master Plan* (Memphis 2014).

The Site is located approximately 1 mile south of MEM on the southeast corner of East Holmes Road and Swinnea Road and north of the Tennessee/Mississippi state line, in Memphis, Shelby County, Tennessee (Figure 1). The Site is not contiquous with the airport SIDA. A physical address does not exist for the entire Site; it comprises three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The Site is predominantly wooded and contains jurisdictional wetlands and streams. A Texas Gas Company natural gas pipeline transects the north portion of the Site. A Tennessee Valley Authority (TVA) power line easement crosses the south Site parcel and a Valero and a Memphis Light, Gas and Water (MLGW) gas line easement is along the west and south Site boundaries.

2.1.1 SITE PREPARATION

The purpose of the Proposed Action is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. A Proposed Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). Site preparation will include tree removal, grading, filling, utility main extensions, and construction of stream crossings to allow for future site pad development by private companies. MSCAA proposed to oversee the extension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. Approximately 220,000 cubic yards of soil will be required to prepare the Proposed Action Site for the proposed buildings, driveways, and parking lots. It is anticipated that the fill material would come from the Proposed Action Site, resulting in a balance of material at the Site. One temporary stream crossing is proposed for construction purposes and one permanent steam crossing is proposed at the Proposed Action Site. The permanent stream crossing will provide a route to the southernmost future facility. Construction associated with Site preparation is estimated to last between 6 to 9 months.

Reasonably foreseeable connected actions include construction of facilities by a private developer(s) and long-term operation of future facilities by a MEM tenant(s). Construction associated with future facilities at the Site is estimated to last between 6 to 9 months. Site developers and tenants have not been identified at this time. The Site preparation, Site development, and operation of future facilities are collectively considered to comprise the Proposed Action.

2.2 NO ACTION ALTERNATIVE

Under the No Action Alternative, the MSCAA would not prepare the airport-owned land for development and future lease. Under the No Action Alternative, the Site would not meet the need of the Proposed Action. The Site would remain unproductive vacant land and would not contribute to operational efficiency or econom-

ic benefit, or be developed under a land use compatible with aircraft noise. The Site would continue to contribute to the current supply of underproductive and underutilized vacant land within the Airport City area.

2.3 ALTERNATIVES CONSIDERED BUT ELIMINATED

The MSCAA selected a Site for the Proposed Action based on site evaluation factors listed below.

- Sites that are owned by the MSCAA and available for release or lease and development compatible with MEM operations, including aircraft noise.
- 2. Sites of a reasonable size, configuration, and purchase terms to permit acceptable facility site design, including adequate ingress and egress to a paved thoroughfare, access to utilities, ample space for parking, and access to an Interstate.
- Sites that exhibit no obvious negative environmental influences that cannot be corrected or acceptably mitigated.

Two additional sites owned by the MSCAA were evaluated for the project but were eliminated from further consideration based on a lack of compliance the site evaluation factors. An approximately 26-acre vacant site located south of Ketchum Road and east of Airways Achievement Academy was considered for preparation; however, the Ketchum Road site was deemed inadequate due to the relatively small site size, with respect to facility site configuration. An approximately 980-acre site located immediately south of Runways 36R and 36C was also considered for preparation; however, given the proximity to airport runways the site is subject to FAA grant assurance and compliance with slope safety reguirements that preclude development. The East Holmes Road site met all the evaluation factors and was selected for release, as other possible or prudent alternatives were not identified.

SECTION 3.0

Affected Environment and Environmental Consequences

3.0 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES

Section 3 of the Draft EA Report describes the natural and human environments that exist at the approximately 245-acre Site and the potential environmental impacts of the Proposed Action. The environmental impacts can be described as beneficial or adverse and can vary in magnitude. The impacts of the Proposed Action are associated with construction and long-term operation of facilities at the approximately 245-acre Site. The Proposed Action may create short term (lasting during construction) or longterm (lasting more than five years) environmental impacts. For this Draft EA Report, the magnitude of environmental impacts will generally be classified as follows.

No Impact:

A resource would not be affected, or the impacts would be at or below the level of detection (negligible), and changes would not result in any measurable or perceptible consequences.

Minor Short-Term:

Impacts on a resource would be detectable for a short period (typically during construction), would be localized, and would be of minor consequence to the sustainability of the resource. Mitigation measures, if needed to offset adverse short-term effects, would be simple and achievable.

Minor Long-Term:

Impacts on a resource would be readily detectable for a period of more than five years, measurable, and associated with the operation of the Proposed Action. Mitigation measures, if needed to offset adverse long-term effects, would be achievable but more extensive than those for short-term.

Significant:

Impacts on a resource would be obvious, longterm, and would have substantial consequences on a regional scale. Mitigation measures, if needed to offset adverse significant effects, would be extensive. Significant impacts would warrant an EIS to further assess the impacts to affected resources as a result of the Proposed Action. This Draft EA Report describes the following resource areas and assesses the potential for the Proposed Action to affect them: air quality; biological resources; climate; coastal resources; U.S. DOT Act, Section 4(f); farmlands; hazardous materials, solid waste and pollution prevention; historical, architectural, and cultural resources; land use; natural resources and energy supply; noise and noise-compatible land use; socioeconomics, environmental justice, and children's environmental health and safety risks; visual effects; and water resources.

3.1 AIR QUALITY

3.1.1 REGULATORY SETTING

The Clean Air Act (CAA) is the primary statute related to the evaluation of air quality considered in this EA. In accordance with the CAA, the United States Environmental Protection Agency (U.S. EPA) has set National Ambient Air Quality Standards (NAAQS) for six criteria air pollutants considered harmful to public health and the environment. The criteria air pollutants are carbon monoxide, lead, nitrogen dioxide, ground-level ozone, sulfur dioxide, and particulate matter. Particulate matter with diameters of less than 10 microns is known as PM10, and particulate matter with a diameter of less than 2.5 microns is known as PM2.5. Volatile organic compounds, nitrogen oxides, and other greenhouse gases (GHG) are also related to air quality and are considered as precursors to ozone formation. A discussion of GHG emissions is included in Section 3.3.

The U.S. EPA classifies air quality according to whether the concentrations of criteria air pollutants in ambient air of a designated area exceed set NAAQS. Areas are designated as either in "attainment," "nonattainment," "maintenance," or "unclassified" with respect to NAAQS for criteria air pollutant(s). An attainment status indicates that the air quality within a designated area is below the respective NAAQS for criteria air pollutant(s). Nonattainment indicates that the air quality exceeds the NAAQS for the criteria air pollutant(s).

Maintenance indicates that the air quality within a designated area was previously designated as nonattainment for a criteria air pollutant(s) but has been re-designed to attainment status under an approved plan. An unclassified air quality designation means that there is not enough information to classify an area appropriately, so the area is assumed to be in attainment of the NAAQS.

For areas designated as nonattainment or maintenance status, the CAA requires the adoption of a State Implementation Plan (SIP) to achieve the NAAQS for the criteria air pollutant(s). The FAA is responsible for deciding whether its actions involving an airport located in a nonattainment or maintenance area require a general conformity evaluation. The term "general conformity" refers to the process of demonstrating that a federal action conforms to the applicable SIP before the proposed action is undertaken.

Under the CAA, the General Conformity Rule (the Rule) allows for federal agencies to present categories of actions that have been documented to be *de minimis* and therefore should be "presumed to conform" to the Rule. If the Proposed Action is not specifically exempt or classified as presumed to conform, it is necessary to conduct an emissions inventory as part of the applicability analysis to determine if emissions are likely to equal or exceed the established screening criteria emission rates known as the "*de minimis* thresholds." The U.S. EPA document, *De Minimis* Tables, is included in <u>Attachment 2</u>.

The U.S. EPA has defined broad categories of exempt actions under 40 CFR 93.153(c)(2) that result in no emissions increase or increases in emissions that are clearly de minimis. These actions are not subject to further analysis for applicability, conformity, or regional significance under the Rule. As part of the FAA's Federal Register Notice dated February 12, 2007, one such exempted action, relating to the Proposed Action evaluated in this Draft EA Report, is stated as "actions"

(or portions thereof) associated with transfers of land, facilities, title, and real properties through an enforceable contract or lease agreement where the delivery of the deed is required to occur promptly after a specific, reasonable condition is met, and where the federal agency does not retain continuing authority to control emissions associated with the lands, facilities, title, or real properties are presumed to conform to de minimis thresholds (40 CFR 93.153[c][2][xix])." However, the Proposed Action also includes the evaluation of environmental impacts associated with the reasonably foreseeable construction and long-term operation of cargo holding or distribution facilities. The following sections offer a quantitative analysis of air quality impacts based on the full scope of the Proposed Action, aligning with actions presumed to conform with the Rule.

3.1.2 AFFECTED ENVIRONMENT

The affected environment with respect to air quality is the Greater Memphis Metropolitan area, including Shelby County, Tennessee, and portions of DeSoto County, Mississippi, and Crittenden County, Arkansas. This air quality area is collectively termed "Memphis, TN-MS-AR" by the U.S. EPA. and is in maintenance status for the 2008 8-hour ozone and carbon monoxide NAAQS.

The Ambient Air Monitoring Branch of the Shelby County Health Department monitors air quality throughout Shelby County. The Shelby County Health Department develops, operates, and maintains a regional air monitoring network of 23 monitors at seven site locations, including one at MEM. Air quality data are reported daily for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The U.S. EPA uses the collected air quality data to publish a color-coded Air Quality Index (AQI) on the AirNow.gov website.

Annual air quality statistics for 2020 will not be finalized until May 1, 2021. However, during 2019, the AQI for Memphis included 221 days where the air quality was classified as good, noted in green on the AQI. In 2019, 139 days were classified as moderate, noted in yellow on the AQI. According to the U.S EPA, moderate air quality is acceptable; however, for some pollutants such as ground level ozone or particle pollution, there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution. In 2019, five days were classified as unhealthy for sensitive groups, noted in orange. Members of sensitive groups, such as older adults and children, may experience health effects on those days. In 2019, no days were classified as unhealthy or very unhealthy for air quality.

Three 30-day interval AQI outputs for 2020 are included in Attachment 2, showing the daily AQI from May 14 to June 11, from August 25 to September 23, and from October 16 to November 14, 2020. The AQI output for those dates shows the majority of days classified as good air quality days, 17 days classified as moderate air quality days, and one day classified as unhealthy air quality for Memphis, Tennessee.

The topography of the Site is relatively flat with lower elevations towards the center of the Site. The physical and meteorological conditions at the 245-acre Site are not anticipated to hinder the dispersal of any potential air emissions.

3.1.3 ENVIRONMENTAL CONSEQUENCES

3.1.3.1 PROPOSED ACTION

Under the Proposed Action, MSCAA would prepare an approximately 245-acre Site, located approximately 1 mile south of MEM, in Memphis, Tennessee. The purpose of the Proposed Action is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. The proposed

Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). The future development of the Site is reasonably foreseeable; therefore, environmental impacts associated with the preparation of the land and the future development are considered together as the Proposed Action in this Draft EA Report.

The Proposed Action would not increase airside capacity and does not include any aircraft movement or combustion of jet fuel or aviation gasoline. The Proposed Action does not include operations utilizing boilers, incinerators, or other operations requiring an air emissions permit. The Proposed Action will result in minor short-term and long-term adverse impacts on air quality, when compared to the No Action Alternative. The anticipated impacts to air quality relate to the generation of fugitive dust and mobile source emissions from the short-term construction period and long-term operation of the Proposed Action.

Impacts to air quality resulting from the Proposed Action were modeled using the U.S. EPA Motor Vehicle Emission Simulator (MOVES) emission model. The MOVES model calculates estimated emissions from mobile sources at the national, county, and project level for criteria air pollutants, greenhouse gases, and air toxics. For the air quality impact analysis, direct emissions associated with an estimated 9-month construction period were calculated separately from indirect emissions, associated with the increase in fleet and employee vehicle trips. The following paragraphs detail the assumptions used to calculate air quality emissions within MOVES. Model defaults within MOVES were assumed unless otherwise stated. The MOVES output is included in Attachment 2.

Incremental impacts to air quality are anticipated from onsite engine-powered construction equipment, worker commutes, material transport, and evaporative/volatilization sources. The duration

of the construction is divided into two phases: site preparation and building construction. Onsite diesel-powered site preparation equipment modeled within MOVES includes the following equipment:

- (1) Cement and Mortar Mixer
- (1) Dumper/Tender
- (1) Excavator
- (1) Grader
- (1) Off-Highway Truck
- (1) Rubber Tired Loader
- (1) Skid Steer Loader
- (1) Tractor
- (1) Trencher

Onsite diesel-powered building construction equipment modeled within MOVES includes the following equipment.

- (1) Cement and Mortar Mixer
- (1) Crane
- (1) Dumper/Tender
- (1) Excavator
- (1) Grader
- (1) Off-Highway Truck
- (1) Paver
- (1) Paving Equipment
- (1) Plate Compactor
- (1) Roller
- (1) Rubber Tired Loader
- (1) Signal Board
- (1) Skid Steer Loader
- (1) Surfacing Equipment
- (1) Tractor
- (1) Trencher

The duration of the project-related construction is assumed to be 12 months (6 months for site preparation and 6 months for building construction). Site preparation equipment is conservatively assumed to operate from June through December 2021 while building construction equipment would operate from January through June 2022. However, in a real-world scenario, construction requiring heavy equipment would be intermittent and would vary from day-to-day depending on Shelby County meteorological conditions such as wind or rain. It is assumed that construction activity will occur five days each week. For each day of construction activity, it is assumed that 378 construction worker passenger cars, 378 construction worker trucks, and 295 material delivery trucks access the site. Trip rate assumptions are based on conservative standards for building construction worker and vendor trips (CalEEMod 2017).

The assumptions for routine operation of future facilities are based on a similar MSCAA project, the Ketchum Road Land Release. The development proposed at the Ketchum Road Site in Memphis, Tennessee, includes an approximately 819,000 sf e-commerce fulfillment facility. Operational assumptions in the *Ketchum Road Land Release Environmental Assessment* include the daily movement and idling of approximately 120 delivery trucks and approximately 100 employee vehicles (FAA 2021). The Site Plan for

the Proposed Action identifies 1.8 million sf of potential cargo holding or distribution facility space; 1.5 million sf of initial development, with approximately 300,000 sf of additional space allotted for future growth, if needed, (Figure 3). In the absence of an identified end-user(s) for the Site, operational assumptions considered in the Ketchum Road Land Release Environmental Assessment were doubled, based on the increase in total square feet proposed, 1.8 million sf. Operational assumptions for the Proposed Action include the daily movement and idling of approximately 264 delivery trucks and approximately 220 employee vehicles.

It is assumed that both delivery trucks and employee vehicles accessing the site would travel 30 miles round trip. Delivery trucks are modeled as diesel-fueled combination unit long haul trucks within the MOVES model. Model defaults are utilized to calculate fleet mix inputs for commuting workers. Model defaults include an assumption that 98% of commuting worker passenger vehicles are gasoline-fueled, 1% are diesel-fueled, and 1% are ethanol-fueled. The MOVES output is included in Attachment 2. The emission estimates calculated for the Proposed Action are presented in Table 1 and are below applicable de minimis thresholds, and therefore conform to the SIP and the requirements of The Clean Air Act.

Table 1 - Proposed Action Emission Estimates and De Minimis Thresholds (in Tons per Year)						
Source	Nitrogen Oxides	Volatile Organic Compounds	Carbon Monoxide	PM 10	PM 2.5	Sulfur Dioxide
Direct Emissions (construction)	6.45	8.27	61.03	0.17	0.15	0.02
Indirect Emissions (operation)	14.43	6.28	51.01	0.43	0.40	0.043
De Minimis Threshold	100	100	100	100	100	100

Notes:

PM10 = Particulate matter with diameter of less than 10 microns.

PM2.5 = Particulate matter with diameter of less than 2.5 microns.

Additional context regarding the incremental impact of increased emissions due to construction and operation of the Proposed Action is provided through comparison to regional transportation actions that have demonstrated conformity with the SIP. The Memphis Metropolitan Planning Organization (MPO) is responsible for transportation policy development, planning, and programming for the counties of Shelby and Fayette, Tennessee, and DeSoto and Marshall, Mississippi, collectively known as the MPO Planning Area. The MPO completed an air quality conformity determination for the collective impact of hundreds of transportation projects in the Livability 2050: Regional Transportation Plan, Fiscal Year 2020-23 Transportation Improvement Program (MPO 2020). The MPO demonstrated that emissions estimates for future transportation projects in the greater Memphis area, through 2050, do not exceed applicable de minimis thresholds and are presumed to conform with the SIP. Of note, the expansion of the segment of Holmes Road adjacent to the Proposed Action is included as one of the projects evaluated by the MPO to determine conformity. The air quality conformity determination letter for the Transportation Improvement Program (TIP) and an excerpt of the Livability 2050 report listing the Holmes Road expansion project details are included in Attachment 2.

The Proposed Action is anticipated to have minor, short-term and long-term adverse impacts on air quality, when compared to the No Action Alternative. However, the air quality impacts are not anticipated to exceed applicable *de minimis* thresholds and will be minimized though compliance with Shelby County Health Department regulations and best management practices used to control fugitive dust and air emissions and minimize minor adverse impacts to air quality due to construction of the Proposed Action. Examples of best management practices include

requiring onsite construction equipment be well maintained and equipped with the latest emissions control equipment, use of water sprays, application of cover materials and installation of vehicle wheel washing stations to minimize track-out onto local roadways. The use of natural gas-powered trucks or electric vehicles could also offset minor adverse impacts on air quality

3.1.3.2 NO ACTION ALTERNATIVE

There would be no change in air quality under the No Action Alternative.

3.1.4 MITIGATION

The Proposed Action will not exceed applicable *de minimis* thresholds and is presumed to conform with the SIP; therefore, mitigation for air quality is not proposed.

3.2 BIOLOGICAL RESOURCES

3.2.1 REGULATORY SETTING

As stated in FAA Order 1050.1F Desk Reference, biological resources are valued for their intrinsic, aesthetic, economic, and recreational qualities, and include fish, wildlife, plants, and their respective habitats (FAA 2020). Typical categories of biological resources include:

- Terrestrial and aquatic plant and animal species
- Game and non-game species
- Special status species (state- or federally listed threatened or endangered species, marine mammals, or species of concern, such as species proposed for listing or migratory birds)
- Environmentally sensitive or critical habitats

The primary statutes, regulations, Executive Orders, and other guidance related to the evaluation of biological resources considered in this Draft EA Report are as follows:

- The Bald and Golden Eagle Protection Act
- 2. The Endangered Species Act
- 3. Fish and Wildlife Coordination Act
- 4. Magnuson-Stevens Fishery Conservation and Management Act
- 5. Marine Mammal Protection Act
- 6. Migratory Bird Treaty Act
- 7. Executive Order 13112, Invasive Species
- 8. Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds
- 9. Executive Order 13751, Safeguarding the Nation from Impacts of Invasive Species
- 10. CEQ, Guidance on Incorporating Biodiversity Considerations into Environmental Impact Analysis Under the National Environmental Policy Act

As part of the Draft EA Report, informal consultation with the United States Fish and Wildlife Service (USFWS), the Tennessee Department of Environment and Conservation (TDEC), and the Tennessee Wildlife Resources Agency (TWRA) was initiated to determine whether any state-listed, federally-listed or candidate species or designated critical habitat are likely to be adversely affected by the Proposed Action. In addition, the USFWS Information for Planning and Conservation (IPaC) website was reviewed for a list of federally protected species and migratory birds with the potential to occur in the area. An informal level of consultation with the USFWS and

TWRA was determined to be appropriate, based on research of the biological resources at the urban Proposed Action Site and inspection of the Site conducted by two biologists on April 15-16, 2020.

3.2.2 AFFECTED ENVIRONMENT

The Proposed Action Site is approximately 1 mile south of MEM at the Tennessee/Mississippi state line (Figure 1). The Site is currently vacant and predominantly wooded (Figure 2). A TVA transmission easement is located within the south portion of the Site, a Texas Gas Company transmission easement is within the north portion of the Site, and a Valero and MLGW easement is within the west portion of the Site (Figure 2). Representative photos of the Site are included in Attachment 3.

The Site is located on a local drainage divide. The principal drainage on the Site is Hurricane Creek, which flows northeasterly into Nonconnah Creek, and the Nonconnah Creek Watershed located in northwest Mississippi and southwest Tennessee. The southwestern portion of the Site is drained by a southwesterly flowing unnamed tributary that feeds into Rocky Creek in De Soto County, Mississippi. Rocky Creek flows west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee. There are several wetlands on the Site. A discussion of water resources is included in Section 3.14. The National Wetlands Inventory map layer, and Federal Emergency Management Agency floodplain map layer are included as Figure 4 and Figure 5, respectively.

Figure 5 - TN Historical Commission Surveyed Sites

According to a Phase I Environmental Site Assessment (ESA) of the Site conducted by EnSafe Inc. (EnSafe) in 2020, the Site has experienced significant disturbances. Based on information reviewed, the Site was developed for residential use as early as the 1930s. Historical information reviewed indicates portions of the Site were utilized for sand and gravel mining from around 1950 until 1979.

During a survey on April 15-16, 2020, biologists identified herbaceous and aquatic habitat at the Site. Biologists did not observe any critical habitat or threatened, endangered species, or migratory birds with the potential to exist in the area. Dominant plants included a mix of grasses and herbaceous plants in the open areas (e.g., transmission line and gas pipeline easements) and

hardwood forested areas dominated by maple (Acer rubrum and Acer negundo), Hickory species (mostly Carya glabra), Hackberry (Celtis laevigata), cottonwood (Populus deltoides), Sweetgum (Liquidambar styraciflua), Oak (Quercus) species, and American elm (Ulmus americana).

Table 2 includes a list of threatened, endangered, or special status species whose occurrences have been documented in Shelby County, and have the potential to occur at the Site. The list of species on Table 2 are either federally designated by the USFWS and listed on the IPaC output, or by the State of Tennessee and published in the TDEC, Division of Natural Areas, Interactive Rare Species Database. Output from IPaC and the TDEC database is included in Attachment 3.

Scientific Name	Common Name Federal Status		State Status	
Birds				
Dendroica cerulea	Cerulean Warbler	D		
Haliaeetus leucocephalus	Bald Eagle	NS	D	
Limnothlypis swainsonii	Swainson's Warbler	NS	D	
Sternula antillarum athalassos	Interior Least Tern	E	Е	
Thryomanes bewickii	Bewick's Wren	D		
Falco sparverius paulus	American kestrel*	NS		
Mammals				
Myotis septentrionalis	Northern Long-eared Bat	NS		
Myotis sodalis	Indiana Bat	NS		
Neotoma floridana illinoensis	Eastern Woodrat NS		D	
Reptiles				
Pituophis melanoleucus	Northern Pinesnake	NS	Т	
Plants				
Heteranthera multiflora	Multiflowered Mud-plantain	NS	S	
Hottonia inflata	American Featherfoil	NS	S	
Iris fulva	Copper Iris	NS	Т	
Magnolia virginiana	Sweetbay Magnolia	Sweetbay Magnolia NS		
Panax quinquefolius	American Ginseng	NS	S-CE	
Rhynchospora harveyi	Harvey's Beakrush	NS	Т	
Schisandra glabra	Red Starvine	NS T		
Silene ovata	Ovate Catchfly	NS	Е	
Symphyotrichum praealtum	Willow Aster	NS	Е	
Ulmus crassifolia	Cedar Elm	NS	S	

Notes:

Sources: Tennessee Department of Environment and Conservation Division of Natural Areas. Rare Species Viewer

http://environment-online.tn.gov:8080/pls/enf_reports/f?p=9014:3:::::

USFWS IPaC website https://ecos.fws.gov/ipac/

* = Migratory bird, not a threatened or endangered species

NS = No Status

D = Deemed in Need of Management

E = Endangered

T = Threatened

S = Special Concern

CE = Commercial Exploitation

During the April 15-16, 2020 site visit, EnSafe biologists also conducted a survey of habitat suitability for the Indiana Bat (Myotis sodalis) and Northern Long-eared Bat (Myotis septentrionalis). The USFWS tracks the occurrence of the Indiana Bat and Northern Long-Eared Bat in Tennessee. The USFWS bat occurrence maps included in Attachment 3 indicate the listed bat species do not occur in Shelby County. However, a bat habitat survey was conducted according to procedures outlined in the 2019 USFWS Range-Wide Indiana Bat Summer Survey Guidelines. Several snags were identified during the survey, but these snags did not generally exhibit a sufficient degree of peeling or shaggy bark nor any major cavities that would serve as suitable bat roosting habitat. Most of the snags observed were dead willow (Salix nigra) trees, and no shagbark hickories (Carya ovata) were observed during the two-day Site survey. Most of the snags and aquatic resources were located within densely-forested areas that seemed unsuitable as flyway corridors. Some portions of the larger streams in the northeast quadrant of the Site traverse cleared, open (approximately 100 feet wide) utility line easements, but these altered patches of land would be expected to function as low resource value habitats. A wider utility line easement (approximately 230 feet wide) running through the southern portion allows a stream to cross, but that is buried in a culvert. In general, evidence of historical activities at the Site have left certain places highly altered.

Informal consultation with USFWS and TWRA specific to the Proposed Action did not identify any listed species that would be affected. On January 27, 2021, the USFWS reached a decision regarding potential impacts resulting from the Proposed Action with respect to threatened and endangered species, stating, "Based on the current property condition and best information available at this time, we would not anticipate federally listed species occurring at the site." The USFWS correspondence is included in Attachment 1. On January 28, 2021, the TWRA reached a decision regarding potential impacts resulting from the Proposed Action with respect to State-listed

species, stating, "We do not anticipate adverse impacts to state listed species under our authority due to the proposed project; provided that best management practices to address erosion and sediment are implemented and maintained during construction activities." The TWRA correspondence is included in Attachment 1.

3.2.3 ENVIRONMENTAL CONSEQUENCES

3.2.3.1 PROPOSED ACTION

The Proposed Action includes the preparation of the Site for future development by private companies with an interest in constructing cargo holding or distribution facilities. A Proposed Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). Site preparation will include tree removal, site grading and fill, utility main extensions, and stream crossings to allow for future Site pad development by private companies. The Proposed Action includes the extension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings, construction of new streams, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. This infrastructure will permanently alter the urban habitat at the Site through removal of vegetation where required, alteration of wetlands, and disturbance of wildlife using the Site. The alteration of existing aquatic features and anticipated 72.5 acre increase in impervious surface at the Site are discussed further in Section 3.14. Overall, approximately 77 acres of the approximately 245-acre Site will be disturbed (Figure 4).

Tree removal activities will comply with all Shelby County ordinances, including replanting trees and shrubs in the final landscape design. With respect to removal of vegetation, TDEC strongly encourages disposal methods such as wood chipping, rather than open burning, to minimize the impact on nearby homes and businesses. However, if open burning is employed as a vegetation

disposal method, the open burning must comply with the Shelby County Health Department open burning regulations and, where applicable, the State Division of Forestry burning regulations. The Shelby County Health Department will be contacted prior to conducting any open burning of any vegetative or construction/demolition related debris generated from Site preparation activities. Proposed design planning includes natural vegetative buffers at the perimeter of the Proposed Action Site to account for tree removal during Site preparation and interrupt sight lines from adjacent properties.

A storm water detention pond is proposed at the Site to account for an increase of approximately 77 acres of impervious surface. The Proposed Action will disturb more than an acre of land, which will require a construction stormwater general permit, which is further discussed in Sections 3.7 and 3.14. The detention of storm water at the Site will require compliance with the National Pollutant Discharge Elimination System (NPDES), which is discussed further in Sections 3.7 and 3.14. Overall, the loss of urban habitat at the Site due to the Proposed Action is considered minor and will not result in significant adverse impacts to biological resources.

Executive Order 13112 requires the prevention and control of invasive species. It directs Federal agencies to not authorize, fund, or carry out actions that they believe are likely to cause or promote the introduction or spread of invasive species in the U.S. unless the agency has determined and made public its determination that the benefits of such actions clearly outweigh the potential harm caused by invasive species, and that all feasible and prudent measures to minimize risk of harm will be taken in conjunction with the actions. The guidelines of Executive Order 13112 will be adhered to while constructing and maintaining the project to control and prevent the spread of any invasive species to the Site. To the extent possible, invasive-free seed mixtures will be used and revegetation will occur with native or noninvasive plant species.

Potential impacts on biological resources from the long-term operation of the Proposed Action include disturbance of light-sensitive or noise-sensitive species. Assumptions regarding operational light and noise associated with future facilities is primarily attributed to exterior security lighting and the flow of fleet trucks and employee vehicles in and out of the Site. The Proposed Action would not impact animals sensitive to light emissions, such as sea turtles. The context and intensity of light and noise impacts associated with the Proposed Action includes consideration of the urban setting, adjacent East Holmes Road, Swinnea Road, and noise associated with aircraft flight paths. Overall, the potential disturbance to urban wildlife from operational light or noise is considered minor and will not result in significant adverse impacts to biological resources.

Based on context and intensity indicators for biological resource impacts noted in FAA Order 1050.1F, the Proposed Action will not:

- Adversely impact special status species or their habitats or include a permanent loss of plant or wildlife species
- Adversely impact a species' reproductive success rate or mortality rate
- Impair a species' ability to sustain the minimum population levels required for population maintenance

The Proposed Action is anticipated to have minor, short-term and long-term adverse impacts on biological resources, when compared to the No Action Alternative. Site design planning has been incorporated to avoid the majority of the aquatic features present at the Site. Best management practices to address erosion and sediment will be implemented and maintained during construction activities. The impacts to biological resources due to the Proposed Action will not result in significant adverse impacts to biological resources.

3.2.3.2 NO ACTION ALTERNATIVE

Under the No Action Alternative, the Proposed Action would not occur, and no impacts to biological resources would result.

3.2.4 MITIGATION

Based on the lack of significant adverse impacts to biological resources, mitigation is not proposed for the Proposed Action.

3.3 CLIMATE

3.3.1 REGULATORY SETTING

As stated in FAA Order 1050.1F Desk Reference, minimizing GHG emissions and identifying potential future impacts of climate change are important for a sustainable national airspace system (FAA 2020). GHGs are defined as carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride (FAA 2020). Of the six recognized GHGs, only carbon dioxide is a direct aircraft combustion product (FAA 2020). For FAA NEPA evaluations, carbon dioxide. measured in metric tons, is considered the most important anthropogenic source for air traffic action or airport operations. Non-aircraft emission sources are typically not affected by airspace and procedural actions (FAA 2020). Potential climate impacts, as indicated by GHG emissions, are evaluated separately from air quality, based on the statutes, regulations, Executive Orders, and guidance listed below.

The primary statutes, regulations, Executive Orders, and other guidance related to the evaluation of climate considered in this Draft EA Report are as follows:

- 1. The Clean Air Act of 1970
- 2. Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance
- 3. Executive Order 13653, Preparing the United States for the Impacts of Climate Change

- 4. Executive Order 13693, Planning for Federal Sustainability in the Next Decade
- 5. Executive Order 13807, Establishing Discipline and Accountability in the Environmental Review and Permitting Process for Infrastructure Projects
- 6. CEQ, Federal Greenhouse Gas Accounting and Reporting Guidance
- 7. CEQ, Final Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews

3.3.2 AFFECTED ENVIRONMENT

The Proposed Action Site is located in Shelby County, Tennessee, which is in attainment for all criteria air pollutants except the 2008 8-hour ozone and carbon monoxide NAAQS that are considered to be in maintenance status. The Site is maintained as vacant land by the MSCAA. The AQI for Memphis, published daily by the U.S. EPA, is considered satisfactory, and air pollution poses little or no health risk on most days of the year (Attachment 2).

3.3.3 ENVIRONMENTAL CONSEQUENCES

3.3.3.1 PROPOSED ACTION

The Proposed Action would not increase airside capacity and does not include any aircraft movement or combustion of jet fuel or aviation gasoline. The Proposed Action does not include operations utilizing boilers, incinerators, or other operations requiring an air emissions permit. The Proposed Action will result in minor short-term and long-term adverse impacts on climate, when compared to the No Action Alternative. The anticipated incremental impacts to climate relate to the generation of fugitive dust and mobile source emissions from the short-term construction period and long-term operation of the Proposed Action.

Incremental impacts to climate resulting from the Proposed Action were modeled using the U.S.

MOVES emission model. The MOVES model calculates estimates emissions for mobile sources at the national, county, and project level for criteria air pollutants, greenhouse gases, and air toxics. For the climate impact analysis, direct emissions associated with an estimated 12-month construction period were calculated separately from indirect emissions, associated with the increase in fleet and employee vehicle trips. The following paragraphs detail the assumptions used to calculate GHG emissions within MOVES. Model defaults within MOVES were assumed unless otherwise stated. The MOVES output is included in Attachment 2.

Incremental impacts to climate are anticipated from onsite engine-powered construction equipment, worker commutes, and material transport. The duration of the construction is divided into two phases: site preparation and building construction. Onsite diesel-powered site preparation equipment modeled within MOVES includes the following equipment:

- (1) Cement and Mortar Mixer
- (1) Dumper/Tender
- (1) Excavator
- (1) Grader
- (1) Off-Highway Truck
- (1) Rubber Tired Loader
- (1) Tractor
- (1) Trencher

Onsite diesel-powered building construction equipment modeled within MOVES includes the following equipment:

- (1) Cement and Mortar Mixer
- (1) Crane
- (1) Dumper/Tender

- (1) Excavator
- (1) Grader
- (1) Off-Highway Truck
- (1) Paver
- (1) Paving Equipment
- (1) Plate Compactor
- (1) Roller
- (1) Rubber Tired Loader
- (1) Signal Board
- (1) Skid Steer Loader
- (1) Surfacing Equipment
- (1) Tractor
- (1) Trencher

The duration of the project-related construction is assumed to be 12 months (6 months for site preparation and 6 months for building construction). Site preparation equipment is conservatively assumed to operate from June through December 2021 while building construction equipment would operate from January through June 2022. However, in a real-world scenario, construction requiring heavy equipment would be intermittent and would vary from day-to-day depending on Shelby County meteorological conditions such as wind or rain. It is assumed that construction activity will occur five days each week. For each day of construction activity, it is assumed that 378 construction worker passenger cars, 378 construction worker trucks, and 295 material delivery trucks access the site. Trip rate assumptions are based on conservative standards for building construction worker and vendor trips (CalEEMod 2017).

The assumptions for routine operation of future facilities are based on a similar MSCAA project, the Ketchum Road Land Release. The devel-

opment proposed at the Ketchum Road Site in Memphis, Tennessee, includes an approximately 819,000 sf e-commerce fulfillment facility. Operational assumptions in the Ketchum Road Land Release Environmental Assessment include the daily movement and idling of approximately 120 delivery trucks and approximately 100 employee vehicles (FAA 2021). The Site Plan for the Proposed Action identifies 1.8 million sf of potential cargo holding or distribution facility space; 1.5 million sf of initial development, with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). In the absence of an identified end-user(s) for the Site, operational assumptions considered in the Ketchum Road Land Release Environmental Assessment were doubled, based on the increase in total square feet proposed, 1.8 million sf. Operational assumptions for the Proposed Action include the daily movement and idling of approximately 264 delivery trucks and approximately 220 employee vehicles.

Table 3 includes the GHG emissions calculated for the Proposed Action Project and the U.S. EPA GHG Reporting Program (GHGRP) threshold. The GHGRP (codified at 40 CFR Part 98), requires the reporting of GHG data and other relevant information from facilities that exceed 25,000 metric tons of carbon dioxide equivalents per year. The GHG emissions estimates calculated for the Proposed Action are below the GHGRP threshold of 25,000 metric tons of carbon dioxide equivalent.

Additional context regarding the incremental impact of increased GHG emissions due to construction and operation of the Proposed Action is provided through comparison to regional transportation actions. The MPO quantitatively evaluated the collective impact of hundreds of transportation projects, including an expansion of Holmes Road adjacent to the Proposed Action site, in the Livability 2050: Regional Transportation Plan, Fiscal Year 2020-23 Transportation Improvement Program (MPO 2020). The resulting air quality conformity determination for the evaluated transportation projects demonstrated that the tons-per-day emissions estimates for GHGs do not exceed corresponding emission thresholds per year, through 2050. It should be noted that the MPO is not required to make conformity determinations for GHGs. The air quality conformity determination letter for the TIP is included in Attachment 2.

The Proposed Action is anticipated to have minor, short-term and long-term adverse impacts on climate, when compared to the No Action Alternative. The Proposed Action is presumed to conform with the SIP. Incremental impacts to climate from the Proposed Action are not anticipated to exceed applicable GHGRP thresholds and will be minimized though compliance with existing regulations and best management practices.

Table 3 - Proposed Action Greenhouse Gas Emissions and Carbon Dioxide Equivalent Threshold (in Metric Tons per Year)				
Source	Carbon Dioxide	Methane	Nitrous Oxide	
Direct Emissions (construction)	2,580.83	0.44	0.26	
Indirect Emissions (operation)	5,232.22	1.25	0.132	
GHGRP Threshold	25,000	25,000	25,000	

Notes:

GHGRP = The U.S. EPA GHG Reporting Program

3.3.3.2 NO ACTION ALTERNATIVE

Under the No Action Alternative, the Proposed Action would not occur, and no impacts to climate would result.

3.4 COASTAL RESOURCES

3.4.1 REGULATORY SETTING

According to FAA Order 1050.1F Desk Reference, coastal resources include the natural resources occurring within coastal waters and their adjacent shorelands (FAA 2020). Coastal resources include islands, transitional and intertidal areas, salt marshes, wetlands, floodplains, estuaries, beaches, dunes, barrier islands, and coral reefs, as well as fish and wildlife and their respective habitats within these areas (FAA 2020). Coastal resources include the coastlines of the Atlantic and Pacific Oceans, the Great Lakes, and the Gulf of Mexico.

The primary statutes, regulations, and Executive Orders related to the protection of coastal resources considered in this Draft EA Report are as follows:

- 1. The Coastal Barrier Resources Act
- 2. The Coastal Zone Management Act
- 3. The National Marine Sanctuaries Act
- 4. Executive Order 13089, Coral Reef Protection
- 5. Executive Order 13547, Stewardship of the Ocean, Our Coasts, and the Great Lakes

3.4.2 AFFECTED ENVIRONMENT

The Proposed Action Site is located Memphis, Tennessee. The Proposed Action does not impact coastlines of the Atlantic and Pacific Oceans, the Great Lakes, or the Gulf of Mexico. Therefore, impacts to coastal resources resulting from the Proposed Action are not reasonably foreseeable.

3.4.3 ENVIRONMENTAL CONSEQUENCES

3.4.3.1 PROPOSED ACTION

There would be no changes to coastal resources under the Proposed Action.

3.4.3.2 NO ACTION ALTERNATIVE

There would be no changes to coastal resources under the No Action Alternative.

3.4.4 MITIGATION

Based on the location of the Proposed Action, there are no impacts to coastal resources; therefore, mitigation is not proposed for the Proposed Action.

3.5 DEPARTMENT OF TRANSPORTATION ACT, SECTION 4(F)

3.5.1 REGULATORY SETTING

According to FAA Order 1050.1F Desk Reference, Section 4(f) of the United States Department of Transportation (DOT) Act of 1966 protects significant publicly owned parks, recreational areas, wildlife and waterfowl refuges, and public and private historic sites (FAA 2020). Section 4(f) provides that the Secretary of Transportation may approve a transportation program or project requiring the use of publicly owned land of a public park, recreation area, or wildlife or waterfowl refuge of national, state, or local significance, or land of a historic site of national, state, or local significance, only if there is no feasible and prudent alternative to using that land, and the program or project includes all possible planning to minimize harm resulting from the use (FAA 2020).

A Section 4(f) use can occur under two scenarios: Physical Use or Constructive Use. Physical Use involves the actual physical taking of Section 4(f) property through the purchase of land or a permanent easement, physical occupation

of a portion or all the property, or alteration of structures or facilities on the property (FAA 2020). Constructive Use refers to the severity of impacts resulting from the Proposed Action on a Section 4(f) property. Constructive Use includes impacts that are so severe that the activities, features, or attributes that qualify the property for protection under Section 4(f) are substantially impaired. Substantial impairment occurs only when the protected activities, features, or attributes of the Section 4(f) property that contribute to its significance or enjoyment are substantially diminished. This means that the value of the Section 4(f) property, in terms of its prior significance and enjoyment, is substantially reduced or lost (FAA 2020).

The primary statutes, regulations, and other guidance related to the evaluation of Section 4(f) property considered in this Draft EA Report are as follows:

- Land and Water Conservation Fund Act of 1965
- 2. U.S. DOT Act Section 4(f)
- 3. Safe, Accountable, Flexible, Efficient Transportation Equity Act
- 4. United States Department of Defense Reauthorization

3.5.2 AFFECTED ENVIRONMENT

The affected environment, with respect to Section 4(f), considers sites identified by the Tennessee Historical Commission (THC), located at and near the Proposed Action Site on Swinnea Road. Figure 5 references the location of the THC-surveyed sites. These sites are discussed in detail in Section 3.8.

The onsite surveyed resources and other identified resources were considered during the coordination with the State Historic Preservation Office (SHPO), the THC. In correspondence dated December 4, 2020, the THC determined that no historic properties eligible for listing in the National Register of Historic Places will be affected by the Proposed Action (Attachment 1). Based on the SHPO determination, the Proposed Action is not anticipated to impact section 4(f) properties.

3.5.3 ENVIRONMENTAL CONSEQUENCES

3.5.3.1 PROPOSED ACTION

There would be no changes to Section 4(f) resources under the Proposed Action.

3.5.3.2 NO ACTION ALTERNATIVE

There would be no changes to Section 4(f) resources under the No Action Alternative.

3.5.4 MITIGATION

Impacts to Section 4(f) resources are not anticipated under the Proposed Action; therefore, mitigation is not proposed.

3.6 FARMLANDS

3.6.1 REGULATORY SETTING

According to FAA Order 1050.1F Desk Reference, farmlands are defined as those agricultural areas considered important and protected by federal, state, and local regulations (FAA 2020). Important farmlands include all pasturelands, croplands, and forests considered to be prime, unique, or of statewide or local importance. Farmland does not include land already in or committed to urban development or water storage (FAA 2020).

The primary statute and guidance related to the protection of farmlands resources considered in this Draft EA Report are as follows:

- 1. Farmland Protection Policy Act
- 2. CEQ Memorandum on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing NEPA

3.6.2 AFFECTED ENVIRONMENT

The Proposed Action Site is in an urban area of The Proposed Action Site is in an urban area of Memphis, Shelby County, Tennessee (Figure 1).

The Proposed Action Site was mapped using the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Web Soil Survey. The NRCS Web Soil Survey output, included in Attachment 4, indicates that the Site is primarily composed of six soil types: Collins, Falaya, Grenada, Gullied land, Loring, and Memphis. Four of the onsite soil types (Collins, Falaya, Loring, and Memphis) are considered Prime Farmland in Shelby County, Tennessee. In total, 130 acres of the Site is considered to contain Prime Farmland.

3.6.3 ENVIRONMENTAL CONSEQUENCES

3.6.3.1 PROPOSED ACTION

Under the Proposed Action, MSCAA would prepare an approximately 245-acre Site, located approximately 1 mile south of MEM, in Memphis, Tennessee. The Proposed Action includes the preparation of the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. The proposed Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3).

The Proposed Action will permanently alter the use of the project Site and result in minor short-term and long-term adverse impacts on farmland, when compared to the No Action Alternative. The anticipated impacts to farmland relate to the conversion of land currently zoned as Conservation Agriculture. Figure 6 depicts the Site soil map overlain by the conceptual site plan.

The Tennessee USDA, NRCS was consulted to determine whether significant impacts or mitigation would be required for the conversion of Prime Farmland, as defined in the Farmland Protection Policy Act, to nonagricultural uses.

In correspondence dated December 8, 2020, the Tennessee USDA Area 2, determined the proposed project does not significantly impact Prime Farmland and/or farmland of statewide importance in the county since only 0.0656% will be converted (Attachment 1)

3.6.3.2 NO ACTION ALTERNATIVE

There would be no changes to farmlands under the No Action Alternative.

3.6.4 MITIGATION

Based on the USDA determination, mitigation is not required or proposed.

Figure 6 - Prime Farmland Map

3.7 HAZARDOUS MATERIALS, SOLID WASTE, AND POLLUTION PREVENTION

3.7.1 REGULATORY SETTING

According to FAA Order 1050.1F Desk Reference, hazardous materials, solid waste, and pollution prevention as an impact category includes an evaluation of the following:

- Waste streams that would be generated by a project, potential for the wastes to impact environmental resources, and the impacts on waste handling and disposal facilities that would likely receive the wastes
- Potential hazardous materials that could be used during construction and operation of a project, and applicable pollution prevention procedures
- Potential to encounter existing hazardous materials at contaminated sites during construction, operation, and decommissioning of a project
- Potential to interfere with any ongoing remediation of existing contaminated sites at the proposed project site or in the immediate vicinity of a project site

The primary statutes, regulations, Executive Orders, and other guidance related to the evaluation of hazardous materials, solid waste, and pollution prevention considered in this Draft EA Report are as follows:

- Comprehensive Environmental Response, Compensation, and Liability Act
 (as amended by the Superfund Amendments Reauthorization Act of 1986 and
 the Community Environmental Response
 Facilitation Act of 1992)
- 2. Emergency Planning and Community Right-to-Know Act

- 3. Federal Facilities Compliance Act
- 4. Hazardous Materials Transportation Act
- 5. Oil Pollution Act
- 6. Pollution Prevention Act
- 7. Resource Conservation and Recovery Act
- 8. Toxic Substances Control Act
- 9. Executive Order 12088, Federal Compliance with Pollution Control Standards
- 10. Executive Order 12580, Superfund Implementation as amended by Executive Order 13016, as further amended by Executive Order 13308
- 11. CEQ Memorandum on Pollution Prevention and NEPA
- 12. FAA Orders and Advisory Circulars
- 13. Tennessee Solid Waste Management Act of 1991
- 14. Tennessee Department of Environment and Conservation, *Solid Waste Management Rule 0400*, Chapter 11 for Solid Waste and Chapter 12 for Hazardous Waste

3.7.2 AFFECTED ENVIRONMENT

The Proposed Action Site is approximately 245 acres located in Memphis, Tennessee (Figure 1). The affected environment considered for hazardous materials, solid waste, and pollution prevention includes any contaminated sites within or in the immediate vicinity of the Proposed Action area and the nearest receiving waterbody. The Site is located on a drainage divide; the principal drainage on the Site is Hurricane Creek, which flows northeasterly into Nonconnah Creek, and the Nonconnah Creek Watershed located in northwest Mississippi and southwest Tennessee. The southwestern portion of the Site is drained by a southwesterly flowing unnamed

tributary that feeds into Rocky Creek in De Soto County, Mississippi. Rocky Creek flows west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee. Water Resources are discussed in detail in Section 3.14. The affected environment for this resource area also includes the local disposal capacity for solid and hazardous wastes generated from the Proposed Action. The identification of contaminated sites and solid and hazardous waste disposal capacity are discussed in the following subsections.

3.7.2.1 IDENTIFICATION OF CONTAMINATED SITES

The 2020 Phase I ESA, included in <u>Attachment 5</u>, was conducted to:

- Evaluate the probability of impact to the surface water, groundwater, and/or soils within the Site boundaries through a review of regulatory information and a reconnaissance of the Site and vicinity
- Evaluate historical land usage to identify previous conditions that could potentially impact the environmental condition of the Site
- Conduct all appropriate inquiries as defined by ASTM International (ASTM) E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and U.S. EPA Standards and Practices for All Appropriate Inquiries in 40 CFR Part 312
- Evaluate the potential for onsite and offsite contamination
- Provide a professional opinion regarding the potential for environmental impact at the Site and a list of recognized environmental conditions (RECs)

ASTM E1527-13 defines a REC as "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property:

(1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." For the purposes of this practice, "migrate" and "migration" refer to the movement of hazardous substances or petroleum products in any form, including solid and liquid, at the surface or subsurface and vapor in the subsurface.

As part of the Phase I ESA, federal, state, and local database listings were searched for contaminated sites or for sites with the potential for contamination, including sites with fuel storage tanks. The Proposed Action Site was not listed in any of the federal, state, or local databases researched. Several sites were identified within the ASTM approximate minimum search distances for databases. However, the conclusions of the Phase I ESA revealed no evidence of recognized environmental conditions, controlled recognized environmental conditions, or historical recognized environmental conditions in connection with the subject property (EnSafe 2020a). Of note, the Proposed Action Site was identified as a homestead as early as the 1930s. Historical information reviewed indicates at least portions of the Proposed Action Site were used in surface mining of construction sand and gravel from around 1950 until the mining operation was abandoned on April 4, 1979. The Proposed Action Site property was inspected in 1980 by the U.S. EPA and a site description on the inspection report indicated the site as an "old gravel pit, now overgrown, no sign of stain, leachate, or disturbance".

The TDEC Division of Solid Waste Management (DSWM) manages legacy solid waste sites predating the Solid Waste Management Program initiated in 1972. The DSWM advises that any wastes unearthed during the project are subject to a hazardous waste determination and must be managed appropriately.

3.7.2.2 IDENTIFICATION OF SOLID AND HAZARDOUS WASTE DISPOSAL CAPACITY

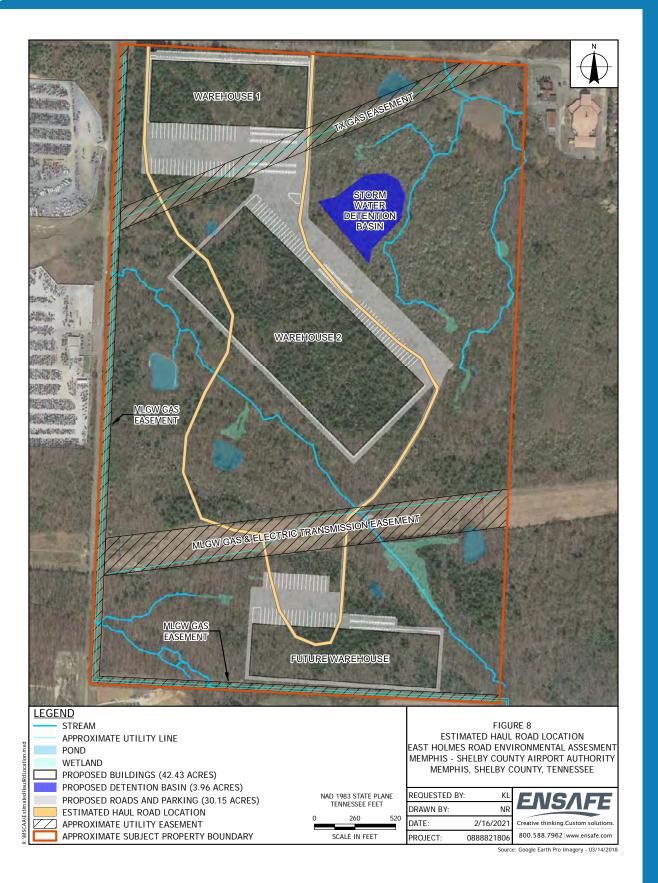
The DSWM regulates material recovery facilities, transfer stations, and landfills for sanitary or municipal solid waste, industrial waste, farming wastes, and construction and demolition waste. A list of the operating permitted landfills in Shelby County including Class I, II, III, and IV landfills as of April 17, 2020, is included in Attachment 6. Waste is accepted at the following permitted landfills:

- Class I landfills, which accept non-hazardous municipal solid wastes such as household wastes, approved special wastes, and commercial wastes
- Class II landfills, which accept non-hazardous industrial wastes, commercial wastes, and fill
- Class III landfills, which accept Class IV wastes plus landscaping, land clearing, and farming wastes
- Class IV landfills, which accept construction/demolition wastes, shredded tires, and waste with characteristics similar to construction/demolition wastes

According to a 2018 Land Use Control Board (LUCB) Staff Report, the landfills that serve the Proposed Action area have sufficient capacity to receive wastes associated with the construction and operation phases of the Proposed Action through 2055. The Staff Report is included in <u>Attachment 5</u>. Hazardous waste is not anticipated to be generated by the Proposed Action.

Any wastes associated with the Proposed Action, including but not limited to: grading, excavation, and construction, materials destined for disposal, unforeseen damages and repairs, cleanup, surface stabilization, and leaks and spills, will be handled in accordance with the TDEC *Solid Waste Management Rule 0400*, Chapter 11 for Solid Waste and Chapter 12 for Hazardous Waste.

3.7.3 ENVIRONMENTAL CONSEQUENCES


3.7.3.1 PROPOSED ACTION

The preparation of the Site is anticipated to result in an increase in solid waste, when compared to the No Action Alternative. Preparation of the Site will involve clearing and grading portions of the Site to allow for approximately 1.5 million sf of facility space at the Site, with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). Approximately 220,000 cubic yards of soil will be required to prepare the Site for the proposed buildings, driveways, and parking lots. It is anticipated that the fill material would come from the Site, resulting in a balance of material at the Site. Disposal of cleared trees and unsuitable soils is anticipated as a result of the Proposed Action. Figure 7 depicts the areas where site fill is anticipated. Haul routes are proposed to minimize impacts to onsite water resources. Two stream crossings are proposed in connection with the haul routes. One temporary stream crossing is proposed for construction purposes and one permanent steam crossing is proposed at the Site. The permanent stream crossing will provide a route to the southernmost future facility. Figure 8 depicts the proposed haul routes in connection with the Proposed Action.

Figure 7 - Estimated Fill Areas

Figure 8 - Estimated Haul Road Location

The long-term operation of the Proposed Action is anticipated to result in an increase in solid waste, when compared to the No Action Alternative. Solid waste associated with cargo holding or distribution facilities may include items such as recyclable paper and packaging, waste associated with clerical functions, and employee break rooms such as food and beverage containers. Based on a review of operating permitted landfills in Shelby County, solid waste disposal related to the Proposed Action would result in minor, short-term adverse impacts to, solid waste when compared to the No Action Alternative. However, impacts to solid waste due to the Proposed Action are not considered significant.

The Proposed Action is not anticipated to result in the generation of hazardous waste. However, construction of the Proposed Action may include the use of paint, adhesives, and solvents. According to TDEC, any wastes associated with construction and operations of the Proposed Action must be handled in accordance with the Solid and Hazardous Waste Rules and Regulations of the state. This includes all materials that would be classified as solid and/or hazardous wastes per TDEC *Solid Waste Management Rule 0400*, Chapter 11 for Solid Waste, and Chapter 12 for Hazardous Waste.

The project construction contractor is responsible for proper storage and disposal of unused products and would determine the classification of all waste streams, including Universal Waste and Hazardous Waste per TDEC Solid Waste Management Rules 0400-12-01.12 and 0400-12-01.03(b). Limited (non-bulk) quantities of flammable liquids and combustible liquids are exempted from hazardous material labeling, unless the material is offered for transportation or transported by aircraft. Fuel associated with construction equipment or fleet vehicles will be contained inside the equipment and vehicles. Onsite fleet fueling is not proposed for the operation of the Proposed Action.

The Proposed Action will result in approximately 72.5 acres of impervious surface at the Site. A permanent stormwater detention pond is proposed to capture the anticipated increase in stormwater runoff at the Proposed Action Site (Figure 4). The stormwater detention pond will be designed to handle typical stormwater retention. However, an emergency outfall with capacity to handle added stormwater during a 50-year storm event may be included in the final design.

The U.S. EPA has developed permitting regulations under the National Pollutant Discharge Elimination System (NPDES) to control stormwater discharges associated with industrial activity. As a result, NPDES permitting authorities, delegated to the TDEC, Division of Water Resources, issue stormwater permits to control runoff from these industrial facilities. The Proposed Action will disturb more than an acre of land, which will require a construction stormwater general permit. Prior to commencement of future facilities activities, the developer will submit a Notice of Intent for Construction Activity Stormwater Discharges to TDEC, Division of Water Resources. The proposed site activities are also subject to the requirements of a Tennessee NPDES Multi-Sector Stormwater Permit for Industrial Activities and regulations under the U.S. EPA Sector P: Freight Transportation Facilities.

Requirements for coverage under an industrial stormwater permit include development of a written stormwater pollution prevention plan (SWPPP), implementation of control measures, and submittal of a request for permit coverage, usually referred to as the Notice of Intent. The SWPPP will provide an assessment of potential sources of pollutants in stormwater runoff, such as petroleum, and control measures that will be implemented at the facility to minimize the discharge of these pollutants in runoff from the Proposed Action Site. These control measures include site-specific best management practices, maintenance plans, inspections, employee training, and reporting.

In addition, installation of sediment controls such as filter berms and silt fences will be required to capture and retain mobilized debris and sediment during construction. Following construction activities, the tenant would also develop and submit a site-specific SWPPP and the Notice of Intent.

Minor short-term and long-term adverse impacts to pollution prevention are associated with the Proposed Action, when compared to the No Action Alternative. The impacts to are related to Site disturbances associated with the proposed construction and an increase in impervious surface at the Site. The Proposed action will comply with the NPDES Stormwater Permitting Program. Therefore, the Proposed Action is not anticipated to result in significant adverse impact to water resources.

The factors associated with hazardous materials, solid waste, and pollution prevention have been evaluated in this Draft EA Report in light of context and intensity to determine if significant impacts would result from the Proposed Action for this resource area. The Proposed Action will not:

- Violate applicable federal, state, tribal, or local laws or regulations regarding hazardous materials and/or solid waste management
- Involve a contaminated site
- Generate an appreciably different quantity or type of solid waste, use a different method of collection or disposal, and/or exceed local disposal capacity

The Proposed Action will result in minor shortterm and long-term adverse impacts on hazardous materials, solid waste, and pollution prevention, when compared to the No Action Alternative. The anticipated impacts relate to Site disturbances associated with site preparation, future facilities construction, and an increase in impervious surface at the Site. Identified impacts will be minimized though compliance with existing regulations, design planning, and best management practices.

3.7.3.2 NO ACTION ALTERNATIVE

There would be no changes to hazardous materials, solid waste, or pollution prevention under the No Action Alternative.

3.7.4 MITIGATION

Mitigation is not proposed based on the lack of significant impacts as a result of hazardous materials use, solid waste generation, and pollution prevention procedures.

3.8 HISTORICAL, ARCHITECTURAL, ARCHEOLOGICAL, AND CULTURAL RESOURCES

3.8.1 REGULATORY SETTING

According to FAA Order 1050.1F Desk Reference, historical, architectural, archeological, and cultural resources encompass a range of sites, properties, and physical resources relating to human activities, society, and cultural institutions (FAA 2020). Such resources include past and present expressions of human culture and history in the physical environment, such as prehistoric and historic archaeological sites, structures, objects, and districts that are considered important to a culture or community (FAA 2020). Historical, architectural, archeological, and cultural resources also include aspects of the physical environment, namely natural features and biota, which are a part of traditional ways of life and practices and are associated with community values and institutions (FAA 2020).

The primary statutes, regulations, Executive Orders, and other requirements related to historical, architectural, archeological, and cultural resources considered in this Draft EA Report are as follows:

- 1. American Indian Religious Freedom Act
- 2. Antiquities Act of 1906
- Archeological and Historic Preservation Act
- 4. U.S. DOT Act, Section 4(f)
- 5. Historic Sites Act of 1935
- 6. National Historic Preservation Act
- Native American Graves Protection and Repatriation Act
- 8. Public Building Cooperative Use Act
- 9. Executive Order 11593, Protection and Enhancement of the Cultural Environment
- 10. Executive Order 13006, Locating Federal Facilities on Historic Properties in Our Nation's Central Cities
- 11. Executive Order 13007, *Indian Sacred Sites*
- 12. Executive Order 13175, Consultation and Coordination with Indian Tribal Governments
- 13. DOT Order 5650.1, Protection and Enhancement of the Cultural Environment
- 14. Executive Memorandum, Government-to-Government Relations with Native American Tribal Governments
- 15. Executive Memorandum on Tribal Consultation

3.8.2 AFFECTED ENVIRONMENT

The Site is located approximately one mile south of MEM at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State Line, in Memphis, Shelby County, Tennessee (Figure 1). A physical address does not exist for the Site, which comprises three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The project Site coordinates and surrounding area uses are depicted on Figure 2.

The Site is predominantly wooded and vacant. The Phase I ESA completed for the Proposed Action Site identified past uses of the Site as including a farmstead, a sand/gravel quarry, and utility easements (EnSafe 2020). The current use of the Site is for utility easements. A Texas Gas Company natural gas pipeline transects the north portion of the Site (parcels 09440000128 and 09440000129). A TVA power line easement crosses the south Site parcel (09440000107) and a Valero and MLGW gas line easement is along the west and south Site boundaries. Aerial photographs, topographic maps, and recent photographs of the Site are included in Attachment 5 and in the Phase I Cultural Resources Survey (Cultural Survey) completed at the Proposed Action Site in May 2020 (Panamerican 2020).

The Cultural Survey resulted in the identification of 5 twentieth-century Historic loci at the Proposed Action Site: four former house or farmstead sites and a breached earthen dam. The Cultural Survey is included in <u>Attachment 6</u>. The following list includes a description of the five cultural resources identified at the Proposed Action Site and recommendations for National Register of Historic Places (NRHP) eligibility for each resource:

Locus 1 is a newly identified former historic house site located in the northwestern part of the Proposed Action Site, near

Swinnea Road, north of the Texas Gas Company pipeline. Locus 1 is recommended not eligible for the NRHP.

- Locus 2 is a newly identified historic house site located in the northern part of the Proposed Action Site, south of Holmes Road. Locus 2 is recommended not eligible for the NRHP.
- Locus 3 is a newly identified historic farmstead, later used by a quarry operation, located in the northern part of the Proposed Action Site. Locus 3 is recommended not eligible for the NRHP.
- Locus 4 is a historic farmstead that appears to have been later used as part of a quarry operation. It is located in the western portion of the Proposed Action Site where the THC recorded two structures (SY-31607A and SY-31708A). See Attachment 4, Panamerican Phase I Cultural Survey Report, Figure 4-02. Locus 4 is recommended not eligible for the NRHP.
- Locus 5 is a newly identified historic earthen dam located in the southern part of the Proposed Action Site, south of the TVA power lines and east of Swinnea Road. Locus 5 is recommended not eligible for the NRHP.

The Cultural Survey also included a review of the online THC database, which identified the aforementioned Locus 4 standing structures at the Site (SY-31607A and SY-31708A), as not eligible for the NRHP. Three additional THC records are identified on Figure 4-02 of the Cultural Survey, as near the Proposed Action Site (property SY-31606A and structures SY-31707A and SY-31705A). Property SY-31606A is the circa 1920 Brown Missionary Baptist Church Cemetery, located opposite the southwest corner of the Proposed Action Site on Swinnea Road. Structure SY 31707A is a circa 1940 traditional single-family rectangular residence, and its windows were

missing when recorded. The residence is located south of the auto salvage property on Swinnea Road. Structure SY-31705A is recorded at 1920 Tchulahoma Road. It is a 1920 traditional single-family rectangular residence. There is not a line of sight to this structure from the Proposed Action Site. A review of Tennessee Department of Archeology records revealed that there are no previous archaeological sites within the Proposed Action Site. The Cultural Survey included a finding that the Proposed Action Site has a moderate to low probability of containing archaeological resources.

3.8.3 ENVIRONMENTAL CONSEQUENCES

3.8.3.1 PROPOSED ACTION

The purpose of the Proposed Action is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. A preliminary site plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, as needed (Figure 3). The project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with MEM operations. The airspace above the Proposed Action Site is located within a main MEM aircraft flight path. Future redevelopment and long-term lease of the Site will provide economic opportunities to the MEM area, while maintaining use that is compatible with aircraft noise. A reasonably foreseeable connected action includes construction of facilities by a private developer(s) and the long-term operation of future facilities by a long-term MEM tenant(s).

Approximately 32% (77 acres) of the Proposed Action Site is proposed for development as new impervious surfaces. Site preparation activities will include tree removal, grading, filling, utility main extensions, and stream crossings to allow for future site pad development by private companies. The MSCAA proposes to oversee the extension

of sanitary sewer and water services, installation of gas and electrical services and meters, installation of stream crossings, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. Approximately 220,000 cubic yards of soil will be required to prepare the Site for the proposed buildings, driveways, and parking lots. It is anticipated that the fill material would come from the Proposed Action Site, resulting in a balance of material at the Site (Figure 7). Two stream crossings are proposed in connection with the haul routes. One temporary stream crossing is proposed for construction purposes and one permanent steam crossing is proposed at the southernmost facility at the Proposed Action Site (Figure 8).

Consultation with the State Historic Preservation Office was initiated by the FAA to determine the Area of Potential Effects (APE). The APE was determined to include the entire approximate 245-acre Proposed Action Site, with the exception of a 50-foot buffer of trees along Holmes Road and Swinnea Road. The APE buffer was proposed to mitigate for any potential visual impacts to the THC-identified resources (see Figure 3).

In correspondence dated December 4, 2020, the SHPO determined that no historic properties eligible for listing in the National Register of Historic Places will be affected by the Proposed Action (Attachment 1). As is expected for all site development, if human remains are discovered during ground-disturbing activities, all work will cease within 100 feet of the discovery, and the SHPO must be notified within 24 hours. Ground-disturbing work should not resume until proper authorization is granted.

3.8.3.2 NO ACTION ALTERNATIVE

There would be no changes to historical, architectural, archeological, or cultural resources under the No Action Alternative.

3.8.4 MITIGATION

Based on a lack of identified impacts to historical, architectural, archeological, or cultural resources, mitigation is not proposed. Design planning to reduce potential impacts associated with visual effects and water resources are discussed further in Sections 3.13 and 3.14.

3.9 LAND USE

3.9.1 REGULATORY SETTING

Land Use is discussed and analyzed in this Draft EA Report with respect to consistency with state and local plans, as required by the FAA Airport Improvement Program. This section documents that appropriate actions, including the adoption of zoning laws, have been or will be taken, to restrict the use of land adjacent to or in the immediate vicinity of the airport to activities and purposes compatible with airport operations (FAA 2020).

The primary statutes, regulations, Executive Orders, and other requirements related to land use considered in this Draft EA Report are as follows:

- 1. Airport and Airway Improvement Act of 1982, and subsequent amendments
- 2. American Antiquities Act of 1906
- 3. Airport Improvement Program (see FAA Order 5100.38D)
- Airport Safety, Protection of Environment, Criteria for Municipal Solid Waste Landfills
- 5. Memphis 3.0 Comprehensive Plan
- 6. Memphis and Shelby County Unified Development Code
- 7. FAA Noise Buyout Grant Assurances (Obligations)

3.9.2 AFFECTED ENVIRONMENT

The affected environment evaluated for land use includes the Proposed Action Site and surrounding land uses described in the Memphis Airport Area Land Use Study Final Report, adopted by the City of Memphis and Shelby County in 1992. The study was the result of a multi-year land use planning effort involving the MSCAA and five local governments: the City of Memphis, Tennessee; Shelby County, Tennessee; the city of Southaven, Mississippi; the city of Horn Lake, Mississippi; and DeSoto County, Mississippi. Public involvement included meetings, workshops, and mailings reaching approximately 15,000 citizens within the 90-square-mile study area. The implementation program described in the *Memphis* Airport Area Land Use Study Final Report has been successful to date. The goal of the study was to carry out or facilitate the recommended noise mitigation actions that required the adoption of plans, land use policies, and ordinances by units of local government, including changes in zoning.

The Proposed Action Site is currently zoned Conservation Agriculture (Figure 9). A change in zoning will be required for the Site to a zoning designation that is compatible with the long-term operation of cargo holding or distribution facilities, such as Employment District (EMP). The EMP zoning designation is intended to accommodate office, light manufacturing, research and development, warehousing, wholesale, processing, and commercial uses in order promote economic viability, encourage employment growth, and limit the encroachment of non-industrial development within established industrial areas (Memphis 2010).

The MSCAA intends to enter the zoning entitlement process with the City of Memphis to seek approval for a change in zoning and planned development. Approval by the LUCB and Memphis City Council will allow for the appropriate zoning entitlements for the future private developers. Public notice requirements will be observed in accordance with Sub Section 9.3.4A of the *Memphis and Shelby County Unified Development Code* (Memphis 2010).

Figure 9 - Land Use Zoning Map

The LUCB will determine the appropriate zoning designation for the Proposed Action Site to ensure compatibility with the surrounding zoning and land uses. The LUCB hearings are open to the public and include opportunities for the public to comment on the proposal.

Should the LUCB approve to send the request to the Memphis City Council, the Council will hear the request at three required meetings. The first of two readings of the proposal will be heard as part of the Memphis City Council Committee Meeting consent agendas. Public discussion of consent agenda items does not occur during committee readings; any vote will be perfunctory at the first two readings. The third and final reading is the public hearing for the Memphis City Council to consider the proposal. The public will have an opportunity to comment on the proposal prior to the Memphis City Council vote.

3.9.3 ENVIRONMENTAL CONSEQUENCES

3.9.3.1 PROPOSED ACTION

There would be a change to land use under the Proposed Action from Conservation Agriculture likely to Employment District. The change in land use would result in a minor long-term impact to the land use. The purpose of the Proposed Action is to return the Site to productive economic use while maintaining compatibility with surrounding land uses and MEM operations, including aircraft noise. By accepting FAA grant funds to purchase the Site, MSCAA is obligated to certain grant assurances. For reference, FAA Grant Assurance #31a relates to the disposal (release) of land as stated below:

"For land purchased under a grant for airport noise compatibility purposes, including land serving as a noise buffer, it will dispose of the land, when the land is no longer needed for such purposes, at fair market value, at the earliest practicable time. That portion of the proceeds of such disposition which is proportionate to the United States' share of acquisition of such land will be, at the discretion of the Secretary, (1) reinvested in another project at the airport, or (2) transferred to another eliqible airport as prescribed by the Secretary. The Secretary shall give preference to the following, in descending order, (1) Airport Sponsor Assurances 2/2020 Page 16 of 18 reinvestment in an approved noise compatibility project, (2) reinvestment in an approved project that is eligible for grant funding under Section 47117(e) of title 49 United States Code, (3) reinvestment in an approved airport development project that is eligible for grant funding under Sections 47114, 47115, or 47117 of title 49 United States Code, (4) transferred to an eligible sponsor of another public airport to be reinvested in an approved noise compatibility project at that airport, and (5) paid to the Secretary for deposit in the Airport and Airway Trust Fund. If land acquired under a grant for noise compatibility purposes is leased at fair market value and consistent with noise buffering purposes, the lease will not be considered a disposal of the land. Revenues derived from such a lease may be used for an approved airport development project that would otherwise be eligible for grant funding or any permitted use of airport revenue."

The Proposed Action is consistent with the *Memphis Airport Area Land Use Study Final Report* (Memphis 1992) and the Master Plan (Memphis 2014). The Master Plan describes Airport City as an area that "faces pervasive blight, obsolescence, commercial disinvestment, and an oversupply of unproductive, vacant and underutilized land" (Memphis 2014).

Preparation of the Proposed Action Site will adhere to the *Memphis and Shelby County Unified Development Code* (Memphis 2010). The Proposed Action is not in conflict with the objectives of federal, regional, state, or local land use plans, policies, or controls for the area. The construction and long-term operation of cargo holding or distribution facilities will follow local zoning ordinances and permitting processes of City of Memphis and Shelby County government.

3.9.3.2 NO ACTION ALTERNATIVE

There would be no changes to land use under the No Action Alternative. Under this alternative, the MSCAA would not prepare the Proposed Action Site for future development as a cargo holding or distribution facility. Under the No Action Alternative, the Site would not meet the need of the Proposed Action. The Site would remain unproductive vacant land and would not contribute to operational efficiency or economic benefit, or be developed under a land use compatible with aircraft noise.

3.9.4 MITIGATION

Mitigation for a change in land use at the Proposed Action Site is not proposed.

3.10 NATURAL RESOURCES AND ENERGY SUPPLY

3.10.1 REGULATORY SETTING

Consumption of natural resources and use of energy supplies may result from construction and operation of a distribution facility. It is the policy

of the FAA to encourage the development of FAA facilities that exemplify the highest standards of design, including sustainability principles (FAA 2020). It should be noted that the Proposed Action will not result in an FAA-owned facility. The Proposed Action does not involve the new construction or major renovation of an FAA-owned building or built-to-suit lease. The Federal action is limited to the release of land. However, following the land release, a reasonably foreseeable action includes redevelopment of the Proposed Action Site by a private entity. Therefore, a general discussion of the consumption of natural resources and use of energy supplies by the Proposed Action is included in this section.

The primary statutes, Executive Orders, and other requirements related to natural resources and energy supply considered in this Draft EA Report are as follows:

- 1. Energy Independence and Security Act
- 2. Energy Policy Act
- 3. Executive Order 13834, Efficient Federal Operations

3.10.2 AFFECTED ENVIRONMENT

The Proposed Action Site is approximately 245 acres located in Memphis, Tennessee (Figures 1 and 2). The affected environment considered for natural resources and energy supply includes the suppliers of Memphis-Shelby County energy resources such as power plants, water supply and sewage disposal utilities, and suppliers of natural gas. In addition, the affected environment for this resource area includes the amount of other consumable resources, such as water and asphalt, anticipated for the Proposed Action

The primary energy supplier for the Proposed Action Site is MLGW. MLGW is a multi-service municipal utility, serving more than 429,000 Memphis and Shelby County customers by delivering electricity, natural gas, and potable wa-

ter services. MLGW supplies electricity sourced from the Tennessee Valley Authority.

The City of Memphis is the primary provider of sanitary and storm sewer services for the Proposed Action Site. The City of Memphis Public Works Division is responsible for operating and maintaining streets, sanitary sewers, and storm drains. The Environmental Engineering Division operates and maintains two large wastewater treatment facilities that treat over 60 billion gallons of wastewater and dispose of more than 215 million pounds of biosolids annually, in accordance with state and federal water quality regulations.

The Proposed Action will not involve an onsite batch plant, where aggregate, sand, and water are combined to create concrete or asphalt, as is common for large scale construction projects. Consumable resources such as asphalt and aggregate will not be manufactured for use onsite during the construction phases of the Proposed Action. Future construction of facilities will utilize typical building techniques such tilt up panels to form exterior walls

3.10.3 ENVIRONMENTAL CONSEQUENCES

3.10.3.1 PROPOSED ACTION

Preparation of the Site will involve clearing and grading portions of the Site to allow for approximately 1.5 million sf of facility space at the Site, with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). The Proposed Action will result in approximately 72.5 acres of impervious surface at the Site (Figure 4). The proposed Site preparation includes tree removal, grading, utility main extensions, and construction of stream crossings to allow for future site pad development by private companies. The MSCAA proposed to oversee the ex-

tension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings, and placement of fill to bring future building pads, parking lots, and driveways to required elevations.

Approximately 220,000 cubic yards of soil will be required to prepare the Site for the proposed buildings, driveways, and parking lots. It is anticipated that the fill material would come from the Site, resulting in a balance of material at the Site. Figure 7 depicts the areas where site fill is anticipated. Haul routes are proposed to minimize impacts to onsite water resources. Two stream crossings are proposed in connection with the haul routes. One temporary stream crossing is proposed for construction purposes and one permanent steam crossing is proposed at the Site. The permanent stream crossing will provide a route to the southernmost future facility. Figure 8 depicts the proposed haul routes in connection with the Proposed Action.

The Proposed Action will result in minor short-term and long-term adverse impacts on natural resources and energy supply, when compared to the No Action Alternative. The anticipated impacts to natural resources and energy supply relate to consumption of fuel for equipment, and consumable resources such as energy, water, asphalt, and concrete.

The Site preparation and future facility construction will utilize conventional methods and will require the consumption of fuel for equipment, and consumable resources such as water, asphalt, and concrete. Examples of onsite engine-powered construction equipment utilized during the Proposed Action include road graders, dump trucks, loaders, roller-compacters, excavators, backhoes, bulldozers, and paving equipment.

Routine operation of future cargo holding, or distribution facilities, is anticipated to include movement of approximately 240 delivery trucks and approximately 200 vehicles for employees accessing the facility. The long-term operation of future facilities will require fleet fuel consumption and consumption of fuel by employee vehicles or public transportation. Overall, the incremental impact of increased fuel consumption and consumable materials such as water, asphalt, and concrete due to construction and operation of future facilities is considered minor, as it is reasonably foreseeable that the amount of fuel and consumable material needed for construction and long-term operation of the Proposed Action is available from Shelby County suppliers.

The amount of energy consumed per gross sf for operation of future facilities is estimated at 20,000 British Thermal Units (or 5.8 kilowatt hours) based on estimates of a similar sized project proposed by the MSCAA on Ketchum Road. The amount of potable water consumed per gross sf for operation of the future facilities is estimated at 3 gallons based on estimates of a similar sized project proposed by the MSCAA

on Ketchum Road. Consideration of the energy and utility needs for Proposed Action will also be evaluated by City of Memphis LUCB. The scope of this project is not anticipated to exceed the current regional demand for those resources or result in significant adverse impacts to natural resources or energy supply.

Electrical, natural gas, and potable water utility construction will be coordinated through MLGW's Customer Engineering Department. The utility service connection process will follow MLGW's multi step approval process to assess the capacity to support construction and operation of proposed future cargo holding or distribution facilities. Once technical specifications of the utility service needs are verified, Memphis Code Enforcement will make various inspections throughout construction of the facility and make a final inspection before MLGW can set any meters or provide other utilities. Attachment 1 includes correspondence with MLGW regarding the Proposed Action and MLGW design protocols for pre-construction.

MLGW and Shelby County have processes in place to permit and accommodate the amount of energy and water resources that will be required for the future cargo holding or distribution facilities. A large volume of water/water treatment is not anticipated for the construction or operation of future cargo holding or distribution facilities. Further, especially scarce or unusual materials are not anticipated to be used in the construction or operation of future cargo holding or distribution facilities. The energy demands and other natural resources consumed through construction and operation of the future cargo holding or distribution facilities is not anticipated to exceed supplies or result in significant impacts to natural resources or energy supplies. Overall, the impact on natural resources and energy supplies due to construction phases (short-term) and operation (long-term) of the Proposed Action is considered minor.

3.10.3.2 NO ACTION ALTERNATIVE

There would be no changes to natural resources and energy supply under the No Action Alternative.

3.10.4 MITIGATION

Based on the lack of significant adverse impacts to natural resources and energy supply from the Proposed Action, mitigation is not proposed.

3.11 NOISE AND NOISE COMPATIBLE LAND USE

3.11.1 REGULATORY SETTING

Noise is considered unwanted sound that can disturb routine activities and can cause annoyance (FAA 2020). The compatibility of existing and planned land uses with proposed aviation actions is typically determined in relation to the level of aircraft noise. However, based on a lack of proposed aviation activities and an airport action occurring outside the airport SIDA, this Draft EA Report considers primary noise sources other than aircraft operations. Per 49 U.S.C. § 47107(a) (10), documentation is provided to demonstrate that the Proposed Action is consistent with the City of Memphis' existing plans of public agencies for development.

The following statutes, regulations, and guidance related to noise and noise-compatible land use considered in this Draft EA Report are as follows:

- 1. Airport and Airway Improvement Act of 1982
- 2. Airport Noise and Capacity Act of 1990
- 3. Aviation Safety and Noise Abatement Act of 1979
- 4. Section 506 of the FAA Modernization and Reform Act of 2012
- 5. The Control and Abatement of Aircraft Noise and Sonic Boom Act of 1968
- 6. The Noise Control Act of 1972

7. FAA Advisory Circular 150/5020-1, Noise Control and Compatibility Planning for Airports

3.11.2 AFFECTED ENVIRONMENT

The Site is located on the south side of East Holmes Road and the west side of Swinnea Road in Memphis, Tennessee, approximately 1 mile south of MEM, at the Tennessee/Mississippi state line. The Site is not contiguous with the airport Security Identification Display Area. The surrounding land uses consist of a mix of vacant, forested land, commercial industrial development, and places of worship. The Site and surrounding area are shown on Figures 1 and 2.

The affected environment is also included as part of the Memphis Airport Area Land Use Study Final Report, adopted by the City of Memphis and Shelby County in 1992. Excerpted maps from the MEM *Part 150 Study Update* depicting the Proposed Action Site, with respect to current MEM noise exposure, are included in <u>Attachment 7</u>.

Noise mitigation and the implementation of programs described in the *Memphis Airport Area Land Use Study Final Report* has been successful to date. To mitigate for previously unacceptable aircraft noise, the Site, was purchased using federal grant funds as part of an Airport Improvement Program, (noise buyout program) from the late 1980s to the early 2000s. Due to measures taken to reduce aircraft noise, a portion of the Site is located outside of the 65-decibel noise contour (Attachment 7). Approximately half of the Proposed Action Site is located within the 65-decible noise contour. The northwest portion of the Site remains within the 70-decibel noise contour (Attachment 7).

By accepting federal grant funds to purchase the Site and mitigate for unacceptable aircraft noise, MSCAA is obligated to certain grant assurances. FAA Grant Assurance #31c relates to the financial self-sufficiency of the airport. It indicates that

land shall be considered to be needed for airport purposes under this assurance if (1) it may be needed for aeronautical purposes (including runway protection zones) or serve as noise buffer land, and (2) the revenue from interim uses of such land contributes to the financial self-sufficiency of the airport (85 FR 12048).

3.11.3 ENVIRONMENTAL CONSEQUENCES

3.11.3.1 PROPOSED ACTION

The Proposed Action consists of preparing the Site for future development and leasing the Site for construction and operation of cargo holding or distribution facilities. The purpose of the Proposed Action is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. A Proposed Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3).

Site preparation will include tree removal, grading, filling, utility main extensions, and construction of stream crossings to allow for future site pad development by private companies. MSCAA proposed to oversee the extension of sanitary sewer and water services, gas and electrical services and meters, installation of stream crossings and placement of fill to bring future building pads, parking lots, and driveways to required elevations.

The construction phases associated with Site preparation and future development activities are estimated to last approximately 6 to 9 months each. Construction is anticipated to occur only during daytime hours. Conventional use of heavy construction vehicles and equipment is anticipated during the construction phases of the Proposed Action. Examples of conventional construction equipment include road graders, dump trucks, loaders, roller-compacters, excavators,

backhoes, bulldozers, and paving equipment. The construction phases of the Proposed Action are anticipated to result in a minor, short-term adverse increase in noise when compared to the No Action Alternative. The resulting construction noise is considered temporary and will not result in significant impacts to surrounding land uses. Vehicular traffic resulting from the operation of the Proposed Action is the long-term noise source, when compared to the No Action Alternative.

Operation of future cargo holding or distribution facilities is anticipated to result in an increase in traffic and traffic-related noise, when compared to the No Action Alternative. The assumptions for routine operation of future cargo holding or distribution facilities include movement of approximately 240 distribution trucks and approximately 200 employee vehicles accessing the facility 24 hours per day. A Noise Assessment was conducted as part of the EA to evaluate the context and intensity of noise associated with an increase in fleet traffic, due the operation of future facilities. The Noise Assessment is included in Attachment 7. The U.S. DOT Federal Highway Administration Traffic Noise Model (TNM) was approved for use to predict future sound levels (in decibels) based on fleet assumptions for routine operation of the Proposed Action (Edwards Pitman 2021).

The Noise Assessment includes a field-verified accuracy check of the TNM inputs. First, sound measurements were collected at three locations along East Holmes Road while real-time traffic counts were recorded. The accuracy of the TNM sound levels was verified by comparing the field-collected sound levels with the THM sound levels for the same time using the real-time traffic counts and the posted speed limit as model inputs. On May 29, 2020, three field measurements were collected at two locations along East Holmes Road (Attachment 7). The measurement locations were selected based on proximity to areas of human use and clear line-of-sight to the

traffic noise source (Edwards Pitman 2021). Field measurements were recorded during 15-minute intervals, at the four the locations using a laboratory calibrated Bruel & Kjær Model 2238 sound level meter (Edwards Pitman 2021). During the field measurement events, East Holmes Road traffic counts by vehicle type (cars, medium trucks, and heavy trucks) were recorded. The posted vehicle speeds of 40 miles per hour were observed at all field measurement locations (Edwards Pitman 2021). According to the Noise Assessment on May 29, 2020, the three field-collected sound levels ranged between 60.0 and 63.2 decibels. The TNM results for the same time indicated sound levels between 58.0 and 63.2 decibels. The TNM was deemed appropriate for use in analysis of noise levels within the study area, based on the similarities between the field and modeled sound levels (Edwards Pitman 2021).

According to the Noise Assessment, the predicted outdoor noise contours for the Proposed Action do not exceed 65 decibels (Edwards Pitman 2021). As shown on Figure 5 of the Noise Assessment (Attachment 7), the 65-decibel outdoor sound contour is limited to East Holmes Road and areas immediately north and south of the East Holmes Road right-of-way. The modeled noise contours represent a worst-case Proposed Action traffic scenario, including the daytime hourly movement of 1,328 vehicles (1,074 cars, 56 medium trucks, and 198 heavy trucks) along the eastbound and westbound lanes of East Holmes Road. Under the No Action Alternative (termed "No-Build" in the Nose Assessment). the hourly movement of 1,108 vehicles (974 cars, 56 medium trucks, and 78 heavy trucks) was modeled along the eastbound and westbound lanes of East Holmes Road. As shown on Figure 4 of the attached Noise Assessment, the outdoor sound contour for the No-Build scenario does not exceed 60 decibels (Attachment 7).

The operation of the Proposed Action is anticipated to result in a minor long-term adverse increase in traffic and traffic-related noise, when compared to the No Action Alternative. However, the modeled outdoor sound contours representing a worst-case operation scenario do not exceed 65 decibels, a noise level considered generally acceptable for outdoor areas. The Proposed Action would not have a significant impact with respect to noise and surrounding land use.

The City of Memphis requirements for initial project review are subject to the City of Memphis Division of Engineering Design and Policy Review Manual (Memphis 2018). Section 210 — Traffic Impact Policy for Land Development outlines the process for evaluating potential projects with regard to traffic impact. The first step in the review process is completion of a Traffic Generation Report, which determines if a Traffic Impact Study (TIS) will be required (Memphis 2018). The East Holmes Road Site Preparation Trip Generation Report and Traffic Analysis Memorandum is included in Attachment 7 and indicates that a TIS will be required during the Plan Review process, based on the expected vehicle trip generation (Barge 2021). The square footage estimates for Proposed Action are conceptual planning stage estimates, and future facilities will likely be constructed in stages, potentially by different developers. Once a site plan is finalized, the proposed project will be required to go through a Plan Review process with the City of Memphis. The City of Memphis Plans Coordinator will distribute the final site plan to the appropriate Engineering Departments for review. A TIS will be reviewed by the Traffic Engineering Department as part of that process.

The East Holmes Road Site Preparation Trip Generation Report and Traffic Analysis Memorandum also evaluated potential impacts to the future Level of Service (LOS) to the segment of East

Holmes Road adjacent to the Proposed Action site. LOS corresponds to traffic density and is expressed as a letter grade from A (best) to F (worst) (Barge 2021). The East Holmes Road Site Preparation Trip Generation Report and Traffic Analysis Memorandum indicates that the East Holmes Road segment is presently calculated to operate at LOS D in one or both directions during both weekday peak hours. However, according to the MPO, and as discussed in Section 3.1, the segment of East Holmes Road between Mill Branch Road and Tchulahoma Road is planned to be widened from two lanes to seven lanes by 2035 (PIN 107040.00) (Attachment 2). According to the City of Memphis, the widening project is currently in the design phase and construction is not anticipated to begin before 2023. Following the road widening, East Holmes Road will operate at LOS A, and will continue to operate at a LOS A with the addition of site-generated trips assumed from the Proposed Action at full capacity (Barge 2021). The widened roadway is projected to have ample capacity to accommodate site-generated trips and will not result in significant adverse impact to neighborhood or regional traffic (Barge 2021).

3.11.3.2 NO ACTION ALTERNATIVE

TThere would be no changes to noise or noise-compatible land use under the No Action Alternative. Under the No Action Alternative, the MSCAA would not prepare the Site for future development. The Site would remain unproductive vacant land and would not contribute to operational efficiency or economic benefit, or be developed under a land use compatible with aircraft noise.

3.11.4 MITIGATION

Based on a lack of significant noise impacts associated with the Proposed Action, mitigation is not proposed. Previous mitigation to offset previously unacceptable aircraft noise is referenced throughout the Draft EA Report as the Airport Improvement Plan (noise buyout program).

3.12 SOCIOECONOMICS, ENVIRONMENTAL JUSTICE, AND CHILDREN'S ENVIRONMENTAL HEALTH AND SAFETY RISKS

3.12.1 REGULATORY SETTING

Socioeconomics is an umbrella term used to describe aspects of a project that are either social or economic in nature, or a combination of the two (FAA 2020). A socioeconomic analysis evaluates how elements of the human environment such as population, employment, housing, and public services might be affected by the Proposed Action (FAA 2020).

The primary FAA statute relating to socioeconomic impacts is the Uniform Relocation Assistance and Real Property Acquisitions Policy Act of 1970 (the Act). The Act sets out requirements, under 49 CFR Part 24, for federal project or projects involving federal funding that acquire real property or involve the displacement of people. Additionally, the Act directs FAA, to the fullest extent possible, to observe all state and local laws, regulations, and ordinances concerning zoning, transportation, economic development, housing, etc., when planning, assessing, or implementing a Proposed Action.

The FAA cites the U.S. EPA definition of environmental justice as the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies (FAA 2020). The term "fair treatment" implies that no group of people should bear a disproportionate share of the negative environmental consequences resulting from industrial, governmental, and commercial operations or policies (FAA 2020). In addition, FAA Order 1050.1F and U.S. DOT Order 5610.2(a) establish requirements for meaningful public involvement by minority and low-income populations. Should significant impacts resulting

from the Proposed Action be identified in any environmental resource category, the potential for disproportionately high and adverse effects on minority or low-income populations must be further examined pursuant to U.S. DOT Order 5610.2(a). This EA did not identify significant impacts for any of the environmental resource categories.

Pursuant to Executive Order 13045, the FAA is encouraged to identify and assess environmental health risks and safety risks that the FAA has reason to believe could disproportionately affect children (FAA 2020). Environmental health risks and safety risks include risks to health or safety that are attributable to products or substances that a child is likely to come in contact with or ingest, such as air, food, drinking water, recreational waters, and soil, or products they might use or to which they might be exposed. The Task Force on Environmental Health Risks and Safety Risks to Children (Task Force), created by Executive Order 13045, identified four priority areas of impacts to children for attention:

- Asthma
- Unintentional injuries
- Developmental disorders (including lead poisoning)
- Cancer

This Draft EA Report provides context on whether the Proposed Action would create new or exacerbate existing adverse impacts to children in any of the four priority areas identified by the Task Force.

The following statutes, regulations, Executive Orders, and other guidance related to socioeconomics, environmental justice, and children's environmental health and safety risks considered in this Draft EA Report are as follows:

- Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970
- 2. Title VI of the Civil Rights Act of 1964, as amended
- 3. Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations
- Memorandum of Understanding on Environmental Justice and Executive Order 12898
- 5. The Council on Environmental Quality Guidance: Environmental Justice: Guidance Under the National Environmental Policy Act
- 6. U.S. DOT Environmental Justice Strategy
- 7. U.S. DOT Order 5610.2(a), Environmental Justice in Minority and Low-Income Populations
- 8. Promising Practices for EJ Methodologies in NEPA Reviews, Report of the Federal Interagency Working Group on Environmental Justice & NEPA Committee
- 9. Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks

3.12.2 AFFECTED ENVIRONMENT

3.12.2.1 SOCIOECONOMICS

The affected environment for socioeconomics includes a population of 5,466 within a 5.96-square-mile area surrounding the Proposed Action Site. The following sources include the aggregated data for Proposed Action Site and portions of the surrounding Census Tracts that are within one mile of the Proposed Action Site:

1. The U.S. EPA Environmental Justice Screening and Mapping Tool, EJSCREEN Report

- 2. The Census Bureau, American Community Survey (ACS) Summary Report for 2013-2017
- 3. The Census Bureau 2010 Census Summary Report
- 4. The U.S. EPA NEPAssist Report

The socioeconomic output reports are included in <u>Attachment 8</u>. A summary of the socioeconomic statistics for the affected environment is provide in <u>Table 4</u>.

Table 4 - Summary of Socioeconomic Statistics in Affected Environment				
Socioeconomic Category	American Community Survey Population Estimate	Percentage (%)		
Total Population	5,761	Not Applicable		
Minority Population	3,581	62		
Population Reporting One Race	5,705	99		
Total Black Population	3,323	58		
Total White Population	2,205	38		
Total Hispanic Population	140	2		
Adult Population (age 18-65)	4,392	76		
Child Population (age 0-17)	2,074	36		
Language – English only	5,479	100		
Educational Attainment – college degree (associates/bachelor combined)	884	25		
Total Households	1,788	Not Applicable		
Household Income Range (<\$15,000 - \$25,000)	382	21		

Source: Census Bureau, American Community Survey (ACS) Summary Report for 2013-2017

According to the EJSCREEN Report, the percentage of low-income persons living with a 1-mile radius of the Proposed Action Site is 67% (Attachment 9). EJSCREEN defines low-income individuals as those with incomes at or below 200 percent of the United States Department of Health and Human Services (HHS) poverty guidelines, which differs from the U.S. DOT definition used by the FAA. Per U.S. DOT Order 5610.2(a), a low-income population includes those individuals whose median household income is at or below the HHS poverty guidelines. For reference, the HHS 2020 poverty guidelines are \$12,760 for a one-person household, or \$26,200 for a four-person household (HHS 2020).

3.12.2.2 ENVIRONMENTAL JUSTICE

The affected environment is located in the MEM flight path. To mitigate for airport flight path noise, the Site and other properties north of the Site were purchased by the MSCAA as part of a FAA-funded noise buyout program during the late 1990s to the early 2000s. The U.S. EPA EJSCREEN Report summarizes information specifically relating to the affected environment, including a comparison of 11 environmental indexes for the State of Tennessee, U.S. EPA Region 4, and the nation (Attachment 8). The EJ Indexes are expressed in percentiles to provide perspective on how the affected area compares to Tennessee, U.S. EPA Region 4, and the nation. The EJSCREEN Report indicates the EJ Indexes for the State of Tennessee are higher than those reported for U.S. EPA Region 4 and the nation. The EJSCREEN Report includes values associated with the environmental indicators and an overall demographic index for the affected environment (Attachment 8). A comparison of the values and demographic index from the affected environmental area show elevated values when compared to averages for Tennessee, U.S. EPA Region 4, and the nation. For example, the EJSCREEN Report indicates a higher percentage of minority and low-income populations within a 1-mile radius of the Proposed Action Site when compared to Tennessee, U.S. EPA Region 4, and national percentages.

The EJSCREEN Report does not, by itself, determine the existence or absence of environmental justice concerns. The report output is taken into consideration when evaluating the context and intensity of the overall impacts associated with the Proposed Action.

3.12.2.3 CHILDREN'S ENVIRONMENTAL HEALTH AND SAFETY RISK

According to the ACS Summary Report for 2013-2017, approximately 36% of the population within the affected environment are under the age of 17. According to the Census data reported in the NEPAssist Report, there are no schools located within one mile of the Proposed Action Site.

Section 3.12.3.3 includes consideration of whether the Proposed Action creates new or exacerbates existing adverse impacts to children in any of the four priority areas (asthma, unintentional injuries, developmental disorders, and cancer) identified by the Task Force.

3.12.3 ENVIRONMENTAL CONSEQUENCES

The Proposed Action consists of Site preparation for future development by private companies with an interest in constructing cargo holding or distribution facilities. The Proposed Site Plan identifies the potential for approximately 1.5 million sf of facility space at the Site with approximately 300,000 sf of additional space allotted for future growth, if needed (Figure 3). The purpose of the Proposed Action is to return the Site to productive economic use while maintaining compatibility with surrounding land uses and MEM operations, including aircraft noise.

The following subsections include a discussion of impacts to socioeconomics, environmental justice, and children's environmental health and safety risk resulting from the Proposed Action.

3.12.3.1 SOCIOECONOMICS

The Proposed Action may result in minor short-term and long-term beneficial impacts with respect to socioeconomics. The beneficial impacts could be realized through an increase in job availability during the short-term construction phases of the Proposed Action. Factors associated with the Proposed Action have been discussed in the Draft EA Report and include the following conclusions regarding socioeconomics. The Proposed Action:

- Will increase economic growth at a vacant site purchased to mitigate excessive aircraft noise
- Will not disrupt or divide the physical arrangement of an established community
- Will not result in relocation of local businesses, public services, or housing units
- Will produce a beneficial change in the community tax base due to development of vacant land
- Will allow for development consistent with the Memphis Airport Area Land Use Study Final Report

3.12.3.2 ENVIRONMENTAL JUSTICE

An environmental justice analysis considers the potential of federal actions to cause disproportionately high and adverse effects on low-income or minority populations (FAA 2020). U.S. DOT Order 5610.2(a) provides the following definition for a "disproportionately high and adverse impact" that was used to assess impacts to environmental justice populations (FAA 2020). Disproportionately high and adverse effects on minority and low-income populations means an adverse effect that:

 Is predominately borne by a minority population and/or a low-income population 2. Will be suffered by the minority population and/or low-income population and is appreciably more severe or greater in magnitude than the adverse effect that will be suffered by the non-minority population and/or non-low-income population

The overall context for the Proposed Action originates in the late 1990s through the acquisition of the Site by MSCAA. Disproportionately high and adverse effects in the form of unacceptable aircraft noise impacts were identified at that time. Mitigation, long-range planning, and community outreach involving the Site has occurred since that time. In the early 1990s, the Site was identified as part of the Memphis Airport Area Land Use Study Final Report.

The Proposed Action Site is located in an area with a larger percentage of minority and low-income populations, when compared to Tennessee, U.S. EPA Region 4, and national percentages. Therefore, identified adverse impacts are further considered through the lens of environmental justice. This Draft EA Report has identified minor short-term and long-term adverse impacts to resources areas, when compared to the No Action Alternative. However, no significant adverse impacts have been identified in this Draft EA Report. Disproportionately high and adverse effects, in the form of unacceptable aircraft noise impacts, have been previously mitigated as part of a noise buyout program. The context and intensity of the identified short-term and long-term minor adverse impacts associated with the Proposed Action have been evaluated. The Proposed Action is not anticipated to lead to a disproportionately high and adverse impact to an environmental justice population due to:

 Significant adverse impacts in resource areas evaluated in this Draft EA Report Impacts to the physical or natural environment in a way that is unique to the environmental justice population

3.12.3.3 CHILDREN'S ENVIRONMENTAL HEALTH AND SAFETY RISK

Environmental health and safety impacts to children are evaluated as a separate resource area because children may experience the intensity of these impacts differently, when compared to adults exposed to the same Proposed Action (FAA 2020). Children are more heavily exposed to toxins in proportion to their body weight and are more likely to exhibit behaviors that put them at a greater risk for exposure to hazards (FAA 2020).

The Proposed Action Site is not located near a school (Attachment 8). According to the Phase I ESA, the Proposed Action is not associated with environmental health risks attributable to substances that a child is likely to come in contact with or ingest, such as toxic products, soil, drinking water, or other recreational waters. While not considered recreational waters, the Proposed Action Site includes a storm water detention pond (Figure 3). In addition, air emissions associated with the Proposed Action are anticipated to have minor adverse impacts on air quality based on mobile source emissions related to the construction and long-term operation of the facility.

Consideration is also given to pedestrians, cyclists, and other vehicles in the vicinity of the Proposed Action Site. The assumptions for routine long-term operation of the Proposed Action include movement of approximately 240 delivery trucks and approximately 200 employee vehicles accessing the facility 24 hours per day. The East Holmes Road Site Preparation Trip Generation Report and Traffic Analysis Memorandum indicates that the proposed Site development activities will have a significant adverse impact on neighborhood traffic along East Holmes Road (Barge 2021).

All vehicles associated with the Proposed Action will be required to the uphold speed limit. The posted speed limit along East Holmes Road is 40 miles per hour and Swinnea Road is 35 miles per hour. Based on operation assumptions, the Proposed Action would result in an increase in traffic on East Holmes when compared to the No Action Alternative. The operation assumptions for fleet and employee vehicle movement is not considered a significant contributor to injuries to children.

This Draft EA Report has identified minor, short-term and long-term adverse impacts to resource areas that relate to children's environmental health and safety risks, when compared to the No Action Alternative. The context and intensity of factors associated with children's environmental health and safety risks have been evaluated in this Draft EA Report. The Proposed Action is not anticipated to lead to a disproportionate health or safety risk to children, relating to asthma, unintentional injuries, developmental disorders, or cancer.

3.12.3.4 NO ACTION ALTERNATIVE

There would be no changes to socioeconomics, environmental justice, or children's environmental health risks and safety risks under the No Action Alternative. The Site would remain vacant and underutilized.

3.12.4 MITIGATION

Based on the findings in this Draft EA Report, mitigation for socioeconomics, environmental justice, and children's environmental health and safety risks is not proposed.

3.13 VISUAL EFFECTS

3.13.1 REGULATORY SETTING

Visual effects deal broadly with the extent to which the Proposed Action would either (1) produce light emissions that create annoyance or interfere with activities or (2) contrast with, or detract from, the visual resources and/or the visual character of the existing environment (FAA 2020). Visual effects in this Draft EA Report are discussed in two categories: (1) light emissions and (2) visual resources and visual character (FAA 2020).

Light emissions include any light that emanates from a light source into the surrounding environment (FAA 2020). Visual resources include buildings, sites, traditional cultural properties, and other natural or manmade landscape features that are visually important or have unique characteristics (FAA 2020). Visual character refers to the overall visual makeup of the existing environment where the proposed action is located (FAA 2020). For example, areas in close proximity to densely populated areas generally have a visual character that could be defined as urban versus areas having a visual character defined by open grass fields, forests, mountains, or deserts (FAA 2020).

Although there are no federal special purpose laws or requirements specific to light emissions and visual effects, there are special purpose laws and requirements relevant to other resource areas such as Section 106 of the National Historic Preservation Act, U.S. DOT Act Section 4(f), the Wild and Scenic Rivers Act, and the Coastal Zone Management Act (FAA 2020). In addition, state and local regulations, policies, and zoning ordinances apply to visual effects, as discussed below.

3.13.2 AFFECTED ENVIRONMENT

The affected environment considered for this resource area includes both the visual resources and visual character effects. The 245.8-acre Site is located on the south side of East Holmes Road and the west side of Swinnea Road in Memphis, Tennessee, approximately 1 mile south of MEM, at the Tennessee/Mississippi state line (Figure 1). The Site is predominantly wooded and contains jurisdictional wetlands and streams. A Texas Gas

Company natural gas pipeline transects the north portion of the Site. A TVA power line easement crosses the south Site parcel and a Valero and MLGW gas line easement is along the west and south Site boundaries (Figure 2). The surrounding land uses consist of a mix of vacant, forested land, commercial industrial development, and places of worship.

Light Emissions

The current level of light emissions at the Proposed Action Site includes glare emanating primarily from street and vehicle lighting along East Holmes Road and Swinnea Road. Frequent overhead aircraft traffic also contributes to the light emissions at the Site.

Visual Resources and Visual Character

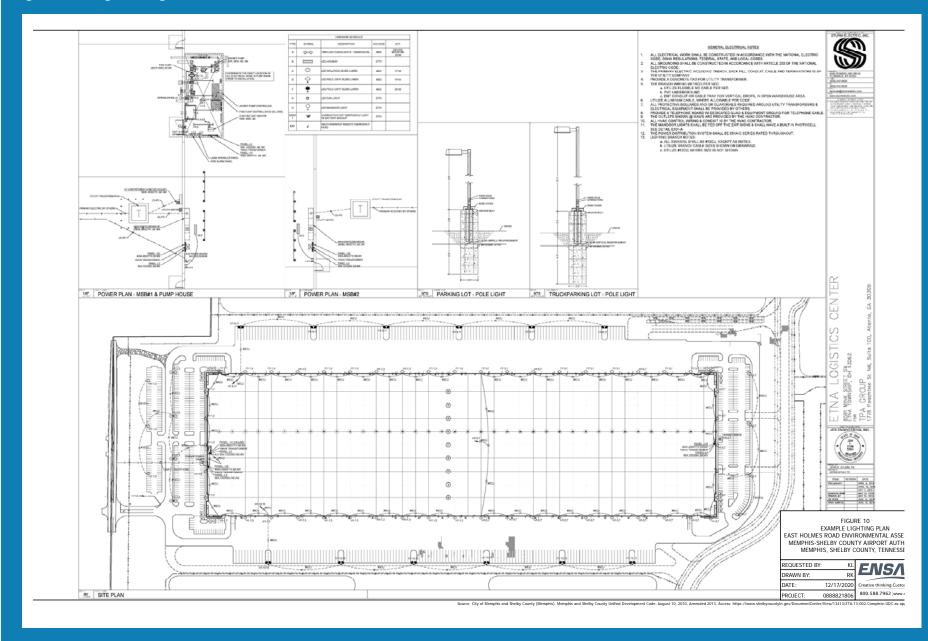
The visual character of the Proposed Action Site is characterized by forested areas, open grass covered areas, and two utility easement access roads that bisect the Site. The wetlands and ponds at the Site are primarily located in densely wooded areas. Attachment 3 includes representative photos of the Proposed Action Site.

3.13.3 ENVIRONMENTAL CONSEQUENCES

3.13.3.1 PROPOSED ACTION

A portion of the Proposed Action Site would be visible from East Holmes Road and the Tennessee/Mississippi state line (Figure 3). The Proposed Site Plan reflects the consideration of wetlands, streams, THC-surveyed sites, and adjacent parcels. The Site design includes setbacks from Swinnea Road and east-adjacent parcels.

The presence of future cargo holding or distribution facilities at the Proposed Action Site will permanently alter the Site and viewshed from East Holmes Road and the Tennessee/Mississippi state line (Figure 3). Visual character and visual effect impacts from the Proposed Action will be minimized through design planning and compliance


with FAA lighting regulations and the *Memphis* and *Shelby County Unified Development Code* to reduce the potential for significant adverse impacts.

Light Emissions

The Proposed Action will result in minor longterm adverse impacts due to light emissions when compared to the No Action Alternative. The Proposed Action will result in sources of nighttime light emissions, including exterior/interior security lighting and vehicle lighting associated with the movement of fleet and employee vehicles during non-daylight hours. Exterior security lighting would remain directional and focus on exterior entrances, bay doors, and parking lots to minimize adverse offsite impacts of lighting such as light trespass and obtrusive light. Lighting will comply with Article 4 - General Development Standards of the Memphis and Shelby County Unified Development Code for outdoor site lighting and FAA requirements for lighting within a flight path. A lighting plan example, based on a similar project recently completed by the developer of the MSCAA land release for the Ketchum Road property, is included in Figure 10. The exterior lighting elements will be similar to those proposed for the Ketchum Road distribution/e-commerce fulfillment facility.

The conceptual design planning includes siting the proposed facilities to allow for the greatest distance between the proposed facilities and adjacent parcels, while avoiding impacts to onsite water resources (Figure 3). In addition, vegetation along the perimeter of the Site, will reduce the potential for significant adverse impacts of light emissions encroachment into the surrounding parcels.

Figure 10 - Engineering Site Plan

Visual Character

The Proposed Action will result in minor shortterm and long-term adverse impacts to visual character when compared to the No Action Alternative. Short-term impacts to visual character relate to the construction phases of the Proposed Action. The haul routes proposed for the Proposed Action begin and terminate at East Holmes Road (Figure 8). The Site preparation construction and future facilities construction will be most visible at the north west portion of the Site, near the intersection of East Holmes Road and Swinnea Road. There is not a direct line of sight from the proposed haul routes to occupied adjacent parcels. The nearest occupied parcel to the haul routes is the Pentecostal Praise Church of God in Christ located at 2922 East Holmes Road. The heavily wooded area and approximately 500 feet of distance between the church and the nearest proposed haul route will interrupt sight lines to the construction site. The short-term impacts to visual character resulting from the construction phases of the Proposed Action will not rise to the level of significant adverse impacts.

Long-term impacts to visual character relate to the operation of future cargo holding or distribution facilities. Proposed design planning includes vegetative buffers at the Proposed Action Site to interrupt sight lines from adjacent properties (Figure 3). Based on design planning and compliance with the Memphis and Shelby County Unified Development Code, the long-term impacts to visual character resulting from the operation of the Proposed Action will not rise to the level of significant adverse impacts.

3.13.3.2 NO ACTION ALTERNATIVE

There would be no changes to visual effects under the No Action Alternative.

3.13.4 MITIGATION

Based on the lack of significant adverse impacts to visual effects associated with the Proposed Action, mitigation is not proposed.

3.14 WATER RESOURCES

3.14.1 REGULATORY SETTING

According to FAA Order 1050.1F, water resources are surface waters and groundwater that are important in providing drinking water and in supporting recreation, transportation, commerce, industry, agriculture, and aquatic ecosystems (FAA 2020). This Draft EA Report includes analysis of the potential for disruption of water systems as well as potential impacts to the quality of water resources (FAA 2020). This section includes analysis of the following: wetlands, floodplains, surface waters, groundwater, and Wild and Scenic Rivers.

The primary statutes, Executive Order, and guidance related to the protection of water resources considered in this Draft EA Report are as follows:

- 1. Clean Water Act
- 2. Fish and Wildlife Coordination Act
- 3. Executive Order 11990, *Protection of Wetlands*
- 4. The U.S. EPA Navigable Waters Protection Rule
- 5. U.S. DOT Order 5660.1A, Preservation of the Nation's Wetlands
- 6. 2010 Tennessee Code 69-3-108 Permits

3.14.2 AFFECTED ENVIRONMENT

The approximately 245-acre Site is located on a local drainage divide. The principal drainage on the Site is Hurricane Creek, which flows northeasterly into Nonconnah Creek, and the Nonconnah Creek Watershed, located in northwest Mississippi and southwest Tennessee. The southwestern portion of the Site is drained by a southwesterly flowing unnamed tributary that feeds into Rocky Creek in DeSoto County, Mississippi. Rocky Creek flows west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee.

3.14.2.1 WETLANDS AND SURFACE WATERS

In the Aquatic Resource Assessment Report submitted to the TDEC Division of Water Resources (DWR) and the United States Army Corps of Engineers (USACE), six streams, ten wetlands, nine wet weather conveyances (WWC), and seven pond features were identified at the Proposed Action Site (EnSafe 2020b) (Attachment 9). The regulated aquatic features at the Proposed Action Site are depicted on Figure 4. Agency concurrence regarding the Hydrologic Determination of the aquatic features of the Proposed Action Site is included in Attachment 1.

According to the Aquatic Resource Assessment Report, six streams are identified on the Proposed Action Site, totaling 9,461 linear feet (Attachment 9). Stream 1, also identified as Hurricane Creek, is approximately 3,395 linear feet in length. Stream 1 flows in a northwesterly direction across much of the Site and is located within the Lower Nonconnah Creek watershed (Figure 4). WWCs 1, 2, 3, 4, 5, 7, and 8 drain into Stream 1. Streams 2 and 3 both flow roughly parallel in a northerly direction in the northeast quadrant of the Site within the Lower Nonconnah Creek watershed (EnSafe 2020b). Both streams drain into Stream 4, which flows in a northwesterly direction. Streams 2 and 3 measure approximately 1961 and 1521 linear feet, respectively, while the onsite portion of Stream 4 measures approximately 699 linear feet. Streams 5 and 6 both flow in a generally westerly direction and meet at a confluence near the Site's west property boundary. Stream 5 receives hydrologic input from Wetland 10. Streams 5 and 6 are within the Horn Lake Creek watershed, and measure 675 and 1210 linear feet, respectively (EnSafe 2020b). The USACE and TDEC DWR review of the Aquatic Resource Assessment Report concurred with the Hydrologic Determination with respect to steams (Attachment 1).

According to the Aquatic Resource Assessment Report, there are ten wetlands identified on the Proposed Action Site, totaling 2.93 acres (Attachment 9). The wetlands are depicted on Figure 4. Wetland 1 measures approximately 1.61 acres in size and receives drainage from Stream 1. Wetland 2 measures approximately 0.35 acre in size and is hydraulically fed by seepage through the Pond 3. Wetland 3 measures approximately 0.13 acre in size and drains eastward into WWC 6. Wetland 4 measures approximately 0.19 acre in size and drains into Stream 2. Wetland 5 measures approximately 0.25 acre in size and drains into Stream 3. Wetlands 6 and 7 measure approximately 0.04 acre and 0.17 acre in size, respectively. Though not adjacent to each other, Wetlands 6 and 7 are connected to each other, and to Wetland 5, through Stream 3. Wetland 8 measures approximately 0.01 acre in size and is not connected to any streams or WWC. Wetland 9 measures approximately 0.03 acre in size and is connected to WWC 9 and Wetland 10. Wetland 10 measures approximately 0.15 acre in size and is connected to WWC 9 and Stream 5. The USACE and TDEC DWR review of the Aquatic Resource Assessment Report concurred with the Hydrologic Determination with respect to wetlands (Attachment 1).

According to the Aquatic Resource Assessment Report, nine WWCs are identified on the Proposed Action Site, totaling 1,846 linear feet (Attachment 9). WWCs are not considered jurisdictional by the USACE, nor do they require permits for alteration by TDEC. However, they are regulated under the requirements of 2010 Tennessee Code Title 69 — Waters, Waterways, Drains and Levees, Chapter 3 Water Pollution Control, Part 1 Water Quality Control Act § 69-3-108(q) which states that (1) The alteration of a WWC shall require no notice or approval provided that it is done in accordance with all of the following conditions:

- A. (The activity may not result in the discharge of waste or other substances that may be harmful to humans or wildlife;
- B. Material may not be placed in a location or manner so as to impair surface water flow into or out of any wetland area;
- C. Sediment shall be prevented from entering other waters of the state;
- Erosion and sediment controls shall be designed according to the size and slope of disturbed or drainage areas to detain runoff and trap sediment and shall be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices;
- ii. Erosion and sediment control measures shall be in place and functional before earth moving operations begin, and shall be constructed and maintained throughout the construction period. Temporary measures may be removed at the beginning of the work day, but shall be replaced at the end of the work day;
- iii. Checkdams shall be utilized where runoff is concentrated. Clean rock, log, sandbag or straw bale checkdams shall be properly constructed to detain runoff and trap sediment. Checkdams or other erosion control devices are not to be constructed in stream. Clean rock can be of various type and size, depending on the application. Clean rock shall not contain fines, soils or other wastes or contaminants; and
- D. Appropriate steps shall be taken to ensure that petroleum products or other chemical pollutants are prevented from entering waters of the state. All spills shall be reported to the appropriate emergency management agency and to the division. In the event of

- a spill, measures shall be taken immediately to prevent pollution of waters of the state, including groundwater.
- (2) There shall be no additional conditions upon a person's activity within a wet weather conveyance. This subdivision (q)(2) does not apply to national pollutant discharge elimination system permits.

According to the Aquatic Resource Assessment Report, seven ponds are identified on the Proposed Action Site, totaling 2.96 acres. Ponds are not considered jurisdictional by the TDEC DWR. However, the USACE review of the report concurred with the Hydrologic Determination with respect to ponds (Attachment 1).

3.14.2.2 FLOODPLAINS

A review of the Federal Emergency Management Agency, National Flood Hazard Layer (Panels 47157C0440F and 47157C0580F) indicates the Proposed Action Site is in unshaded Zone X, an area of minimal flood hazard. Zone X is an area determined to be outside the 500-year flood zone and protected by levee from the 100-year flood. The Flood Hazard Layers are included in Attachment 9.

3.14.2.3 GROUNDWATER

According to the Phase I ESA, groundwater flows south toward Nonconnah Creek, located approximately 0.4 mile south of the Proposed Action Site (ECS 2019). The Phase I ESA did not identify evidence of RECs in connection with the Site, including contaminated sites within or in the immediate vicinity of the Proposed Action area. (ECS 2019).

3.14.2.4 WILD AND SCENIC RIVERS

Based on a review of the National Park Service, Nationwide Rivers Inventory, there are no wild or scenic rivers in the Memphis, Tennessee, area. The Obed River is the only federally designated Wild and Scenic River in Tennessee. The Obed River is part of the Cumberland Plateau in Tennessee, approximately 350 miles east of the Site. The Proposed Action does not occur in an area that would impact a federally designated Wild and Scenic River. The Nationwide Rivers Inventory map is included in <u>Attachment 9</u>.

3.14.3 ENVIRONMENTAL CONSEQUENCES

The Proposed Action is located in an area that will impact some of the aquatic resources identified at the Site. Proposed Site preparation activities are anticipated to reflect the conceptual design depicted in Figure 3. However, should changes occur to the Proposed Site design, additional impacts will be addressed through the applicable permitting and processes. Figure 4 depicts the conceptual site plan including approximately 1.8 million sf of facility space at the Site, and the identified aquatic features of the Site. USACE Nationwide permits, and TDEC General Aquatic Resource Alteration Permits (ARAP) will be required for Site preparation activities.

Pollution prevention measures associated with the Proposed Action include compliance with the NPDES Stormwater Permitting Program. The Proposed Action will involve redevelopment of approximately 75 acres, including clearing, grading, and excavation, resulting in an area of disturbance of greater than one acre. Overall, approximately 100 acres of the 245-acre Site will be disturbed. The proposed onsite stormwater detention pond will be regulated under NPDES permits for common pollutants found in industrial settings, such as petroleum in stormwater runoff from impervious surfaces. The Proposed Action will require a construction stormwater general permit, issued by the TDEC DWR. The proposed activity for the Site also falls under the requirement for Tennessee NPDES Multi-Sector Stormwater Permit for Industrial Activities and the U.S. EPA Sector P: Freight Transportation Facilities regulations. As a part of the permit, a site-specific SWPPP must be developed.

3.14.3.1 WETLANDS AND SURFACE WATERS

The Proposed Site design was developed to minimize, to the greatest extent, the impact to onsite aquatic resources. The Proposed Action, in its current configuration, is anticipated to impact Stream 1, WWCs 1, 2, 3, and 9, Wetlands 8 and 9, and Pond 1.

The Proposed Action would result in one permanent and one temporary impact to Stream 1 (Figure 8). The proposed impact includes the installation of two, approximately 30-foot stream crossings: one permanent and one temporary, construction-related stream crossing. The sections of new road would require a diversion of Stream 1 into a culvert beneath the portion of proposed new road. The stream crossing installed during construction as a haul route would be removed after construction is completed. Impacts to the other identified aquatic resources will result from the placement of fill at the Proposed Action Site.

Alteration of the identified aquatic resources will require USACE notification, a USACE Nationwide permit, and two General ARAPs from TDEC. However, based on the acreages and linear feet impacted by the Proposed Action, mitigation is not anticipated based on USACE and TDEC regulatory thresholds. A CWA 404 USACE Nationwide Permit 39 for Commercial and Institutional Developments is anticipated for impacts relating to Stream 1, Wetlands 8 and 9, and Pond 1. The estimated impacts include 30.56 linear feet at Stream 1, associated with a permanent stream crossing, the combined total acreage of Wetlands 8 and 9 (0.04 acres), and the Pond 1 acreage (0.13 acres). Thresholds for the USACE Nationwide Permit 39 for Commercial and Institutional Developments include stream impacts not greater than 300 linear feet and wetland/ other water (e.g., ponds) impacts not greater than 0.5 acre. The impacts to aquatic resources resulting from the Proposed Action, in its current configuration, does not trigger the USACE permit thresholds. Prior to the start of construction, a USACE Nationwide Permit 30 Pre-Construction Notification would be required.

In addition, two CWA 401 TDEC General ARAPs are anticipated based on the impacts to Stream 1 and Wetlands 8 and 9. A TDEC General ARAP for construction or removal of minor road crossings is anticipated for impacts relating to Stream 1. A TDEC General ARAP for minor alterations to wetlands is anticipated for impacts relating to Wetlands 8 and 9 (combined 0.04 acres). Thresholds for ARAP include stream impacts not greater than 200 linear feet and wetland impacts not greater than 0.1 acre for medium quality wetlands and 0.25 acre for low-quality wetlands. The impacts to aquatic resources resulting from the Proposed Action, in its current configuration, does not trigger the TDEC General ARAP permit thresholds. Initial coordination with TDEC regarding permitting costs confirmed the lack of mitigation required for the both the permanent and temporary stream crossings. Email correspondence from TDEC, dated November 24, 2020, is included in Attachment 1.

The State of Tennessee, under § 69-3-108(q), states that the alteration of a WWC shall require no notice or approval provided that it is done in accordance with the conditions previously mentioned. The Proposed Action would be subject to the conditions laid out in Section 3.14.2.1 based on the proposed impact to WWCs 1,2,3, and 9.

Further, the Proposed Action is anticipated to result in approximately 72.5 acres of new impervious surface at the Site. Overall, approximately 77 acres of the 245-acre Site will be disturbed (Figure 8). An approximately 4-acre stormwater detention pond is proposed to capture the anticipated increase in stormwater runoff at the Proposed Action Site (Figure 8). The proposed detention pond would be designed to handle typical stormwater retention. However, an

emergency outfall with capacity to handle added stormwater during a 50-year storm event may be included in the final design.

Prior to commencement of construction activities, a Notice of Intent for Construction Activity Stormwater Discharges would be sent to TDEC DWR. In addition, installation of sediment controls such as filter berms and silt fences will be required to capture and retain mobilized debris and sediment during construction. Following construction activities, a site-specific SWPPP and the Notice of Intent will be required for TDEC review. Preliminary coordination with the TDEC DWR with respect to stormwater at the Proposed Action Site is included in Attachment 1.

Requirements for coverage under an industrial stormwater permit include development of a written SWPPP, implementation of control measures, and submittal of a request for permit coverage, usually referred to as the Notice of Intent. The SWPPP will provide an assessment of potential sources of pollutants in stormwater runoff, such as petroleum, and control measures that will be implemented at the facility to minimize the discharge of these pollutants in runoff from the Proposed Action Site. These control measures include site-specific best management practices, maintenance plans, inspections, employee training, and reporting.

Minor short-term and long-term adverse impacts to water quality are associated with the Proposed Action when compared to the No Action Alternative. The impacts to water resources relate to Site disturbances associated with the proposed construction, the permanent alteration of streams and wetlands, and an increase in impervious surfaces at the Site. The impacts to water resources will be minimized though compliance with existing regulations, alternation of steam and wetland permitting, design planning, and best management practices to minimize the impacts to the fullest extent possible.

3.14.3.2 FLOODPLAINS

The Proposed Action Site is not located within a 100-year or 500-year flood zone. Impacts to floodplains are not anticipated by the Proposed Action. Zone X is an area determined to be outside the 500-year flood and protected by levee from a 100-year flood.

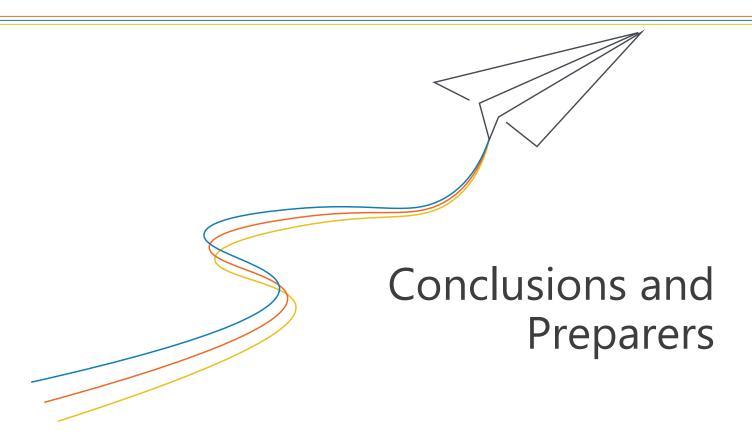
3.14.3.3 GROUNDWATER

Impacts to groundwater are not anticipated by the Proposed Action. Extraction of groundwater for use as irrigation is not proposed and is prohibited by Shelby County Groundwater Quality Control Board for potable, irrigation, or other uses (Shelby County 2018.)

3.14.3.4 WILD AND SCENIC RIVERS

The Proposed Action does not occur in an area that would impact a federally designated Wild and Scenic River.

3.14.4 NO ACTION ALTERNATIVE


There would be no changes to water resources under the No Action Alternative.

3.14.5 MITIGATION

Based on a lack of impacts to water resources that trigger regulatory thresholds, mitigation is not anticipated for the Proposed Action in its current configuration. However, should changes occur to the Proposed Site design, additional impacts will be addressed through the applicable USACE and TDEC permitting and processes.

SECTIONS 4.0 AND 5.0

4.0 CONCLUSIONS

This Draft EA Report has been prepared pursuant to NEPA to evaluate the environmental impacts associated with the Proposed Action. The Proposed Action comprises the preparation of approximately 245 acres of MSCAA-owned land (the Site) in Memphis, Shelby County, Tennessee, for development by private companies with an interest in constructing cargo holding or distribution facilities.

This Draft EA Report describes the following resource areas and assesses the potential for the Proposed Action to affect these resources areas: air quality; biological resources; climate; coastal resources; U.S. DOT Act, Section 4(f); farmlands; hazardous materials; historical, architectural, and cultural resources; land use; natural resources and energy supply; noise and noise-compatible

land use; socioeconomics, environmental justice, and children's environmental health and safety risks; visual effects; and water resources. The Proposed Action would result in some minor short-term and long-term impacts to resources. However, no significant impacts to resource areas are anticipated.

Table 5 includes a summary of the short-term and long-term impacts resulting from the Proposed Action. Based on the analysis presented in this Draft EA Report and on the coordination to date with project agencies, the impacts associated with the Proposed Action are not expected to have significant impacts to the assessed resource areas. This Draft EA Report concludes an EIS is not required and a Finding of No Significant Impact is appropriate.

Table 5 - Summary of Short-Term and Long-Term Impacts			
Resource Area	Short-Term Impacts	Long-Term Impacts	
Air Quality	✓	✓	
Biological Resources	✓	✓	
Climate	✓	✓	
Farmlands	✓	✓	
Hazardous Materials, Solid Waste, and Pollution Prevention	✓	✓	
Land Use		✓	
Natural Resources and Energy Supply	✓	✓	
Noise and Noise-Compatible Land Use	✓	✓	
Socioeconomics*	✓	✓	
Visual Effects	✓	✓	
Water Quality	✓	✓	

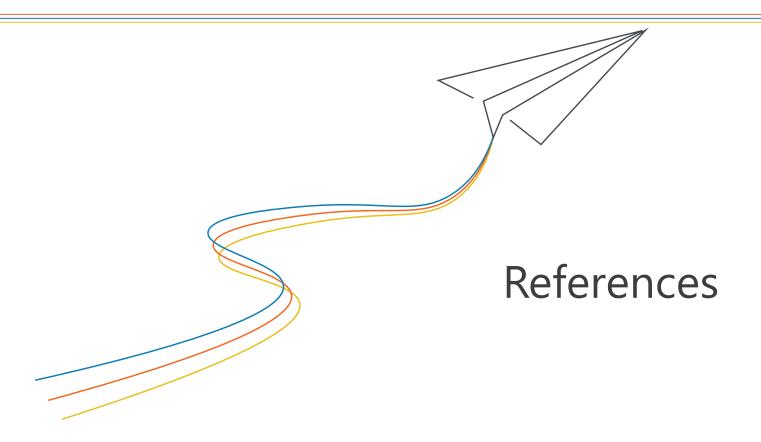
Note: * Impacts to socioeconomics are identified as beneficial due to the potential for job creation.

5.0 LIST OF PREPARERS	(In alphabetical order)
-----------------------	-------------------------

Stephen Abille, CPP	Peter Kauffmann PE, PTOE, AICP	Nathan Rinehart, GISP
EnSafe	Barge Design Solutions	EnSafe
Andrew Buchner, RPA Panamerican Consultants, Inc.	Kristin Lehman, CHMM EnSafe	Mark Senne GISP EnSafe
Andrew Cleary, GISP	Carlos Linares	Velita Thornton, Q.H.PIT
Edwards Pitman	EnSafe	EnSafe
Aaron Conti, PWS, TN-QHP	Lori Morris, PE	Chris Triplett, PE, PMP
EnSafe	MSCAA	EnSafe
Russ Danser, A.I.C.P.	David Pearce	Andrew Zimmerman, GISP
Edwards Pitman	Edwards Pitman	EnSafe

5.1 LIST OF AGENCIES AND PERSONS CONSULTED			
Name	Department	Division	Title
Chee Yen Chew	City of Memphis		Engineering Administrator
Jeffrey Penzes	Memphis and Shelby County	Office of Planning and Development	Principal Planner
James Elcan	Memphis District Corps of Engineers		Biologist
E. Patrick McIntyre, Jr.	State Historic Preservation Officer		Executive Director
Kendra Abkowitz, PhD	Tennessee Department of Environment and Conservation		Director of Policy and Sustainable Practices
Benjamin Almassi	Tennessee Department of Environment and Conservation	Division of Solid Waste Management	Environmental Consultant
Lew Hoffman	Tennessee Department of Environment and Conservation	Division of Water Resources	Environmental Consultant
Patrick Lemons	Tennessee Department of Environment and Conservation	Tennessee Wildlife Resource Agency	Wildlife Manager
Tom Moss, P.G.	Tennessee Department of Environment and Conservation	Division of Water Resources	Environmental Review Coordinator
Tom Word	Memphis Light, Gas and Water Division		Utility Coordinator
Amy Hume	Tennessee Department of Transportation	Environmental Division, NEPA Special Projects	Local Programs Coordinator
Jackie Marie Reed	United States Department of Agriculture		Resource Soil Scientist
Robbie Sykes	United States Fish and Wildlife Service		Supervisory Fish and Wildlife Biologist

SECTION 6.0


6.0 ABBREVIATIONS AND ACRONYMS

ADDICEVIA	HONS AND ACKONTINS
	-A-A-
ACS	American Community Survey
APE	Area of Potential Effects
AQI	Air Quality Index
ARAP	Aquatic Resource Alteration Permit
ASTM	ASTM International
	-C-C-
CAA	Clean Air Act
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
CWA	Clean Water Act
	-E-E-
EA	Environmental Assessment
EIS	Environmental Impact Statement
EMP	Employment District
ESA	Environmental Site Assessment
	-F-F-
FAA	Federal Aviation Administration
FR	Federal Register
	-G-G-
GHG	Greenhouse Gas
GHGRP	Greenhouse Gas Reporting Program
	-H-H-
HHS	United States Department of Human and Health Services
	-1-1-
IPaC	Information for Planning and Conservation
	-К-К-
K-8	Kindergarten through 8 th
	444-
LOS	Level of Service
LUCB	Land Use Control Board
	-М-М-
MEM	Memphis International Airport
MLGW	Memphis Light, Gas and Water
MOVES	Motor Vehicle Emission Simulator

MPO	Metropolitan Planning Organization		
MSCAA	Memphis Shelby County Airport Authority		
	-N-N-		
NAAQS	National Ambient Air Quality Standards		
NEPA	National Environmental Policy Act		
NPDES	National Pollutant Discharge Elimination System		
NRCS	Natural Resources Conservation Service		
NRHP	National Register of Historic Places		
	-P-P-		
PM2.5	Particulate matter less than 2.5 microns in diameter		
PM10	Particulate matter less than 10 microns in diameter		
	-R-R-		
REC	Recognized Environmental Condition		
	-S-S-		
sf	Square feet		
SHPO	State Historic Preservation Office		
SIDA	Security Identification Display Area		
SIP	State Implementation Plan		
SWPPP	Stormwater Pollution Prevention Plan		
	-т-т-		
TC	Tennessee Historical Commission		
TDEC	Tennessee Department of Environment and Conservation		
TIP	Transportation Improvement Program		
TIS	Traffic Impact Study		
TNM	Traffic Noise Model		
TVA	Tennessee Valley Authority		
-U-U-			
USACE	United States Army Corps of Engineers		
U.S.C.	United States Code		
USDA	United States Department of Agriculture		
U.S. DOT	United States Department of Transportation		
U.S. EPA	United States Environmental Protection Agency		
USFWS	United States Fish and Wildlife Service		
-W-W-			
WWC	Wet Weather Conveyance		

SECTION 7.0

7.0 REFERENCES

Barge Design Solutions. East Holmes Road Site Preparation: Trip Generation Report & Traffic Analysis. 2021, January 21.

California Emissions Estimator Model (CalEEMod). *Appendix A Calculation Details for CalEEMod*. October 2017. Access: http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6

City of Memphis. City of Memphis Division of Engineering Design and Policy Review Manual. Revised December 6, 2018.

City of Memphis. (website). Division of Planning and Development, Office of Comprehensive Planning. *Memphis 3.0 Comprehensive Plan*. December 2019. Retrieved from: https://www.memphis3point0.com/

City of Memphis. (website). Meeting Agendas and Documents. Retrieved from: https://www.memphistn.gov/government/city-council/meeting-agendas-and-documents/

City of Memphis. (website). Memphis Aerotropolis Airport City Master Plan. April 2014. Retrieved from: https://memphismpo.org/sites/default/files/public/Memphis Aerotropolis FinalReport lores.pdf

City of Memphis and Shelby County. *Memphis Airport Area Land Use Study Final Report*. June 1992. Retrieved from: https://www.shelbycountytn.gov/DocumentCenter/View/33344/Aiport-Plan

City of Memphis and Shelby County. *Memphis and Shelby County Unified Development Code*. 2010, August 10. Amended 2013. Retrieved from: <a href="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/13413/ZTA-13-002-Complete-UDC-as-approved.bidId="h

City of Memphis Land Use Control Board. Staff Report. 2018, April 12.

Council on Environmental Quality. (website). Final Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy Act Reviews. August 2016. Retrieved from: https://ceq.doe.gov/laws-regulations/regulations.html

Council on Environmental Quality. (website). Title 40, Code of Federal Regulations, parts 1500-1508, *Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act*. Retrieved from: https://ceq.doe.gov/laws-regulations/regulations.html

Edwards Pitman. Noise Assessment Study. 2021, January 13.

EnSafe Inc. 2020a. Phase I Environmental Site Assessment Report Holmes Road Development Project Property Southeast Corner of East Holmes Road and Swinnea Road, Shelby County, Tennessee. 2020, June 26.

EnSafe Inc. 2020b. Aquatic Resources Assessment Report 250-Acre Tract at East Holmes Road and Swinnea Road, Shelby County, Tennessee. June 2020.

Federal Aviation Administration. (website). *National Environmental Policy Act Implementing Instructions for Airport Actions* (Order 5050.4B). April 2006. Retrieved from: https://www.faa.gov/airports/resources/publications/orders/environmental 5050 4/media/5050-4B complete.pdf

Federal Aviation Administration. (website). *Policies and Procedures for Considering Environmental Impacts* (Order 1050.1F). July 2015. Retrieved from: https://www.faa.gov/documentLibrary/media/Order/FAA_Order_1050_1F.pdf

Federal Aviation Administration. (website). 1050.1F Desk Reference, Version 2. March 2020. Retrieved from: https://www.faa.gov/about/office_org/headquarters_offices/apl/environ_policy_guidance/policy/faa_nepa_order/desk_ref/media/desk-ref.pdf

Federal Emergency Management Agency. (website). Online Flood Map Service Center. 2020, November 16. Retrieved from: http://msc.fema.gov/portal/

Interagency Wild and Scenic Rivers Coordinating Council. (website). National Wild and Scenic Rivers System. 2020, November 16. Retrieved from: http://www.rivers.gov/map.php

Memphis City Council. (website). YouTube Channel. Retrieved from: https://www.youtube.com/channel/UCEHksoCPSsfZIPHX35d8aQq

Memphis International Airport. (website). *Part 150 Study Update Noise Exposure Maps and Supporting Documentation*. September 2015. Retrieved from: https://www.flymemphis.com/Areas/Admin/Images/Upload 2018053101012.pdf

Memphis Urban Area Metropolitan Planning Organization. (website). *Livability 2050 Regional Transportation Plan, Fiscal Year 2020-23 Transportation Improvement Program*. 2020. Retrieved from: https://memphismpo.org/plans/fy-2020-23-transportation-improvement-program

Memphis and Shelby County Division of Planning and Development. (website). Develop 901 website. Retrieved from: https://www.develop901.com/landuse-developmentservices/maps

Memphis and Shelby County Division of Planning and Development. (website). YouTube Channel. Retrieved from: https://www.youtube.com/channel/UCk1QPCoo-peD5TNmPdsWa-Q

National Park Service. [Database] (website). National Register of Historic Places. July 2020. Retrieved from: https://www.nps.gov/subjects/nationalregister/database-research.htm#table
https://www.nps.gov/maps/full.html?mapId=7ad17cc9-b808-4ff8-a2f9-a99909164466

National Park Service. (website). Nationwide Rivers Inventory. 2020, November 16. Retrieved from: http://www.nps.gov/ncrc/programs/rtca/nri/index.html

Natural Resources Conservation Service. (website). Web Soil Survey. 2020, September 11. Retrieved from: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

Shelby County. (website). Shelby County Ground Water Quality Control Board Regulations. Approved June 27, 2018. Retrieved from: <a href="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration?bidId="https://www.shelbycountytn.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/DocumentCenter/View/768/wells-registration.gov/Docum

Tennessee Department of Agriculture. (website). Rules of the Tennessee Department of Agriculture, Division of Plant Industries, Chapter 0080-06-24, Summary of Plant Protection Regulations, Updated March 2018. Retrieved from: https://nationalplantboard.org/wp-content/uploads/docs/summaries/tennessee.pdf

Tennessee Department of Environment and Conservation. (website). Division of Natural Areas. Rare Species Viewer. 2020, April 9. Retrieved from: http://environment-online.tn.gov:8080/pls/enf_re-ports/f?p=9014:3::::::

Tennessee Department of Environment and Conservation. (website). Division of Solid Waste Management. Hazardous Waste Program. *Hazardous Waste Management Chapter 0400-12-01*. 2018, July 4. Retrieved from: https://publications.tnsosfiles.com/rules/0400/0400-12/0400-12-01/0400-12-01 TOC 2018.pdf

Tennessee Department of Environment and Conservation. (website). Division of Solid Waste Management. Permitted Landfills Viewer. 2020, April 17. Retrieved from: https://www.tn.gov/environment/program-areas/solid-waste/maps.html

Tennessee Department of Environment and Conservation. (website). Division of Water Resources, *General Aquatic Resource Alteration Permit for Construction or Removal of Minor Road Crossings*. 2020, April 7. Retrieved from: https://www.tn.gov/content/dam/tn/environment/water/natural-resources-unit/water_permit_arap-gp_minor-road-crossings-2020-2025.pdf

Tennessee Department of Environment and Conservation. (website). Tennessee Historical Commission Viewer. October 2020. Retrieved from: https://tnmap.tn.gov/historicalcommission/

United States Army Corps of Engineers. (website). *Nationwide Permit 39 Commercial and Institutional Developments*. 2017, March 19. Retrieved from: https://www.swf.usace.army.mil/Portals/47/docs/regulatory/Permitting/Nationwide/NWP39TX.pdf

United States Department of Health and Human Services. (website). *U.S. Federal Poverty Guidelines Used to Determine Financial Eligibility for Certain Federal Programs. Guidelines for 2020.* Retrieved from: https://aspe.hhs.gov/poverty-guidelines

United States Environmental Protection Agency. (website). Air Quality Index. 2020, September 24. Retrieved from: https://www.airnow.gov/

United States Environmental Protection Agency. (website). Environmental Justice Screening and Mapping Tool (EJSCREEN). 2020, October 26. Retrieved from: http://www.epa.gov/ejscreen

United States Environmental Protection Agency. (website). NEPAssist website. October 2020. Retrieved from: http://nepassisttool.epa.gov/nepassist/entry.aspx

Draft Environmental Assessment Report Memphis Shelby County Airport Authority East Holmes Road Site Preparation June 2021

United States Environmental Protection Agency. (website). Nonattainment Areas for Criteria Pollutants (Green Book). 2020, July 23. Retrieved from: https://www.epa.gov/green-book

United States Department of Transportation. (website). *Department of Transportation Updated Environmental Justice Order 5610.2(a)*. Retrieved from: https://www.transportation.gov/sites/dot.gov/files/docs/mission/transportation-policy/environmental-justice/339501/dot56102a.pdf

United States Department of Transportation. (website). *Procedures for Considering Environmental Impacts* (Order 5610.1D). July 2000. Retrieved from: https://www.transportation.gov/sites/dot.gov/files/docs/DOT%20Order%20%285610.1D%29.pdf

United States Fish and Wildlife Service. (website). Information for Planning and Consultation Website. Retrieved from: https://ecos.fws.gov/ipac/

United States Fish and Wildlife Service. (website). Range-Wide Indiana Bat Summer Survey Guidelines. 2020. Retrieved from: https://www.fws.gov/midwest/endangered/mammals/inba/surveys/pdf/FINAL%20Range-wide%20IBat%20Survey%20Guidelines%203.23.20.pdf

ATTACHMENT 1

Agency Coordination and Scoping Letters Correspondence

December 14, 2020

Email: robbie sykes@fws.org

Robbie Sykes Supervisory Fish and Wildlife Biologist United States Fish and Wildlife Service 446 Neal Street Cookeville, Tennessee 38501

Re: Memphis-Shelby County Airport Authority — Holmes Road Development Project

245-acre Tract at the Southeast Corner of East Holmes Road and Swinnea Road

Memphis, Shelby County, Tennessee

Dear Mr. Sykes:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 250-acre tract of vacant MSCAA-owned property for future light industrial development. The lead federal agency for the undertaking is the Federal Aviation Administration. The project consists of preparation of approximately 250 acres (the Site), development construction, and operation of future light industrial facilities. On behalf of the MSCAA, EnSafe Inc. seeks concurrence that no federally protected species or designated critical habitat will be affected by the project.

The Site is located approximately one mile south of the Memphis International Airport (MEM) at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State Line, in Memphis, Shelby County, Tennessee (Figure 1). A physical address does not exist for the entire Site; it is comprised of three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The project Site coordinates and surrounding area uses are depicted on Figure 2. The Site is vacant and predominantly wooded. A Tennessee Valley Authority power line easement is located within the south parcel, a Texas Gas Company natural gas pipeline easement crosses the north parcels, and a Valero and Memphis Light, Gas and Water easement traverses along the south and west Site boundaries (Figure 2). Representative Site photos and aerial photographs are included in Attachment 1.

The purpose of the project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. A preliminary site plan identifies the potential for approximately 1.5 million square feet of facility space at the Site with approximately 300,000 square feet of additional space allotted for future growth, if needed (Figure 3).

Site preparation will include tree removal, grading, filling, utility main extensions, and stream crossings to allow for future site pad development by private companies. The MSCAA proposes to oversee the extension of sanitary sewer and water services, installation of gas and electrical services and meters, installation of stream crossings, construction of new streams, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. A reasonably foreseeable connected action includes the construction of facilities by a private developer(s) and the long-term operation of future facilities by a long-term MEM tenant(s). Site developers and tenants have not been identified at this time.

The Site is located on a local drainage divide. The principal drainage on the Site is Hurricane Creek, which flows northeasterly into Nonconnah Creek, and the Nonconnah Creek Watershed, located in northwest Mississippi and southwest Tennessee. The southwestern portion of the Site is drained by a southwesterly flowing unnamed tributary that feeds into Rocky Creek in DeSoto County, Mississippi. Rocky Creek flows

west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee. Horn Lake Creek was a tributary of the Mississippi River, but its hydrogeology has been highly modified.

EnSafe submitted an Aquatic Resource Assessment Report to the Tennessee Department of Environment and Conservation (TDEC) and the United States Army Corps of Engineers identifying the following water resources at the Site: six streams, nine wet weather conveyances, ten wetlands, and seven pond features. Agency concurrence letters regarding the determinations and mapped water resources are included in Attachment 2.

Any alterations to wet weather conveyances must be made in accordance with the requirements of Tennessee Code Annotated § 69-3-108(q). Any alterations to streams or wetlands would require authorization under an Aquatic Resource Alteration Permit. The conceptual site design includes consideration of water resources. To minimize the impacts to water resources, the proposed buildings on the Site have been positioned to avoid onsite water resources, to the extent possible.

The United States Fish and Wildlife Service (USFWS), Information for Planning and Consultation (IPaC) website was reviewed for a list of federally protected species and migratory birds with the potential to occur in Shelby County (Attachment 3). In addition, the TDEC, Division of Natural Areas, Interactive Rare Species Database was reviewed. Output from the IPaC website and TDEC database list are included in Attachment 3

During a site visit on April 15-16, 2020, EnSafe biologists identified herbaceous and aquatic habitat at the Site. The site inspection did not reveal any critical habitat of listed species or any of the threatened, endangered, or migratory birds with the potential to exist in Shelby County listed on the TDEC database or IPaC output. Dominant plants include a mix of grasses and herbaceous plants in the open areas (e.g., power line and gas pipeline easements) and hardwood forested areas dominated by maple (*Acer rubrum and Acer negundo*), Hickory species (*Carya glabra*), Hackberry (*Celtis laevigata*), cottonwood (*Populus deltoides*), Sweetgum (*Liquidambar styraciflua*), Oak (*Quercus*) species, and American elm (*Ulmus americana*).

The USFWS bat occurrence maps included in Attachment 3, indicate the Indiana Bat and Northern Long-Eared Bat species do not occur in Shelby County. However, during the April 15-16, 2020, site visit, EnSafe biologists conducted a habitat suitability survey for the Indiana Bat and Northern Long-Eared Bat, according to procedures outlined in the 2019 USFWS Range-Wide Indiana Bat Summer Survey Guidelines. Several snags were identified during the survey, but the snags did not generally exhibit a sufficient degree of peeling or shaggy bark, or any major cavities that would serve as suitable bat roosting habitat. The majority of snags observed were willow (Salix nigra) trees, and shagbark hickory (Carya ovata). The observed snags and aquatic resources were located within densely forested areas of the Site, considered unsuitable as flyway corridors for bats. Some portions of the larger streams in the northeast quadrant of the Site traverse cleared, open utility line easements, but these altered patches of land function as low resource value habitats. Representative photographs of the snags identified during the survey are included in Attachment 1.

A review of a Phase I Environmental Site Assessment completed by EnSafe in June 2020 indicates the Site has experienced significant disturbance. Based on information reviewed, the Site was developed for residential use as early as the 1930s. A review of aerial photographs and other historical sources indicates portions of the Site were utilized for sand and gravel mining from around 1950 until 1979 (Attachment 1). Based on the substantial disturbance of the property and lack of suitable habitat, it is anticipated that no federally protected species or designated critical habitat will be affected by the preparation of the Site for

future development and operation of industrial facilities. We request your concurrence of the current property condition and request a finding of no further action regarding fish and wildlife resources.

The preparation of the Site and future development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The USFWS is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at klehman@ensafe.com or by phone at (901) 937-4378.

Sincerely,

EnSafe Inc.

By: Kristin J. Lehman

Senior Project Manager

Enclosures: Figures; Attachments

IPaC U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section. COMSU

Location

Shelby County, Tennessee

Local office

Tennessee Ecological Services Field Office

(931) 528-6481

(931) 528-7075

446 Neal Street Cookeville, TN 38501-4027

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Indiana Bat Myotis sodalis

There is **final** critical habitat for this species. Your location is outside the critical habitat.

https://ecos.fws.gov/ecp/species/5949

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Endangered

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds
 http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the

Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be

used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

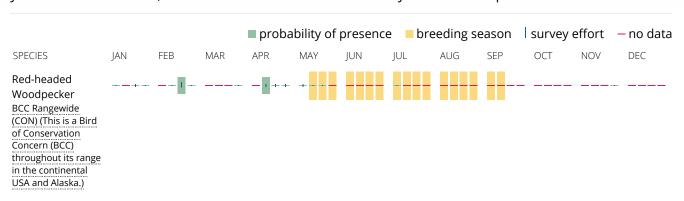
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

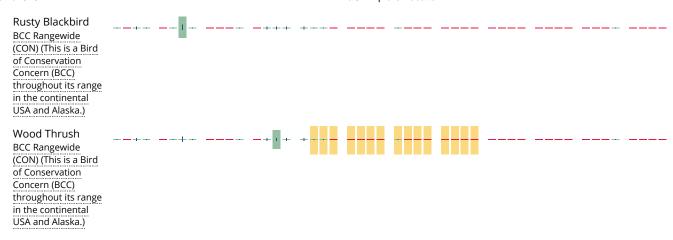
Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (AKN). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u>

<u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the Eagle Act requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize

potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

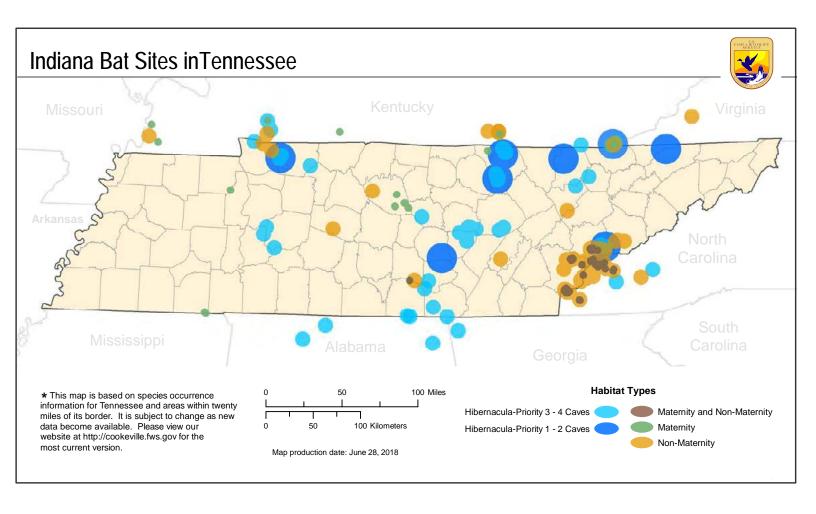
WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

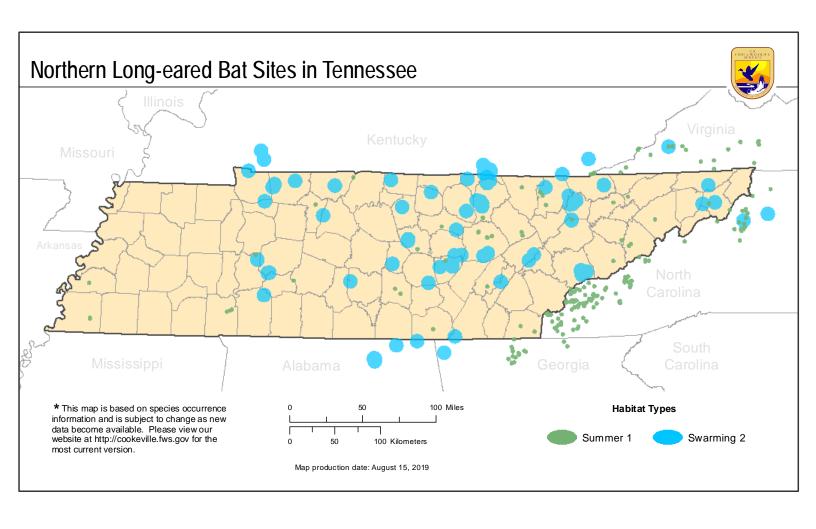
This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.


Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.


Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Tennessee Ecological Services Field Office 446 Neal Street Cookeville, Tennessee 38501 (931) 528-6481

January 27, 2021

Ms. Kristin Lehman Senior Project Manager EnSafe, Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134

Subject: FWS 2021-CPA-0078. Memphis-Shelby County Airport Authority – Holmes Road

Development Project in Memphis, Shelby County, Tennessee.

Dear Ms. Lehman:

Thank you for your correspondence dated December 14, 2020, regarding the Memphis-Shelby County Airport Authority's (MSCAA) proposal to prepare approximately 250 acres of MSCAA-owned property in Memphis for future light industrial development. The site is located approximately one mile south of the Memphis International Airport. The Phase I Environmental Site Assessment completed by EnSafe in June 2020 indicated that the site has experienced significant disturbance. Based on information submitted, the site was developed for residential use as early as the 1930s, and aerial imagery and other historical sources indicate portions of the site were utilized for sand and gravel mining from around 1950 until 1979.

The United States Fish and Wildlife Service, Information for Planning and Consultation (IPaC) website was reviewed for a list of federally protected species and migratory birds with the potential to occur in Shelby County. IPaC indicated that the federally listed Indiana bat (*Myotis sodalis*) and northern long-eared bat (*Myotis septentrionalis*) may occur in the area. EnSafe biologists conducted an assessment on April 15-16, 2020, to evaluate habitat suitability for these two species at the property. EnSafe determined that some snags were identified, but they did not generally exhibit a sufficient degree of peeling or shaggy bark, or any major cavities that would serve as suitable bat roosting habitat. You have also submitted a 2017 mist net survey from the adjacent property that resulted in no captures of rare bats. Based on past disturbance of the property, lack of suitable bat roosting habitat, and recent negative bat survey results on the adjacent property, you have determined that no federally protected species or designated critical habitat would be affected by future development of the property or operations of industrial facilities.

Our database does not indicate any federally listed species as occurring near the site. We note, however, that collection records available to the Service may not be all-inclusive. Our database is a compilation of collection records made available by various individuals and resource agencies. This information is seldom based on comprehensive surveys of all potential habitat and thus does not necessarily provide conclusive evidence that protected species are present or absent at a specific locality. However, based on the current property condition and best information available at this time, we would not anticipate federally listed species occurring at the site. No further coordination is needed with our agency, unless the size or scope of the project changes, or a lead federal agency requests concurrence on species determinations.

Please contact Robbie Sykes of my staff at 931/525-4979 or <u>robbie_sykes@fws.gov</u> if you have questions regarding the information provided in this letter.

Sincerely,

DANIEL ELBERT

Digitally signed by DANIEL ELBERT Date: 2021.01.27 13:12:28 -05'00'

Daniel Elbert Field Supervisor December 28, 2021

email: Patrick.Lemons@tn.gov

Tennessee Wildlife Resources Agency Wildlife Manager Patrick Lemons 200 Lowell Thomas Drive Jackson, Tennessee 38301

Re: Memphis-Shelby County Airport Authority — Holmes Road Development Project

245-acre Tract at the Southeast Corner of East Holmes Road and Swinnea Road

Memphis, Shelby County, Tennessee

Dear Mr. Lemons:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 250-acre tract of vacant MSCAA-owned property for development as cargo holding or distribution facilities. The lead federal agency for the undertaking is the Federal Aviation Administration. On behalf of the MSCAA, EnSafe Inc. seeks concurrence that no state protected species will be affected by the project.

The Site is located approximately one mile south of the Memphis International Airport (MEM) at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State Line, in Memphis, Shelby County, Tennessee (Figure 1). A physical address does not exist for the entire Site; it is comprised of three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The project Site coordinates and surrounding area uses are depicted on Figure 2. The Site is vacant and predominantly wooded. A Tennessee Valley Authority power line easement is located within the south parcel, a Texas Gas Company natural gas pipeline easement crosses the north parcels, and a Valero and Memphis Light, Gas and Water easement traverses along the south and west Site boundaries (Figure 2). Representative Site photos and aerial photographs are included in Attachment 1.

The purpose of the project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. A preliminary site plan identifies the potential for approximately 1.5 million square feet of facility space at the Site with approximately 300,000 square feet of additional space allotted for future growth, if needed (Figure 3).

Site preparation will include tree removal, grading, filling, utility main extensions, and stream crossings to allow for future site pad development by private companies. The MSCAA proposes to oversee the extension of sanitary sewer and water services, installation of gas and electrical services and meters, installation of stream crossings, construction of new streams, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. A reasonably foreseeable connected action includes the construction of facilities by a private developer(s) and the long-term operation of future facilities by a long-term MEM tenant(s). Site developers and tenants have not been identified at this time.

The Site is located on a local drainage divide. The principal drainage on the Site is Hurricane Creek, which flows northeasterly into Nonconnah Creek, and the Nonconnah Creek Watershed, located in northwest Mississippi and southwest Tennessee. The southwestern portion of the Site is drained by a southwesterly flowing unnamed tributary that feeds into Rocky Creek in DeSoto County, Mississippi. Rocky Creek flows west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee. Horn Lake Creek was a

tributary of the Mississippi River, but its hydrogeology has been highly modified. The conceptual site design includes consideration of water resources (Figure 3)

EnSafe submitted an Aquatic Resource Assessment Report to the Tennessee Department of Environment and Conservation (TDEC) and the United States Army Corps of Engineers identifying the following water resources at the Site: six streams, nine wet weather conveyances, ten wetlands, and seven pond features. Agency concurrence letters regarding the determinations and mapped water resources are included in Attachment 2. Any alterations to wet weather conveyances will be made in accordance with the requirements of Tennessee Code Annotated § 69-3-108(q). Any alterations to streams or wetlands would require authorization under an Aquatic Resource Alteration Permit.

The TDEC, Division of Natural Areas, Interactive Rare Species Database was reviewed. Output from the TDEC database list are included in Attachment 3. During a site visit on April 15-16, 2020, EnSafe biologists identified herbaceous and aquatic habitat at the Site. The site inspection did not reveal any state listed species with the potential to exist in Shelby County listed on the TDEC database. Dominant plants include a mix of grasses and herbaceous plants in the open areas (e.g., power line and gas pipeline easements) and hardwood forested areas dominated by maple (*Acer rubrum and Acer negundo*), Hickory species (*Carya glabra*), Hackberry (*Celtis laevigata*), cottonwood (*Populus deltoides*), Sweetgum (*Liquidambar styraciflua*), Oak (*Quercus*) species, and American elm (*Ulmus americana*).

A review of a Phase I Environmental Site Assessment completed by EnSafe in June 2020 indicates the Site has experienced significant disturbance. Based on information reviewed, the Site was developed for residential use as early as the 1930s. A review of aerial photographs and other historical sources indicates portions of the Site were utilized for sand and gravel mining from around 1950 until 1979 (Attachment 1). Based on the substantial disturbance of the property and lack of suitable habitat, it is anticipated that no state listed species will be affected by the preparation of the Site for future development and operation of cargo holding or distribution facilities. We request your concurrence of the current property condition and request a finding of no further action regarding wildlife resources.

The preparation of the Site and future development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The TWRA is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at klehman@ensafe.com or by phone at (901) 937-4378.

Sincerely, EnSafe Inc.

By: Kristin J. Lehman

Senior Project Manager

Enclosures: Figures; Attachments

Rare Species by Watershed Rare Species by County Rare Species by Quadrangle Stormwater Programs

- Ney to Status and Ranks

Rare Species by County

Data is refreshed on or around January and July each year.

	Qv	Go	Rows	25	Actions ~
L					

1 - 25 of 27 >

<u>County</u>	<u>Type</u> ↑=	<u>Category</u>	Scientific Name	Common Name	Global Rank	State Rank	Fed. Status	State Status	<u>Habitat</u>	Wet Habitat Flag
Shelby	Animal Assemblage	No Data	<u>Rookery</u>	Heron Rookery	G5	SNR		Rare, Not State Listed	No Data	No Data
Shelby	Invertebrate Animal	Insect	Lycaena hyllus	Bronze Copper	G5	S3		Rare, Not State Listed	Marshes, sedge meadows, moist to wet grassy meadows, ditches, fens, streamside or pondshore wetlands, or roads and right of ways through marshlands. West TN.	Possible
Shelby	Invertebrate Animal	Mollusc	<u>Lampsilis</u> <u>siliquoidea</u>	Fatmucket	G5	\$2		Rare, Not State Listed	Slackwater with mud subst; Wolf R (Miss R trib); west TN; may occur at Reelfoot Lk; also rept Drakes Ck (Cumb R), Sumner Co.	Aquatic
Shelby	Invertebrate Animal	Mollusc	Obovaria jacksoniana	Southern Hickorynut	G2	S1		Rare, Not State Listed	Rivers with medium-sized gravel substrates and low- mod current; Wolf & Hatchie rivers; Mississippi River watershed; west Tennessee.	Aquatic
Shelby	Invertebrate Animal	Mollusc	Webbhelix multilineata	Striped Whitelip	G5	S2		Rare, Not State Listed	Low wet habitats, marshes, floodplains, meadows; lake margins; under leaf litter or drift; Mississippi River floodplain.	Possible
Shelby	Vascular Plant	Flowering Plant	Rhynchospora harveyi	Harvey's Beakrush	G4	S1		Т	Barrens And Other Open Areas	Possible
Shelby	Vascular Plant	Flowering Plant	Iris fulva	Copper Iris	G5	S2		Т	Bottomlands	Possible
Shelby	Vascular Plant	Flowering Plant	Hottonia inflata	Featherfoil	G4	S2		S	Wet Sloughs And Ditches	Aquatic
Shelby	Vascular Plant	Flowering Plant	Heteranthera multiflora	Multiflowered Mud-plantain	G4	S1		S	Shallow Water, Mud Flats	Possible
Shelby	Vascular Plant	Flowering Plant	Silene ovata	Ovate Catchfly	G3	S2		E	Open Oak Woods	Upland
Shelby	Vascular Plant	Flowering Plant	Schisandra glabra	Red Starvine	G3	S2		Т	Rich Mesic Woods, Bluffs	Possible
Shelby	Vascular Plant	Flowering Plant	Panax quinquefolius	American Ginseng	G3G4	S3S4		S-CE	Rich Woods	Possible
Shelby	Vascular Plant	Flowering Plant	Magnolia virginiana	Sweetbay Magnolia	G5	S2		Т	Forested Acidic Wetlands	Possible
Shelby	Vascular Plant	Flowering Plant	Symphyotrichum praealtum	Willow Aster	G5	S1		Е	Moist Prairies And Marshes	Possible
Shelby	Vascular Plant	Flowering Plant	<u>Ulmus</u> <u>crassifolia</u>	Cedar Elm	G5	S2		S	Swamps	Possible
Shelby	Vertebrate Animal	Bird	Haliaeetus leucocephalus	Bald Eagle	G5	S3	-	D	Areas close to large bodies of water; roosts in sheltered sites in winter; communal roost sites common.	Aquatic
Shelby	Vertebrate Animal	Mammal	Neotoma floridana illinoensis	Eastern Woodrat	G5T5	S3		D	Forested areas, caves & outcrops; west Tennessee generally.	Upland
Shelby	Vertebrate Animal	Reptile	Pituophis melanoleucus melanoleucus	Northern Pinesnake	G4T4	\$3		Т	Well-drained sandy soils in pine/pine-oak woods; dry mountain ridges; E portions of west TN, E to lower elev of the Appalachians.	Upland
Shelby	Vertebrate Animal	Bird	<u>Limnothlypis</u> <u>swainsonii</u>	Swainson's Warbler	G4	S3		D	Mature, rich, damp, deciduous floodplain and swamp forests.	Possible
Shelby	Vertebrate Animal	Fish	Ammocrypta beani	Naked Sand Darter	G5	S2		D	Shifting sand bottoms & sandy runs; Hatchie & Wolf rivers & their larger tribs.	Aquatic

9/2/2020

Rare Species by County

Shelby	Vertebrate Animal	Fish	Noturus gladiator	Piebald Madtom	G3	S3		D	Large creeks & rivers in moderate-swift currents with clean sand or gravel substrates; Mississippi River tributaries.	Aquatic
Shelby	Vertebrate Animal	Amphibian	Acris gryllus	Southern Cricket Frog	G5	S2S3		Rare, Not State Listed	Grassy margins of swamps, marshes, lakes, ponds, streams, ditches, and nearby temporary pools; far SW Tennessee.	Aquatic
Shelby	Vertebrate Animal	Bird	Setophaga cerulea	Cerulean Warbler	G4	S3B		D	Mature deciduous forest, particularly in floodplains or mesic conditions.	Upland
Shelby	Vertebrate Animal	Fish	Cycleptus elongatus	Blue Sucker	G3G4	S2		Т	Swift waters over firm substrates in big rivers.	Aquatic
Shelby	Vertebrate Animal	Bird	Vireo bellii	Bell's Vireo	G5	S1B	No Status	Rare, Not State Listed	Thickets adjacent to water, bottomlands; west Tennessee and one confirmed location in Western Highland Rim.	Possible

1 - 25 of 27 💙

If you have any questions or comments, Email ask.tdec@tn.gov or call at (888) 891-TDEC (8332).

Kristin Lehman

From: Rob Todd <Rob.Todd@tn.gov>
Sent: Thursday, January 28, 2021 5:42 PM

To: Kristin Lehman
Cc: Patrick Lemons

Subject: Memphis-Shelby County Airport Authority

Ms. Lehman:

The review request was referred to me for response. The Tennessee Wildlife Resources Agency has reviewed the information that you provided regarding the Memphis-Shelby County Airport Authority property development project for cargo holding facilities on a 250-acre tract of vacant land and we do not anticipate adverse impacts to state listed species under our authority due to the proposed project; provided that best management practices to address erosion and sediment are implemented and maintained during construction activities. Thank you for the opportunity to review and comment on this proposed project. If I may be of further assistance, please contact me.

Robert Todd Fish & Wildlife Environmentalist Tennessee Wildlife Resources Agency Ellington Agricultural Center 5107 Edmondson Pike Nashville, TN 37211 Office: 615-781-6572

Cell: 931-881-8240 Fax: 615-781-6667 Email: rob.todd@tn.gov

creative thinking. custom solutions. ®

ENSAFE

Mr. Matthew Denton State of Tennessee United States Department of Agriculture Area 1 235 Oil Well Road Jackson, Tennessee 38305-7914

Email: matthew.denton@ usda.gov

Re: Farmland Protection Policy Act Determination

245-acre Tract at the Southeast Corner of East Holmes Road and Swinnea Road

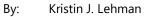
Memphis, Shelby County, Tennessee

Dear Mr. Denton:

The Federal Aviation Administration and Memphis-Shelby County Airport Authority (MSCAA) are engaged in the scoping stages of a project that will require a Farmland Protection Policy Act determination. On behalf of the MSCAA, EnSafe Inc., seeks your input regarding whether the project may convert Prime Farmland, as defined in the Farmland Protection Policy Act, to nonagricultural uses.

The proposed project consists of preparing approximately 248 acres of vacant, MSCAA-owned land (the Site) for future light industrial development. The Site is located approximately 1 mile south of the Memphis International Airport (MEM), at the southeast corner of East Holmes Road and Swinnea Road in Memphis, Shelby County, Tennessee (Figures 1 and 2). The Site is comprised of three tax parcels (09440000107, 09440000128, and 09440000129), totaling 245.8 acres. The project Site coordinates and surrounding area uses are depicted on Figure 2. The Site coordinates are also provided as digital shape files.

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey, the Site is comprised of six soil types: Collins, Falaya, Grenada, Gullied land, Loring, and Memphis (Attachment 1). Four of the onsite soil types (Collins, Falaya, Loring, and Memphis) are considered Prime Farmland in Shelby County, Tennessee. Figure 3 depicts the Site soil map overlain by the conceptual site plan. Attachment 2 includes the form AD-1006, for USDA NRCS review.


Site preparation will include tree removal, grading, filling, utility main extensions, and stream crossings to allow for future site pad development by private companies. The MSCAA proposes to oversee the extension of sanitary sewer and water services, installation of gas and electrical services and meters, installation of stream crossings, construction of new streams, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. A reasonably foreseeable connected action includes the construction of facilities by a private developer(s) and the long-term operation of future facilities by a longterm MEM tenant(s). Site developers and tenants have not been identified at this time.

The preparation of the Site and future development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The USDA is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at klehman@ensafe.com or by phone at (901) 937-4378.

Sincerely,

EnSafe Inc.

Senior Project Manager

December 08, 2020

Kristin J. Lehman Senior Project Manager, ENSAVE 5724 Summer Trees Drive Memphis, TN 38134

RE: Farmland Protection Policy Act Determination

245-acre Tract at the Southeast Corner of East Holmes Road and Swinnea Road Memphis, Shelby County, Tennessee

Dear Ms. Lehman:

Attached is the completed AD-1006 form for the proposed 245-acrea MSCAA- owned land (future light industrial development) project in Shelby County, TN. The project under evaluation contains prime farmland and/or farmland of statewide importance. However, it is our finding that the proposed project does not significantly impact prime farmland and/or farmland of statewide importance in the county since only 0.0656% will be converted.

For your reference, NRCS policy and procedures on prime and unique farmlands are published in the Code of Federal Regulations 7 CFR 657. The website is https://www.ecfr.gov/cgi-bin/text-idx?SID=f8f1d0a62e9f8aef7093eaf8058bbebc&mc=true&tpl=/ecfrbrowse/Title07/7cfr657 main 02.tpl

Please let me know if you have any questions.

Sincerely,

Jackie Marie Reed TN-Area 2

Jackie M Reed

Resource Soil Scientist

FA	U.S. Departmer	•		TING			
PART I (To be completed by Federal Agency)	Date Of Land Evaluation Request					
Name of Project East Holmes Road E	Environmental Asses	Federal Agency Involved Federal Aviation Authority					
Proposed Land Use Light industrial			nd StateShelb	y County, T	ennessee	-	
PART II (To be completed by NRCS)	Date Req	uest Received I 12/08/2020	Ву)	Person Co Jackie	mpleting Form	RSS	
Does the site contain Prime, Unique, Statewick	·	? Y	ES NO	Acres Ir	_	Average Farm Size	
(If no, the FPPA does not apply - do not comp	•	<i>'</i>	✓ 📗	2,80		189	
Major Crop(s)	Farmable Land In Govt. J					Defined in FP 198,088	PA
Soybean	Acres: 60 % 203,860 Name of State or Local Site Assessment System			Acres: 58		•	00
Name of Land Evaluation System Used LESA_Shelby	Name of State of Local S		nent System	12/08/20		turned by NR	CS
PART III (To be completed by Federal Agence	y)			0'' 4		Site Rating	0: 0
A. Total Acres To Be Converted Directly				Site A	Site B	Site C	Site D
B. Total Acres To Be Converted Indirectly				170.8			
C. Total Acres In Site				245.8			
PART IV (To be completed by NRCS) Land	Evaluation Information			240.0			
A. Total Acres Prime And Unique Farmland				400			
B. Total Acres Statewide Important or Local Ir	nportant Farmland			130			
C. Percentage Of Farmland in County Or Loca	•			0 0656			
D. Percentage Of Farmland in Govt. Jurisdicti		ve Value		0.0656 57			
PART V (To be completed by NRCS) Land E							
Relative Value of Farmland To Be Con		s)	.	62			
PART VI (To be completed by Federal Agence (Criteria are explained in 7 CFR 658.5 b. For Co		CPA-106)	Maximum Points	Site A	Site B	Site C	Site D
Area In Non-urban Use			(15)	0			
2. Perimeter In Non-urban Use			(10)	0			
3. Percent Of Site Being Farmed			(20)	0			
4. Protection Provided By State and Local Go	overnment		(20)	0			
5. Distance From Urban Built-up Area			(15)	0			
6. Distance To Urban Support Services			(15)	0			
7. Size Of Present Farm Unit Compared To A	verage		(10)	0			
8. Creation Of Non-farmable Farmland			(10)	10			
9. Availability Of Farm Support Services			(5)	0			
10. On-Farm Investments			(20)	0			
11. Effects Of Conversion On Farm Support S	Services		(10)	0			
12. Compatibility With Existing Agricultural Us	е		(10)	5			
TOTAL SITE ASSESSMENT POINTS			160	15	0	0	0
PART VII (To be completed by Federal Age	ency)						
Relative Value Of Farmland (From Part V)	100	62	0	0	0		
Total Site Assessment (From Part VI above o		160	15	0	0	0	
TOTAL POINTS (Total of above 2 lines)			260	77	0	0	0
Site Selected: Site A	Date Of Selection 2020 Was A Local Site Assessment Used? YES NO						
Reason For Selection: The MSCAA selected a Site based on the following site evaluation factors: 1. Sites that are owned by the MSCAA and available for development compatible with MEM operations, including aircraft noise. Name of Federal agency representative completing this form: Federal Aviation Authority Date: 12/4/20							

STEPS IN THE PROCESSING THE FARMLAND AND CONVERSION IMPACT RATING FORM

- Step 1 Federal agencies (or Federally funded projects) involved in proposed projects that may convert farmland, as defined in the Farmland Protection Policy Act (FPPA) to nonagricultural uses, will initially complete Parts I and III of the form. For Corridor type projects, the Federal agency shall use form NRCS-CPA-106 in place of form AD-1006. The Land Evaluation and Site Assessment (LESA) process may also be accessed by visiting the FPPA website, https://fppa.nrcs.usda.gov/lesa/.
- Step 2 Originator (Federal Agency) will send one original copy of the form together with appropriate scaled maps indicating location(s)of project site(s), to the Natural Resources Conservation Service (NRCS) local Field Office or USDA Service Center and retain a copy for their files. (NRCS has offices in most counties in the U.S. The USDA Office Information Locator may be found at http://offices.usda.gov/scripts/ndISAPI.dll/oip_public/USA_map, or the offices can usually be found in the Phone Book under U.S. Government, Department of Agriculture. A list of field offices is available from the NRCS State Conservationist and State Office in each State.)
- Step 3 NRCS will, within 10 working days after receipt of the completed form, make a determination as to whether the site(s) of the proposed project contains prime, unique, statewide or local important farmland. (When a site visit or land evaluation system design is needed, NRCS will respond within 30 working days.
- Step 4 For sites where farmland covered by the FPPA will be converted by the proposed project, NRCS will complete Parts II, IV and V of the form.
- Step 5 NRCS will return the original copy of the form to the Federal agency involved in the project, and retain a file copy for NRCS records.
- Step 6 The Federal agency involved in the proposed project will complete Parts VI and VII of the form and return the form with the final selected site to the servicing NRCS office.
- Step 7 The Federal agency providing financial or technical assistance to the proposed project will make a determination as to whether the proposed conversion is consistent with the FPPA.

INSTRUCTIONS FOR COMPLETING THE FARMLAND CONVERSION IMPACT RATING FORM

(For Federal Agency)

Part I: When completing the "County and State" questions, list all the local governments that are responsible for local land use controls where site(s) are to be evaluated.

Part III: When completing item B (Total Acres To Be Converted Indirectly), include the following:

- 1. Acres not being directly converted but that would no longer be capable of being farmed after the conversion, because the conversion would restrict access to them or other major change in the ability to use the land for agriculture.
- 2. Acres planned to receive services from an infrastructure project as indicated in the project justification (e.g. highways, utilities planned build out capacity) that will cause a direct conversion.

Part VI: Do not complete Part VI using the standard format if a State or Local site assessment is used. With local and NRCS assistance, use the local Land Evaluation and Site Assessment (LESA).

- 1. Assign the maximum points for each site assessment criterion as shown in § 658.5(b) of CFR. In cases of corridor-type project such as transportation, power line and flood control, criteria #5 and #6 will not apply and will, be weighted zero, however, criterion #8 will be weighted a maximum of 25 points and criterion #11 a maximum of 25 points.
- 2. Federal agencies may assign relative weights among the 12 site assessment criteria other than those shown on the FPPA rule after submitting individual agency FPPA policy for review and comment to NRCS. In all cases where other weights are assigned, relative adjustments must be made to maintain the maximum total points at 160. For project sites where the total points equal or exceed 160, consider alternative actions, as appropriate, that could reduce adverse impacts (e.g. Alternative Sites, Modifications or Mitigation).

Part VII: In computing the "Total Site Assessment Points" where a State or local site assessment is used and the total maximum number of points is other than 160, convert the site assessment points to a base of 160. Example: if the Site Assessment maximum is 200 points, and the alternative Site "A" is rated 180 points:

Total points assigned Site A Maximum points possible	=	180 200	X 160 = 144 points for Site A
--	---	------------	-------------------------------

For assistance in completing this form or FPPA process, contact the local NRCS Field Office or USDA Service Center.

NRCS employees, consult the FPPA Manual and/or policy for additional instructions to complete the AD-1006 form.

STEPS IN THE PROCESSING THE FARMLAND AND CONVERSION IMPACT RATING FORM

- Step 1 Federal agencies (or Federally funded projects) involved in proposed projects that may convert farmland, as defined in the Farmland Protection Policy Act (FPPA) to nonagricultural uses, will initially complete Parts I and III of the form. For Corridor type projects, the Federal agency shall use form NRCS-CPA-106 in place of form AD-1006. The Land Evaluation and Site Assessment (LESA) process may also be accessed by visiting the FPPA website, https://fppa.nrcs.usda.gov/lesa/.
- Step 2 Originator (Federal Agency) will send one original copy of the form together with appropriate scaled maps indicating location(s)of project site(s), to the Natural Resources Conservation Service (NRCS) local Field Office or USDA Service Center and retain a copy for their files. (NRCS has offices in most counties in the U.S. The USDA Office Information Locator may be found at http://offices.usda.gov/scripts/ndISAPI.dll/oip_public/USA_map, or the offices can usually be found in the Phone Book under U.S. Government, Department of Agriculture. A list of field offices is available from the NRCS State Conservationist and State Office in each State.)
- Step 3 NRCS will, within 10 working days after receipt of the completed form, make a determination as to whether the site(s) of the proposed project contains prime, unique, statewide or local important farmland. (When a site visit or land evaluation system design is needed, NRCS will respond within 30 working days.
- Step 4 For sites where farmland covered by the FPPA will be converted by the proposed project, NRCS will complete Parts II, IV and V of the form.
- Step 5 NRCS will return the original copy of the form to the Federal agency involved in the project, and retain a file copy for NRCS records.
- Step 6 The Federal agency involved in the proposed project will complete Parts VI and VII of the form and return the form with the final selected site to the servicing NRCS office.
- Step 7 The Federal agency providing financial or technical assistance to the proposed project will make a determination as to whether the proposed conversion is consistent with the FPPA.

INSTRUCTIONS FOR COMPLETING THE FARMLAND CONVERSION IMPACT RATING FORM

(For Federal Agency)

Part I: When completing the "County and State" questions, list all the local governments that are responsible for local land use controls where site(s) are to be evaluated.

Part III: When completing item B (Total Acres To Be Converted Indirectly), include the following:

- 1. Acres not being directly converted but that would no longer be capable of being farmed after the conversion, because the conversion would restrict access to them or other major change in the ability to use the land for agriculture.
- 2. Acres planned to receive services from an infrastructure project as indicated in the project justification (e.g. highways, utilities planned build out capacity) that will cause a direct conversion.

Part VI: Do not complete Part VI using the standard format if a State or Local site assessment is used. With local and NRCS assistance, use the local Land Evaluation and Site Assessment (LESA).

- 1. Assign the maximum points for each site assessment criterion as shown in § 658.5(b) of CFR. In cases of corridor-type project such as transportation, power line and flood control, criteria #5 and #6 will not apply and will, be weighted zero, however, criterion #8 will be weighted a maximum of 25 points and criterion #11 a maximum of 25 points.
- 2. Federal agencies may assign relative weights among the 12 site assessment criteria other than those shown on the FPPA rule after submitting individual agency FPPA policy for review and comment to NRCS. In all cases where other weights are assigned, relative adjustments must be made to maintain the maximum total points at 160. For project sites where the total points equal or exceed 160, consider alternative actions, as appropriate, that could reduce adverse impacts (e.g. Alternative Sites, Modifications or Mitigation).

Part VII: In computing the "Total Site Assessment Points" where a State or local site assessment is used and the total maximum number of points is other than 160, convert the site assessment points to a base of 160. Example: if the Site Assessment maximum is 200 points, and the alternative Site "A" is rated 180 points:

$\frac{\text{Total points assigned Site A}}{\text{Maximum points possible}} = \frac{18}{20}$	$\frac{0}{0}$ X 160 = 144 points for Site A
--	---

For assistance in completing this form or FPPA process, contact the local NRCS Field Office or USDA Service Center.

NRCS employees, consult the FPPA Manual and/or policy for additional instructions to complete the AD-1006 form.

Memphis Airports District Office 2600 Thousand Oaks Blvd., Suite 2250 Memphis, TN 38118

Phone (901) 322-8180

December 3, 2020

E. Patrick McIntyre, Jr. Executive Director State Historic Preservation Office 2941 Lebanon Road Nashville, Tennessee 37243

RE: Section 106 Consultation
Holmes Road Site Preparation Environmental Assessment
Memphis International Airport (MEM)
Memphis Shelby County Airport Authority

Dear Mr. McIntyre:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property for future light industrial development. The lead federal agency for the undertaking is the Federal Aviation Administration (FAA). The project consists of preparation of approximately 245 acres (the Site) development, construction, and operation of future light industrial facilities.

The Site is located approximately one (1) mile south of the Memphis International Airport (MEM) at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State Line, in Memphis, Shelby County, Tennessee (Figure 1). A physical address does not exist for the Site, which comprises three tax parcels (09440000107, 09440000128, and 09440000129) totaling 245.8 acres. The project Site coordinates and surrounding area uses are depicted on Figure 2. Shapefiles depicting the boundary of the Site are included with this submittal.

The purpose of the project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Approximately 30% (75 acres) of the Site is proposed for development as new impervious surfaces. A preliminary site plan identifies the potential for approximately 1.5 million square feet of facility space at the Site with approximately 300,000 square feet of additional space allotted for future growth, as needed (Figure 3). The project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with MEM operations. The airspace above the Site is located within a main MEM aircraft flight path

(Attachment 1). Future redevelopment and long-term lease of the Site will provide economic opportunities to the MEM area, while maintaining use that is compatible with aircraft noise.

Site preparation activities will include tree removal, grading, filling, utility main extensions, and stream crossings to allow for future site pad development by private companies. Once the Site is cleared of trees, MSCAA proposes to oversee the extension of sanitary sewer and water services, installation of gas and electrical services and meters, installation of stream crossings, construction of new streams, and placement of fill to bring future building pads, parking lots, and driveways to required elevations. Construction associated with the Site preparation is estimated to last between 6 and 9 months. A reasonably foreseeable connected action includes construction of facilities by a private developer(s) and the long-term operation of future facilities by a long-term MEM tenant(s). Construction associated with future facilities at the Site is estimated to last between 6 and 9 months. Site developers and tenants have not been identified at this time.

The Site is predominantly wooded and vacant. A Texas Gas Company natural gas pipeline transects the north portion of the Site (parcels 094400 00128 and 094400 00129). A Tennessee Valley Authority power line easement crosses the south Site parcel (094400 00107) and a Valero and Memphis Light, Gas and Water gas line easement is along the west and south Site boundaries. Aerial photographs, topographic maps, and recent photographs of the Site are included in Attachment 2.

The recommended archaeological Area of Potential Effect (APE) is the entire 245-acre Site, with the exception of a 50-foot buffer of trees along Holmes Road and Swinnea Road. Ground-disturbing activities would take place at the majority of the Site, resulting in approximately 75 acres of new impervious surfaces (see Figure 3). Measures to avoid existing wetlands and streams include design planning efforts to site future structures in upland areas. The remainder of the APE consists of areas where grading and flattening would occur for construction. The recommended APE for architectural and historic resources includes the Site boundaries.

A Phase I Environmental Site Assessment (ESA), completed by EnSafe in June 2020, identified past uses of the Site, which included a farmstead, a sand/gravel quarry, and utility easements. The current use of the Site is for utility easements. An excerpt of the Phase I ESA is included in Attachment 3.

A Phase I Cultural Resources Survey (Cultural Survey) was completed in May 2020 and resulted in the identification of five (5) twentieth-century Historic loci: four former house or farmstead sites and a breached earthen dam. The Cultural Survey is included in Attachment 4. The following list includes a description of the five cultural resources identified at the Site:

• Locus 1 is a newly identified former historic house site located in the northwestern part of the MSCAA Holmes Road tract, near Swinnea Road, north of the Texas Gas pipeline. Locus 1 is recommended not eligible for the NRHP.

- Locus 2 is a newly identified historic house site located in the northern part of the MSCAA Holmes Road tract, south of Holmes Road. Locus 2 is recommended not eligible for the NRHP.
- Locus 3 is a newly identified historic farmstead, later used by a quarry operation, located in the northern part of the MSCAA Holmes Road tract. Locus 3 is recommended not eligible for the NRHP.
- Locus 4 is a historic farmstead that appears to have been later used as part of a quarry operation. It is located in the western portion of the MSCAA Holmes Road tract where the Tennessee Historical Commission (THC) recorded two structures (SY-31607A and SY-31708A) (see Attachment 4, PanAmerican Cultural Survey Report, Figure 4-02). Locus 4 is recommended not eligible for the NRHP.
- Locus 5 is a newly identified historic earthen dam located in the southern part of the Holmes Road tract, south of the TVA power lines and east of Swinnea Road. Locus 5 is recommended not eligible for the NRHP.

The Cultural Survey also included a review of the online THC database, which identified the aforementioned Locus 4 standing structures at the Site (SY-31708A and SY-31607A), as not eligible for the NRHP (see Attachment 4).

Three additional THC records are identified on Figure 4-02 of the Cultural Survey, as near the Site (property SY-31606A and structures SY-31707A and SY-31705A). Property SY-31606A is the circa 1920 Brown Missionary Baptist Church Cemetery, located opposite the southwest corner of the Site on Swinnea Road. Structure SY-31707A is a circa 1940 traditional single-family rectangular residence, and its windows were missing when recorded. The residence is located south of the auto salvage property on Swinnea Road. A 50-foot buffer of trees is proposed between the Site and Swinnea Road to mitigate for any potential visual impacts to the THC-identified resources (see Figure 3). Structure SY-31705A is recorded at 1920 Tchulahoma Road. It is a 1920 traditional single-family rectangular residence. There is not a line of sight to this structure from the Site.

As noted above, we are seeking concurrence from your office for the APEs. In addition, we are asking for your concurrence to our eligibility assessments that are listed above. If you have any questions, please contact me at timothy.l.alexander@faa.gov or at (901) 322-8188.

Sincerely,

Tim Alexander

Environmental Protection Specialist

Memphis Airports District Office

Tim Alexander

TENNESSEE HISTORICAL COMMISSION STATE HISTORIC PRESERVATION OFFICE 2941 LEBANON PIKE

NASHVILLE, TENNESSEE 37243-0442 OFFICE: (615) 532-1550

www.tnhistoricalcommission.org

December 4, 2020

Mr. Tim Alexander Federal Aviation Administration Memphis Airports District Office 2600 Thousand Oaks Blvd, Suite 2250 Memphis, TN 38118

RE: FAA / Federal Aviation Administration, Holmes Site Preparation, 245 Acres, Memphis International Airport, Memphis, Shelby County, TN

Dear Mr. Alexander:

In response to your request, we have reviewed the cultural resources survey report and accompanying documentation submitted by you regarding the above-referenced undertaking. Our review of and comment on your proposed undertaking are among the requirements of Section 106 of the National Historic Preservation Act. This Act requires federal agencies or applicants for federal assistance to consult with the appropriate State Historic Preservation Office before they carry out their proposed undertakings. The Advisory Council on Historic Preservation has codified procedures for carrying out Section 106 review in 36 CFR 800 (Federal Register, December 12, 2000, 77698-77739).

Considering the information provided, we find that no historic properties eligible for listing in the National Register of Historic Places will be affected by this undertaking. If project plans are changed or archaeological remains are discovered during project construction, please contact this office to determine what further action, if any, will be necessary to comply with Section 106 of the National Historic Preservation Act. Questions or comments may be directed to Jennifer Barnett (615) 687-4780, Jennifer.Barnett@tn.gov.

Your cooperation is appreciated.

E. Patrick M. Strage, Jr.

Sincerely,

E. Patrick McIntyre, Jr. Executive Director and

State Historic Preservation Officer

EPM/jmb

Kristin Lehman

From: Kristin Lehman

Sent: Tuesday, December 8, 2020 1:38 PM

To: Penzes, Jeffrey
Cc: Saliba, Norman

Subject: RE: Memphis Shelby County Airport Authority - project scoping

Thank you Jeffery

Kristin Lehman, CHMM Senior Project Manager (901) 937-4378 direct (727) 348-1019 cell

creative thinking | custom solutions

From: Penzes, Jeffrey <jeffrey.penzes@memphistn.gov>

Sent: Tuesday, December 8, 2020 1:37 PM **To:** Kristin Lehman <klehman@Ensafe.com>

Cc: Saliba, Norman < Norman. Saliba@memphistn.gov>

Subject: Re: Memphis Shelby County Airport Authority - project scoping

Kirstin,

Per our phone conversation, from the description, it does not sound like this project would be exempt from zoning since it would be a private development. That being said, the Airport Authority may go through the zoning entitlement process and, if approved, have the site ready with the appropriate zoning entitlements for the future private developers. The two options that immediately come to mind are the planned development and rezoning processes; both requests would go first to the Land Use Control Board and then to the Memphis City Council for final action. If you any other questions or need any additional information at this time let me know. Also, when they are ready our office is available to meet regarding the aforementioned zoning entitlement processes in further detail.

Thanks,

Jeffrey Penzes

Principal Planner

Land Use and Development Services

Division of Planning and Development

125 N. Main, Ste. 468 Memphis, TN 38103

February 15, 2021

Mr. James A. Hay II Director of Development Memphis International Airport 2491 Winchester Road, Suite 113 Memphis, TN 38116

RE: East Holmes Road Site Preparation

Dear Mr. Hay:

Thank you for the advanced notice regarding the proposed site preparation for the East Holmes Road Site.

Based on the initial information you provided, coupled with a very preliminary review of our existing MLGW infrastructure, we have identified two (2) significant MLGW utility easements located on the property. MLGW has an existing transmission easement which includes electric lines and a gas pipeline. We also have a gas easement located immediately adjacent to and parallel with the south and west property lines, which includes two (2) pipelines.

MLGW will not allow any earth work, i.e., grading, cutting or filling, within the MLGW easement(s) without written approval from MLGW. The grading and drainage plans must be submitted to MLGW for review and approval.

Please note, regarding the safety and integrity of our existing gas pipelines, no repetitive, heavy construction equipment traffic will be allowed to cross over the existing MLGW gas pipeline easements. Any repetitive traffic will have to be channeled to one location, and the pipeline will need to be protected with oak matting, as required by MLGW Gas Construction.

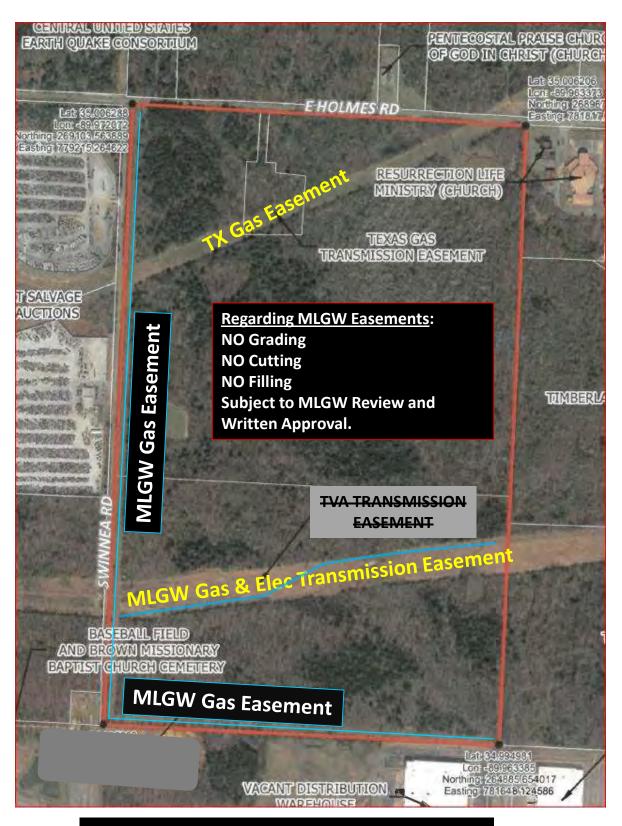
Please note the following comments below:

- The subject property is encumbered by an existing utility right of way easement, which may include overhead and underground facilities. MLGW prohibits any development or improvements within the Easement, except as provided by the MLGW Right of Way Encroachment Policy.
- It is the responsibility of the Airport Authority, prior to any development, to contact <u>Keith Ledbury</u>, with MLGW Property Management @ 901-528-4186 and obtain written approval for any improvements within the Easement(s).

- It is the responsibility of the Airport Authority to identify any utility easements, whether dedicated or prescriptive (electric, gas, water, CATV, telephone, sewer, drainage, etc.), which may encumber the subject property, including underground and overhead facilities. No permanent structures will be allowed within any utility easements.
- It is the responsibility of the Airport Authority to contact TN-1-CALL @ 1.800.351.1111, before digging, and to determine the location of any underground utilities including electric, gas, water, CATV, telephone, etc.
- It is the responsibility of the Airport Authority to pay the cost of any work performed by MLGW to install, remove or relocate any facilities to accommodate the proposed development.
- It is the responsibility of the Airport Authority to comply with the National Electric Safety Code (NESC) and maintain minimum horizontal/vertical clearances between existing overhead electric facilities and any proposed structures.
- Landscaping is prohibited within any MLGW utility easement without prior MLGW approval.
- It is the responsibility of the Airport Authority to submit a detailed plan to MLGW Customer Engineering for the purposes of determining the availability and capacity of existing utility services to serve any proposed or future development(s). Please contact MLGW's Builder Services line at 729-8630 to initiate the utility application process.
- It is the responsibility of the owner/applicant to pay the cost of any utility system improvements necessary to serve the proposed development with electric, gas or water utilities.

Respectfully Submitted,

om Word


MEMPHIS LIGHT, GAS and WATER DIVISION

TOM WORD

Utility Coordinator

tword@mlgw.org

NOT TO SCALE / NOT FOR CONSTRUCTION

NOT TO SCALE / NOT FOR CONSTRUCTION

DEPARTMENT OF THE ARMY

MEMPHIS DISTRICT CORPS OF ENGINEERS 167 NORTH MAIN STREET B-202 MEMPHIS. TENNESSEE 38103-1894

June 26, 2020

Mr. Aaron Conti EnSafe, Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134

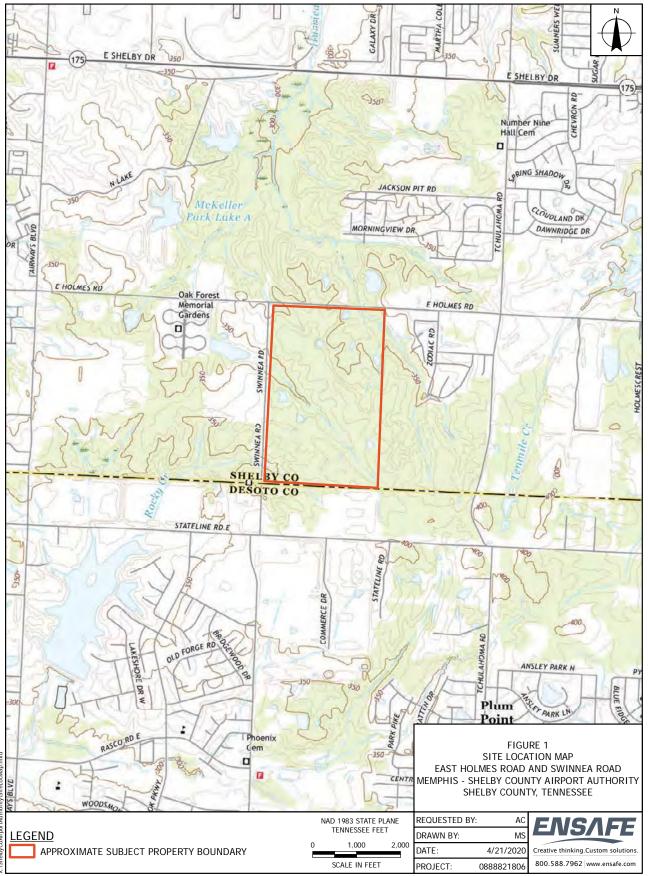
Dear Mr. Conti:

This is in response to your correspondence, on behalf of Memphis Shelby County Airport Authority, in which you requested a preliminary jurisdictional determination (PJD) for a 250 acre tract of land located southeast of the intersection of Holmes Road and Swinnea Road in Memphis, Shelby County, Tennessee, as shown on the enclosed map. Based on the information submitted to our office, we concur with your determination. There are ten wetland areas on the property totaling approximately 5.89 acres in size, seven ponds totaling 2.96 acres in size and six streams totaling approximately 9,461 linear feet in length that may be considered waters of the United States. However, according to the new Navigable Waters Protection Rule, some of these wetland and stream features may not be considered jurisdictional. If you wish to provide additional information, you may request an approved jurisdictional determination.

The PJD is included for your concurrence. If you agree with this PJD please sign the form and return it to the address listed above. If the PJD is not returned within 30 days of the date of this letter we will assume your concurrence. A PJD cannot be appealed. If you object to this PJD, please see Section I.E. of the attached Notification of Administrative Appeal Options and the Process and Request for Appeal Form, on how to proceed or call the Memphis District Regulatory Branch for assistance at the number listed below.

The Memphis District Regulatory Branch is committed to providing quality and timely service to our customers. In an effort to improve customer service, we invite you to complete a Customer Service Survey found on our web site at http://corpsmapu.usace.army.mil/cm_apex/f?p=regulatory_survey. Your comments, positive or negative, will not affect any current or future dealing with the Corps of Engineers.

If you have questions, please contact me at (901) 544-0737 and refer to File No. MVM-2020-171.


Sincerely,

James M. Elcan

Digitally signed by James M. Elcan Date: 2020.06.26 12:52:53 -05'00'

James M. Elcan Biologist Regulatory Branch

Enclosures

Appendix 2 - PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PJD: June 25, 2020
- B. NAME AND ADDRESS OF PERSON REQUESTING PJD: Aaron Conti, 5724 Summer Trees Dr.
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Memphis, MVM-2020-171
- D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:
 (USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: TN County/parish/borough: Shelby City: Memphis

Center coordinates of site (lat/long in degree decimal format): Lat.: 35.001300° Long.: -89.968000°

Universal Transverse Mercator: 229127.61 E, 3877213.57 N, Zone 16S

Name of nearest waterbody: Hurricane Creek

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: June 25, 2020

Field Determination. Date(s):

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
Wetland 1	34.997631	-89.965395	1.61 acre	Wetland	Section 404
Wetland 2	34.999768	-89.969078	0.35 acre	Wetland	Section 404
Wetland 3	35.004463	-89.966759	0.13 acre	Wetland	Section 404
Wetland 4	35.001613	-89.964715	0.19 acre	Wetland	Section 404
Wetland 5	35.001480	-89.964156	0.25 acre	Wetland	Section 404
Wetland 6	35.002069	-89.963553	0.04 acre	Wetland	Section 404

- 1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "preconstruction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file. Appropriately reference sources

below where indicated for all checked items: Maps, plans, plots or plat submitted by or on behalf of the PJD requestor: Man Attachment A, Site Figures 1 through 7 ■ Data sheets prepared/submitted by or on behalf of the PJD requestor. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Rationale: Data sheets prepared by the Corps: ______ ☐ Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: ______ Southeast Memphis, Tenn., SW/4 Bartlett 15' Quadrangle, 1:24,000 Natural Resources Conservation Service Soil Survey. Citation: Natural Resources Conservation Service Soils . ■ National wetlands inventory map(s). Cite name: Wetlands Mapper State/local wetland inventory map(s): ____ FEMA/FIRM maps: FEMA Flood Map Service Center .(National Geodetic Vertical Datum of 1929) 100-year Floodplain Elevation is: Photographs: Aerial (Name & Date): Google Earth Pro Imagery, March 14, 2018 Other (Name & Date): Attachment C, Photo Log, April 15 and 16, 2020 Previous determination(s). File no. and date of response letter: Other information (please specify): _____ IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations. James M. Elcan Digitally signed by James M. Elcan Date: 2020.06.26 12:53:52 -05'00' Signature and date of Signature and date of Regulatory staff member person requesting PJD completing PJD (REQUIRED, unless obtaining the signature is impracticable)1

¹ Districts may establish timeframes for requestor to return signed PJD forms. If the requestor does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applicant: Memphis-Shelby County Airport Authority	File Number: MVM-2020-171	Date: 06/26/2020
Attached is:	See Section below	
INITIAL PROFFERED PERMIT (Standard Per	A	
PROFFERED PERMIT (Standard Permit or Let	В	
PERMIT DENIAL	С	
APPROVED JURISDICTIONAL DETERMINATION	D	
X PRELIMINARY JURISDICTIONAL DETERM	IINATION	E

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://www.usace.army.mil/cecw/pages/reg_materials.aspx or Corps regulations at 33 CFR Part 331.

- A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.
- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights
 to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.
- B: PROFFERED PERMIT: You may accept or appeal the permit
- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights
 to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.
- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES MEMPHIS ENVIRONMENTAL FIELD OFFICE 8383 WOLF LAKE DRIVE BARTLETT, TN 38133

Phone 901-371-3000 Statewide 1-888-891-8332 Fax 901-371-3170

June 30, 2020

Lori Morris Manager, Environmental Services Memphis-Shelby County Airport Authority 2491 Winchester Road, Suite 113 Memphis, TN 38116

Re: Hydrologic Determination #QHP2005.009

MSCAA Holmes Swinnea Property Memphis, Shelby County, TN

Dear Ms. Morris,

The Division of Water Resources has reviewed the documentation prepared by Aaron Conti and Velita Thornton with Ensafe, seeking concurrence with the report that was submitted in support of the Hydrologic Determinations conducted for the above referenced location in Shelby County, TN.

The Division is in concurrence with the following submitted assertions, which are also summarized on the attached Tables and on the attached map:

There are six channels on the property that were identified as streams. These channels are identified in Table 2 of the attached summary.

There are nine channels on the property that were identified as wet weather conveyances. These channels are identified in Table 3 of the attached summary.

There are ten wetlands, totaling 2.93 acres that were identified on the property. These wetlands are identified in Table 1 of the attached summary.

In addition to the wetlands, Table 1 also identifies seven non-regulated pond features on the property.

Any alterations to wet weather conveyances must be made in accordance with the requirements of Tenn. Code Ann. § 69-3-108(q). Alterations to streams and wetlands require authorization under an appropriate Aquatic Resource Alteration Permit (ARAP). You can download the ARAP

application form at the following web address: http://environment-online.state.tn.us/etdec/DownloadFile.aspx?row_id=CN-1091

If you have any questions, please feel free to contact me at (901) 371-3019 or at Lew.Hoffman@tn.gov.

Thank you,

Lew E. Hoffman

Lew E. Hoffman Environmental Consultant Division of Water Resources Memphis Environmental Field Office

Copy: file

Aaron Conti, Environmental Scientist, Ensafe Velita Thornton, Environmental Scientist, Ensafe

Wetlar	Table 1 Wetland and Other Water Acreage and Location				
Aquatic Resource	Approximate Acreage	Approximate Location			
Wetland 1	1.61	34.997631°, -89.965395°			
Wetland 2	0.35	34.999768°, -89.969078°			
Wetland 3	0.13	35.004463°, -89.966759°			
Wetland 4	0.19	35.001613°, -89.964715°			
Wetland 5	0.25	35.001480°, -89.964156°			
Wetland 6	0.04	35.002069°, -89.963553°			
Wetland 7	0.17	35.003052°, -89.963711°			
Wetland 8	0.01	35.004933°, -89.969684°			
Wetland 9	0.03	34.996997°, -89.968801°			
Wetland 10	0.15	34.996614°, -89.969313°			
Pond 1	0.13	35.003108°, -89.969937°			
Pond 2	0.82	35.000556°, -89.970864°			
Pond 3	0.67	34.999141°, -89.969426°			
Pond 4	0.14	34.996871°, -89.966122°			
Pond 5	0.59	34.997747°, -89.964092°			
Pond 6	0.02	35.000841°, -89.964221°			
Pond 7	0.59	35.005780°, -89.966152°			

Table 2 Stream Length and Termini							
Aquatic Resource	Approximate Linear Feet	Onsite Upgradient Origin	Onsite Downgradient Terminus				
Stream 1	3395	34.995279°, -89.963291°	35.002212°, -89.971942°				
Stream 2	1961	35.001832°, -89.965059°	35.005591°, -89.964569°				
Stream 3	1521	35.001489°, -89.964020°	35.005405°, -89.963765°				
Stream 4	699	35.005361°, -89.963375°	35.006217°, -89.965119°				
Stream 5	675	34.996650°, -89.969974°	34.996083°, -89.972008°				
Stream 6	1210	34.995170°, -89.969619°	34.996083°, -89.972008°				

Table 3 Wet Weather Conveyances Length and Termini							
Aquatic Resource	Approximate Linear Feet	Onsite Upgradient Origin	Onsite Downgradient Terminus				
WWC 1	173	35.003487°, -89.970504°	35.003232°, -89.970026°				
WWC 2	107	35.002983°, -89.969892° 35.002871°, -89.970095°	35.00215°, -89.970845°				
WWC 3	107	35.002288°, -89.970818°	35.002027°, -89.970936°				
WWC 4	447	35.001167°, -89.970770°	35.001401°, -89.970594°				
WWC 5	101	35.000789°, -89.970637°	35.001310°, -89.9705207				
WWC 6	200	35.004703°, -89.96651°	35.004646°, -89.965310°				
WWC 7	500	34.999400°, -89.969556°	34.999475°, -89.969554°				
WWC 8	27	34.999307°, -89.968201°	34.999674°, -89.968162°				
WWC 9	184	34.996992°, -89.968841°	34.996677°, -89.969229°				

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES

William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11th Floor Nashville, Tennessee 37243-1102

December 8, 2020

Ms. Kristin Lehman ENSAFE 5724 Summer Trees Drive Memphis. TN 38234

RE: Memphis Shelby County Airport Property Scoping Document

Dear Ms. Lehman:

Division staff have reviewed the proposed preparation of an approximately 245-acre tract of vacant land (the Site) for future light industrial development. The Site is located on the south side of East Holmes Road and the west side of Swinnea Road in Memphis, Tennessee, approximately 1.0 mile south of the Memphis International Airport, at the Tennessee/Mississippi state line. A Proposed Site Plan identifies the potential for approximately 1.5 million square feet of facility space at the Site with approximately 300,000 square feet of additional space allotted for future growth, if needed. The project will disturb well more than an acre of land, which will require a construction stormwater general permit (CGP). The proposed activity for the site will fall under one of the Industrial Activities Sectors for a Tennessee NPDES Multi-Sector Stormwater Permit (TMSP). As a part of the permit a site-specific Surface Water Pollution Prevention Plan must be developed. Owing to the onsite streams and wetlands, a hydrologic determination by a licensed professional needs to be made to determine what water resources/wetlands might be disturbed and whether an Aquatic Resources Alteration Permit (ARAP) will be necessary.

If you need further clarification, I will be glad to try to assist you. You may reach me at (615) 532-0170 or tom.moss@tn.gov.

Sincerely,

Thomas A. Moss

Environmental Review Coordinator Compliance and Enforcement Unit

Thomas de Moss

cc: Joellyn Brazile, DWR Manager, Memphis Environmental Field Office Matthew K. Taylor, Office of Policy and Sustainable Practices

Kristin Lehman

From: Lew Hoffman < Lew.Hoffman@tn.gov>
Sent: Tuesday, November 24, 2020 9:53 AM

To: Aaron Conti

Subject: RE: stream crossing question

Aaron,

From your description, it seems the project would be able to be covered under the General ARAP for Construction and Removal of Minor Road Crossings. There would be no mitigation if the project is covered under that GP. Below is a link to the GP. Let me know if you have any questions.

 $\frac{https://www.tn.gov/content/dam/tn/environment/water/natural-resources-unit/water_permit_arap-gp_minor-road-crossings-2020-2025.pdf$

Thank you,

Lew

Lew E. Hoffman

Division of Water Resources Memphis Environmental Field Office 8383 Wolf Lake Drive Bartlett, TN 38133 Office (901) 371-3019 Fax (901) 371-3170

Email: lew.hoffman@tn.gov

Tell us how we're doing! Please take 5-10 minutes to complete <u>TDEC's Customer Service Survey</u>.

From: Aaron Conti <aconti@Ensafe.com>
Sent: Monday, November 23, 2020 7:49 AM
To: Lew Hoffman <Lew.Hoffman@tn.gov>
Subject: [EXTERNAL] stream crossing question

Hi Lew, hope you're doing well.

I'm working on a site of proposed development with preliminary plans that would result in 1 permanent impact to a stream in the form of encapsulating an approximate 30' length of reach underneath a new road crossing. Additionally, the project would install 1 temporary stream crossing (same width) that would be removed after construction is completed.

I am tasked with estimating the anticipated CWA 404/401 costs, including mitigation. Would TDEC require stream mitigation for the scenario described above?

January 12, 2021

Pastor David Brown Pentecostal Praise Church of God in Christ 2922 East Holmes Road Memphis, Tennessee 38118

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Rev. Brown:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located south of the Pentecostal Praise Church of God in Christ, at southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

Memphis International Airport

2491 Winchester Road, Suite 113 Memphis, TN 38116-3856 P: 901-922-8301 F: 901-344-2487 flymemphis.com

January 12, 2021

Matthew and Jeremy Thacker-Rhodes 1164 Vickery Lane, Suite 200 Cordova, Tennessee 38016

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Sirs:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located south of your East Holmes Road property, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

Memphis International Airport

2491 Winchester Road, Suite 113 Memphis, TN 38116-3856 P: 901-922-8301 F: 901-344-2487 flymemphis.com

January 12, 2021

Pastor Leo Holt Grace Christian Fellowship Church 3025 East Holmes Road Memphis, Tennessee 38118

East Holmes Road Site Preparation - Adjacent Stakeholder Notice Re:

Dear Rev. Holt:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to Grace Christian Fellowship Church, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hav II, C.M. Director of Development

Memphis International Airport

January 12, 2021

Dunham and Yow Investments 799 Highway 332 Grenada, Mississippi 38901

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

To Whom It May Concern:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your property, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

January 12, 2021

Sara M. Holmes and Eula Holmes Sanders 193 Azalea Garden Way Memphis, Tennessee 38111-4756

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Ms. Holmes and Ms. Sanders:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your property, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

January 12, 2021

Stateline J LLC and FRE Southaven MS Landlord LLC 1197 Peachtree Street, Suite 600 Atlanta, GA 30361

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

To Whom It May Concern:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your Stateline Business Park North properties, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

January 12, 2021

GPT Stateline Road Owner LLC c/o Gramercy Property Trust 130 Jefferson Street, Suite 300 Chicago, Illinois 60661

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

To Whom It May Concern:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your Stateline Business Park North property, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development Memphis International Airport

January 12, 2021

Elmore Holmes III 193 Azalea Garden Way Memphis, Tennessee 38111-4756

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Mr. Holmes:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your property, at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

January 12, 2021

Pastor Bartholomew Orr Brown Missionary Baptist Church 980 Stateline Road Southaven, Mississippi, 38671

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Rev. Orr:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to the Brown Missionary Baptist Church Cemetery, at southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development Memphis International Airport

January 12, 2021

Marsha Peek Moncrief 1165 Joann Drive Southaven, Mississippi 38671

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

Dear Ms. Moncrief:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your property, at southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development Memphis International Airport

January 12, 2021

Copart of Tennessee Inc. 14185 Dallas Parkway, Suite 300 Dallas, Texas 75254- 1327

Re: East Holmes Road Site Preparation - Adjacent Stakeholder Notice

To Whom It May Concern:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, MSCAA-owned property (the Site) for future light industrial development. The proposed project consists of preparing the Site for future development and leasing the Site for construction and operation of light industrial facilities. A general overview of the proposed project is included herein.

The Site is located adjacent to your property, at southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The purpose of the proposed project is to prepare the Site for development by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise. The airspace above the Site is located within a main MEM aircraft flight path.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. The public is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M.
Director of Development

Email: qclark@mlgw.org

January 12, 2021

Quinton Clark Memphis Light, Gas and Water 220 South Main Street Memphis, Tennessee 38103

Dear Mr. Clark:

Re:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, property (the Site) for future development as a cargo holding or distribution facility. The Site is located at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figures 1 and 2). The Site is bordered to the west and south by a Memphis Light, Gas and Water (MLGW) easement, along Swinnea Road and the Tennessee/Mississippi State line.

East Holmes Road Site Preparation - Stakeholder Notice

The purpose of the proposed project is to prepare the Site for development and long-term lease by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies. Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. MLGW is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development

January 12, 2021

Forrest Frazier
Director of Environmental Compliance and Remediation
Boardwalk Pipeline Partners, LP.
9 Greenway Plaza, Suite 2800
Houston, Texas 77046

 $\pmb{ Email: \underline{forrest.frazier@bwpmlp.com}}\\$

Re: East Holmes Road Site Preparation - Stakeholder Notice

Dear Ms. Frazier:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, property (the Site) for future development as a cargo holding or distribution facility. The Site is located at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figure 1). The northern portion of the Site is bisected by a Boardwalk Pipeline Partners subsidiary, Texas Gas Transmission, LLC easement (Figure 2).

The purpose of the proposed project is to prepare the Site for development and long-term lease by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies (Figure 2). Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. Texas Gas Transmission, LLC is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M. Director of Development Memphis International Airport

January 12, 2021

Amanda Garrahan Director Corporate Environmental and Safety Affairs One Valero Way San Antonio, Texas 78249-1616

Email: amanda.garrahan@valero.com

Re: East Holmes Road Site Preparation - Stakeholder Notice

Dear Ms. Garrahan:

The Memphis-Shelby County Airport Authority (MSCAA) proposes to prepare an approximately 245-acre tract of vacant, property (the Site) for future development as a cargo holding or distribution facility. The Site is located at the southeast corner of East Holmes Road and Swinnea Road, north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee (Figures 1 and 2). The Site is bordered to the west and south by the Valero Energy Partners LP (Valero) Collierville Pipeline easement, along Swinnea Road and the Tennessee/Mississippi State line.

The purpose of the proposed project is to prepare the Site for development and long-term lease by private companies with an interest in constructing cargo holding or distribution facilities. Figure 3 includes the conceptual site plan and identifies the potential for approximately 1.5 million square feet of facility space at the Site, with approximately 300,000 square feet of additional space allotted for future growth, if needed. The proposed project will meet MSCAA's need to productively utilize land holdings while maintaining compatibility with Memphis International Airport (MEM) operations, including aircraft noise.

Site preparation will include tree removal, site grading activities, utility main extensions, and construction of stream crossings to allow for future site development by private companies. Future site development activities are anticipated to last between 6 and 9 months. However, at this time no site developers or long-term tenants have been identified.

The preparation of the Site and development will comply with the requirements set forth in the provisions of the National Environmental Policy Act. Valero is invited to comment on the proposed project and will have an opportunity to review and comment on a forthcoming Environmental Assessment, addressing how the proposed project would potentially impact economic, social, and environmental resources.

Should you have any comments or questions regarding the proposed action, please contact me via email at jhay@flymemphis.com or by phone at (901) 922-8224.

Respectfully submitted,

James A. Hay II, C.M.
Director of Development

ATTACHMENT 2

Air Quality Information

An official website of the United States government.

<u>Close</u>

We've made some changes to <u>EPA.gov</u>. If the information you are looking for is not here, you may be able to find it on the <u>EPA Web Archive</u> or the <u>January 19</u>, <u>2017 Web Snapshot</u>.

De Minimis Tables

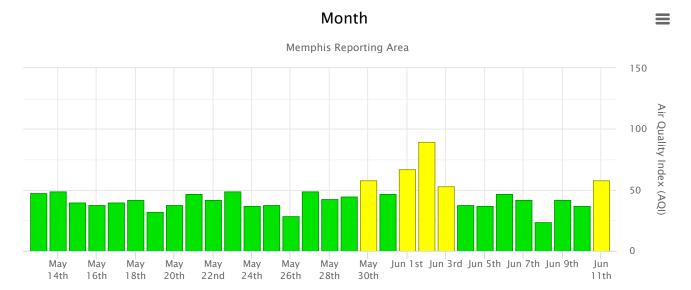
	Tons/year
Ozone (VOC's or NOx):	
Serious NAA's	50
Severe NAA's	25
Extreme NAAs	10
Other ozone NAA's outside an ozone transport region:	100
Other ozone NAA's inside an ozone transport region:	
VOC	50
NOx	100
Carbon Monoxide: All maintenance areas	100
SO ₂ or NO ₂ : All NAA's	100
PM ₁₀ :	2
Moderate NAA's	100
Serious NAA's	70
PM _{2.5} (direct emissions, SO ₂ , NOx, VOC, and Ammonia):	
Moderate NAA's	100
Serious NAA's	70
Pb: All NAA's	25

	Tons/yea
Ozone (NOx), SO ₂ or NO ₂ :	
All maintenance areas	100
Ozone (VOC's)	
Maintenance areas inside an ozone transport region	50
Maintenance areas outside an ozone transport region	100
Carbon monoxide: All maintenance areas	100
PM ₁₀ : All maintenance areas	100
PM _{2.5} (direct emissions, SO2, NOx, VOC, and Ammonia)	100
All maintenance areas	100
Pb: All maintenance areas	25

Air Quality Index Report

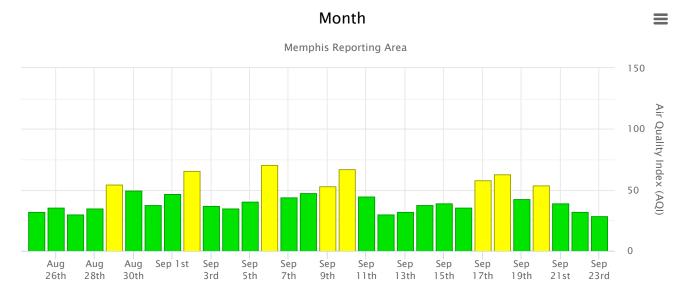
Geographic Area: Memphis, TN-MS-AR

Summary: by CBSA

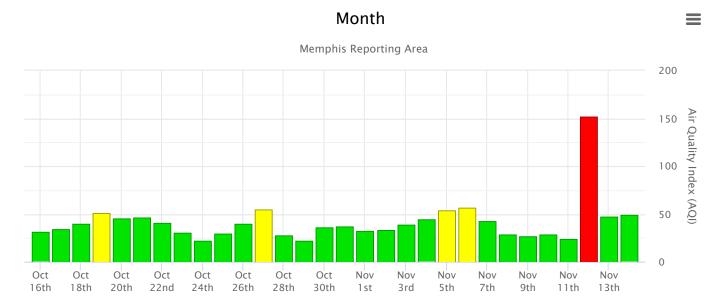

Year: 2019

Number of Days when Air Quality was								Number of Days when AQI Polluta AQI Statistics was						llutant	
CBSA	# Days with AQI	Good	Moderate	Unhealthy for Sensitive Groups		Very Unhealthy	Maximum	90th Percentile	Median	со	NO2	О3	SO2	PM2.5	PM10
Memphis, TN-MS-AR	365	221	139	5			148	67	45		5	181		179	

Get detailed information about this report, including column descriptions, at https://www.epa.gov/outdoor-air-quality-data/about-air-data-reports#aqi


AirData reports are produced from a direct query of the AQS Data Mart. The data represent the best and most recent information available to EPA from state agencies. However, some values may be absent due to incomplete reporting, and some values may change due to quality assurance activities. The AQS database is updated by state, local, and tribal organizations who own and submit the data.

Readers are cautioned not to rank order geographic areas based on AirData reports. Air pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area.


This chart shows the daily AQI in your area for each of the last 30 days. Mouse over or tap a bar to see which pollutant (ozone or PM) was highest that day.

AirNow.gov

This chart shows the daily AQI in your area for each of the last 30 days. Mouse over or tap a bar to see which pollutant (ozone or PM) was highest that day.

AirNow.gov

This chart shows the daily AQI in your area for each of the last 30 days. Mouse over or tap a bar to see which pollutant (ozone or PM) was highest that day.

AirNow.gov

U.S. EPA Motor Vehicle Emission Simulator Emission Model Output Construction Equipment Emissions

	Construction Equipment																
CY 2021 (Apr-Dec)	Cement & Mortar Mixers	Cranes	Dumpers/Tend ers	Excavators	Graders	Off-highway Trucks	Pavers	Paving Equipment	Plate Compactors	Rollers	Rubber Tire Loaders	Signal Boards/Light Plants	Skid Steer Loaders	Surfacing Equipment	Tractors/Loaders/ backhoes	Trenchers	TOTAL
Atmospheric CO2	6.72E-02	1.70E+00	8.69E-02	1.94E+00	2.03E+00	1.32E+01	1.08E+00	4.62E-01	3.00E-02	7.52E-01	1.91E+00	1.05E-01	2.12E-01	6.61E-01	4.81E-01	4.98E-01	25.24
Carbon Monoxide (CO)	2.39E-04	1.01E-03	6.46E-04	7.00E-04	7.46E-04	4.79E-03	7.17E-04	4.46E-04	1.18E-04	6.49E-04	1.57E-03	2.37E-04	1.51E-03	1.43E-03	2.50E-03	6.32E-04	0.018
Oxides of Nitrogen (NOx)	5.45E-04	4.20E-03	6.40E-04	2.49E-03	2.40E-03	3.90E-02	2.32E-03	1.21E-03	2.14E-04	1.88E-03	4.87E-03	6.50E-04	1.49E-03	3.59E-03	2.89E-03	1.98E-03	0.070
Primary Exhaust PM10 - Total	3.71E-05	1.78E-04	9.43E-05	1.34E-04	1.49E-04	8.57E-04	1.19E-04	6.90E-05	1.27E-05	1.03E-04	2.54E-04	3.04E-05	2.14E-04	1.87E-04	3.80E-04	8.63E-05	0.0029
Primary Exhaust PM2.5 - Total	3.60E-05	1.73E-04	9.15E-05	1.30E-04	1.44E-04	8.31E-04	1.15E-04	6.70E-05	1.23E-05	9.94E-05	2.47E-04	2.95E-05	2.07E-04	1.81E-04	3.69E-04	8.38E-05	0.0028
Sulfur Dioxide (SO2)	5.88E-07	1.24E-05	7.60E-07	1.33E-05	1.39E-05	9.03E-05	7.54E-06	3.33E-06	2.76E-07	5.34E-06	1.38E-05	9.00E-07	1.78E-06	5.29E-06	3.99E-06	3.57E-06	0.00018
Volatile Organic Compounds	5.53E-05	2.41E-04	1.41E-04	1.15E-04	1.23E-04	1.08E-03	1.15E-04	9.38E-05	3.49E-05	1.04E-04	2.64E-04	5.85E-05	2.98E-04	2.15E-04	5.42E-04	1.05E-04	0.0036
Methane (CH4)	2.38E-06	1.69E-05	5.28E-06	1.02E-05	1.14E-05	9.49E-05	1.09E-05	7.46E-06	2.82E-06	9.08E-06	1.71E-05	4.70E-06	1.14E-05	1.24E-05	2.84E-05	8.58E-06	0.00025

Year	CO2	со	NOx	PM10	PM2.5	SO2	VOC	N2O	CH4
Threshold	25000	100	100	100	100	100	100	25000	25000
2021	25.24	0.018	0.070	0.0029	0.0028	0.00018	0.0036	0	0.00025

Construction Emissions 1 of 1

U.S. EPA Motor Vehicle Emission Simulator Emission Model Output Construction Vehicle Trip Emissions

Source	Number of Trips
Passenger Car	172
Passenger Truck	172
Single Unit Long-haul Truck	134

					Pas	senger Car							
CY 2021	Running Exhaust	Start Exhaust	Evap Permeation	Evap Fuel Vapor Venting	Evap Fuel Leaks	Crankcase Running Exhaust	Crankcase Start Exhaust	Refueling Displacement Vapor Loss	Refueling Spillage Loss	Auxiliary Power Exhaust	Extended Idle Exhaust	Crankcase Extended Idle Exhaust	TOTAL
Atmospheric CO2	3.27E+02	1.35E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	461.65
Carbon Monoxide (CO)	2.47E+00	9.78E+00	0.00E+00	0.00E+00	0.00E+00	1.29E-03	5.11E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	12.26
Oxides of Nitrogen (NOx)	1.08E-01	8.29E-01	0.00E+00	0.00E+00	0.00E+00	4.37E-06	3.35E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.94
Primary Exhaust PM10 - Total	4.54E-03	1.53E-02	0.00E+00	0.00E+00	0.00E+00	3.65E-05	1.23E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.020
Primary Exhaust PM2.5 - Total	4.02E-03	1.36E-02	0.00E+00	0.00E+00	0.00E+00	3.23E-05	1.09E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.018
Sulfur Dioxide (SO2)	2.18E-03	9.01E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0031
Volatile Organic Compounds	2.05E-02	1.10E+00	2.06E-01	4.47E-01	2.93E-01	2.70E-04	1.45E-02	1.02E-02	9.34E-03	0.00E+00	0.00E+00	0.00E+00	2.10
Nitrous Oxide (N2O)	1.33E-03	5.33E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.055
Methane (CH4)	3.05E-03	4.37E-02	0.00E+00	0.00E+00	0.00E+00	3.91E-05	5.12E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.047

					Pass	enger Truck							
CY 2021	Running Exhaust	Start Exhaust	Evap Permeation	Evap Fuel Vapor Venting	Evap Fuel Leaks	Crankcase Running Exhaust	Crankcase Start Exhaust	Refueling Displacement Vapor Loss	Refueling Spillage Loss	Auxiliary Power Exhaust	Extended Idle Exhaust	Crankcase Extended Idle Exhaust	TOTAL
Atmospheric CO2	7.14E+01	1.70E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	241.01
Carbon Monoxide (CO)	6.01E-01	1.37E+01	0.00E+00	0.00E+00	0.00E+00	3.22E-04	7.38E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	14.28
Oxides of Nitrogen (NOx)	3.90E-02	1.30E+00	0.00E+00	0.00E+00	0.00E+00	1.80E-06	5.53E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.34
Primary Exhaust PM10 - Total	1.07E-03	2.22E-02	0.00E+00	0.00E+00	0.00E+00	1.08E-05	1.82E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.023
Primary Exhaust PM2.5 - Total	9.51E-04	1.96E-02	0.00E+00	0.00E+00	0.00E+00	9.67E-06	1.62E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.021
Sulfur Dioxide (SO2)	4.81E-04	1.14E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0016
Volatile Organic Compounds	7.65E-03	1.62E+00	2.06E-01	3.40E-01	2.95E-01	9.94E-05	2.14E-02	1.23E-02	4.98E-03	0.00E+00	0.00E+00	0.00E+00	2.51
Nitrous Oxide (N2O)	3.40E-04	8.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.087
Methane (CH4)	8.74E-04	8.85E-02	0.00E+00	0.00E+00	0.00E+00	1.04E-05	1.09E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.091

					Single Un	it Long-haul Tru	ıck						
CY 2021	Running Exhaust	Start Exhaust	Evap Permeation	Evap Fuel Vapor Venting	Evap Fuel Leaks	Crankcase Running Exhaust	Crankcase Start Exhaust	Refueling Displacement Vapor Loss	Refueling Spillage Loss	Auxiliary Power Exhaust	Extended Idle Exhaust	Crankcase Extended Idle Exhaust	TOTAL
Atmospheric CO2	7.81E+02	9.75E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	878.2
Carbon Monoxide (CO)	1.02E+00	1.64E+01	0.00E+00	0.00E+00	0.00E+00	3.33E-03	1.85E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	17.4
Oxides of Nitrogen (NOx)	1.16E+00	1.00E+00	0.00E+00	0.00E+00	0.00E+00	4.84E-04	1.62E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.165
Primary Exhaust PM10 - Total	3.55E-02	1.16E-02	0.00E+00	0.00E+00	0.00E+00	1.63E-02	1.45E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.065
Primary Exhaust PM2.5 - Total	3.26E-02	1.05E-02	0.00E+00	0.00E+00	0.00E+00	1.50E-02	1.33E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.059
Sulfur Dioxide (SO2)	6.52E-03	8.11E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0073
Volatile Organic Compounds	1.32E-01	7.58E-01	8.59E-02	2.62E-01	1.70E-01	3.21E-03	1.05E-02	1.73E-02	2.16E-02	0.00E+00	0.00E+00	0.00E+00	1.461
Nitrous Oxide (N2O)	2.38E-03	4.77E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.050
Methane (CH4)	3.74E-02	1.38E-01	0.00E+00	0.00E+00	0.00E+00	1.34E-05	4.27E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.176

Year	CO2	со	NOx	PM10	PM2.5	SO2	voc	N2O	CH4
Threshold	25000	100	100	100	100	100	100	25000	25000
2021	1580.86	43.93	4.44	0.11	0.098	0.012	6.074	0.19	0.31

Construction Emissions 1 of 1

U.S. EPA Motor Vehicle Emission Simulator Emission Model Output Construction Emission Summary

	Building Contrustion Emissions (tons/yr)											
Year	CO2 CO NOx PM10 PM2.5 SO2 VOC N2O CH4											
Threshold	25000	100	100	100	100	100	100	25000	25000			
2021	1606.10	43.95	4.51	0.11	0.10	0.012	6.08	0.19	0.31			

U.S. EPA Motor Vehicle Emission Simulator Emission Model Output Operation Emissions

Number of Trips	
	100
	120

	Passenger Car												
CY 2022	Running Exhaust	Start Exhaust	Evap Permeation	Evap Fuel Vapor Venting	Evap Fuel Leaks	Crankcase Running Exhaust	Crankcase Start Exhaust	Refueling Displacement Vapor Loss	Refueling Spillage Loss	Auxiliary Power Exhaust	Extended Idle Exhaust	Crankcase Extended Idle Exhaust	TOTAL
Atmospheric CO2	2.41E+02	1.55E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	395.83
Carbon Monoxide (CO)	1.72E+00	1.06E+01	0.00E+00	0.00E+00	0.00E+00	8.98E-04	5.53E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	12.33
Oxides of Nitrogen (NOx)	7.21E-02	8.03E-01	0.00E+00	0.00E+00	0.00E+00	2.92E-06	3.24E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.88
Primary Exhaust PM10 - Total	3.37E-03	1.77E-02	0.00E+00	0.00E+00	0.00E+00	2.70E-05	1.42E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.021
Primary Exhaust PM2.5 - Total	2.98E-03	1.57E-02	0.00E+00	0.00E+00	0.00E+00	2.39E-05	1.26E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.019
Sulfur Dioxide (SO2)	1.61E-03	1.03E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0026
Volatile Organic Compounds	1.32E-02	1.13E+00	1.55E-01	3.88E-01	2.86E-01	1.73E-04	1.48E-02	7.55E-03	8.00E-03	0.00E+00	0.00E+00	0.00E+00	2.00
Nitrous Oxide (N2O)	9.93E-04	5.14E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.052
Methane (CH4)	2.16E-03	4.82E-02	0.00E+00	0.00E+00	0.00E+00	2.76E-05	5.51E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.051

	Combination Long-haul Truck												
CY 2022	Running Exhaust	Start Exhaust	Evap Permeation	Evap Fuel Vapor Venting	Evap Fuel Leaks	Crankcase Running Exhaust	Crankcase Start Exhaust	Refueling Displacement Vapor Loss	Refueling Spillage Loss	Auxiliary Power Exhaust	Extended Idle Exhaust	Crankcase Extended Idle Exhaust	TOTAL
Atmospheric CO2	1.75E+03	1.67E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.97E+00	9.63E+01	0.00E+00	2016.15
Carbon Monoxide (CO)	9.51E-01	9.72E+00	0.00E+00	0.00E+00	0.00E+00	8.56E-03	4.34E-02	0.00E+00	0.00E+00	1.04E-01	9.45E-01	2.58E-03	11.77
Oxides of Nitrogen (NOx)	3.89E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.29E-03	0.00E+00	0.00E+00	0.00E+00	8.37E-02	2.25E+00	5.35E-04	6.23
Primary Exhaust PM10 - Total	1.30E-01	1.11E-02	0.00E+00	0.00E+00	0.00E+00	2.97E-02	2.73E-03	0.00E+00	0.00E+00	5.34E-03	1.55E-02	3.94E-03	0.20
Primary Exhaust PM2.5 - Total	1.19E-01	1.02E-02	0.00E+00	0.00E+00	0.00E+00	2.73E-02	2.51E-03	0.00E+00	0.00E+00	4.91E-03	1.42E-02	3.63E-03	0.18
Sulfur Dioxide (SO2)	1.48E-02	1.43E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.36E-05	8.16E-04	0.00E+00	0.017
Volatile Organic Compounds	1.70E-01	4.13E-01	0.00E+00	0.00E+00	0.00E+00	4.94E-03	7.93E-03	0.00E+00	6.22E-02	2.17E-02	3.73E-01	5.05E-03	1.06
Nitrous Oxide (N2O)	2.00E-03	8.64E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.011
Methane (CH4)	4.01E-02	2.14E-01	0.00E+00	0.00E+00	0.00E+00	1.19E-05	1.92E-05	0.00E+00	0.00E+00	5.80E-05	2.55E-01	1.23E-05	0.51

Year	NOx	voc	со	PM10	PM2.5	SO2	CO2	CH4	N2O
Threshold	100	100	100	100	100	100	25000	25000	25000
2022	7.10	3.06	24.11	0.22	0.20	0.020	2411.98	0.56	0.063

Operational Emissions 1 of 1

Tennessee Division

April 2, 2020

404 BNA Drive, Suite 508 Nashville, Tennessee 37217 Phone (615) 781-5770

> In Reply Refer To: **HPD-TN**

Mr. Kwabena Aboagye Assistant Director, Long Range Planning Division Tennessee Department of Transportation James K. Polk Building, Suite 900 Nashville, TN 37243

Subject: Air Quality Conformity Determination for Shelby County, Tennessee

Dear Mr. Aboagye:

The Federal Highway Administration (FHWA) Tennessee Division and Federal Transit Administration (FTA) Region IV Office, in coordination with the Environmental Protection Agency (EPA) Region IV Office, have reviewed the Air Quality Conformity Determination Report the Memphis Urban Area Metropolitan Planning Organization (MPO) Transportation Policy Board adopted on February 20, 2020.

The Air Quality Conformity Determination covers the Shelby County, TN maintenance area for the 2008 8-hour ozone standards and addresses the planned transportation improvements from the MPO's amended FY2020-2023 Transportation Improvement Program.

Based on our review, we find the document conforms to the National Ambient Air Quality Standards (NAAQS) for the 2008 8-hour ozone for Shelby County, Tennessee.

If you have any questions regarding this determination, please contact me at (615) 781-5775.

Sincerely,

ELIZABETH HERNANDEZ WATKINS Date: 2020.04.02 13:08:58-05'00'

Digitally signed by ELIZABETH UERNANDEZ WATKINS

Elizabeth Watkins, AICP Transportation Planning Specialist

cc: Mayor Jim Strickland, Transportation Policy Board Chair, Memphis Urban Area MPO

Ms. Theresa Claxton, Program Development Team Leader, FHWA TN Division

Mr. Sean Santalla, Transportation Planning Specialist, FHWA TN Division

Mr. Andres Ramirez, Community Planner, FTA Region IV

Ms. Dianna Myers, Environmental Scientist, EPA Region IV

Mr. Stacy Morrison, OCT Planning Manager, TDOT

Mr. Antoine Hawkins, OCT Region 4 Planning Supervisor, TDOT

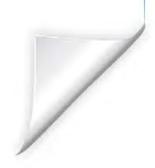
Ms. Pragati Srivastava, Administrator, Memphis Urban Area MPO

ting people & places **2050**

RTP ID	TIP ID	Project Name	From	То	Project Description	Location	State	Project Scale	Project Cost (YOE)	Funding Source
1037		Bike/Ped/ Complete Streets	Varies	Varies	Greenways, sidewalks, bicycle facilities and amenities, streetscaping	MPO Planning Area	MS	Bike/Ped/ Complete Streets	\$18,519,662	Varies
1067		Debt Service	N/A	N/A	This is the payback value for Debt Service associated with the GARVEE Bond.	MPO Planning Area	MS	Debt Service	\$184,419,464	Varies
195		Pleasant Hill Road	Church Road	Nail Road	Widen from 2 to 5 lane boulevard	Olive Branch	MS	Town Centers	\$7,025,783	STBG
519	MS-LSTBG-2020-01	Nail Road Extension	Interstate Boulevard	Pepper Chase Drive	New 3 lane road	Horn Lake	MS	Town Centers	\$4,496,501	STBG
								2026-2030 Total	\$458,106,957	

Livability 2050 Horizon Year: (Tier 3: 2031-2035) **TENNESSEE** Road resurfacing and other Regionwide 1002 Roadway O&M TN M&O \$206,755,773 Varies Varies Varies preventative maintenance Traffic signals, optimization, ITS/ Regionwide 1050 Varies communication, variable 0&M Varies ΤN \$43,594,009 Varies Signalization message signs Bridge replacement, rehabilitation, preservation, 1008 Bridge O&M Varies Regionwide ΤN M&O Varies \$49,470,316 Varies systematic repairs and seismic retrofit General maintenance for MS Local O&M TN O&M 1062 Varies Varies Regionwide \$90,919,646 Varies jurisdictions Bike/Ped/ Bike/Ped/ Greenways, sidewalks, Complete bicycle facilities and Complete 1014 Varies Varies Regionwide TN \$75,045,831 Varies Streets/Safety amenities, streetscaping Streets/Safety The transit O&M costs equal 1020 Transit O&M Varies the available Transit funds Regionwide ΤN M&O Varies Varies \$260,732,434 minus transit capital projects Cordova Club Shelby Dusty Lane 90 Appling Road New 4 lane road ΤN **Town Centers** \$5,829,820 STBG Drive County Neighborhood Horn Lake ΤN Holmes Road Weaver Road Widen from 2 to 5 lanes Memphis \$40,773,762 STBG 6 Road Communities

RTP ID	TIP ID	Project Name	From	То	Project Description	Location	State	Project Scale	Project Cost (YOE)	Funding Source
820	STP-M-2002-14	W Holmes Road	Mill Branch Road	Tchulahoma Road	Widen existing 4 and 2 lane to 7 lanes	Memphis	TN	Town Centers	\$17,317,897	STBG
38	NHS-2006-10-A	1-40	SR-177 (Germantown Road)	1 mile east of Canada Road	Widen from 6 to 8 lanes	Memphis/ Lakeland	TN	Interregional	\$78,286,156	NHPP
136	NHS-2006-10-B	1-40	1.0 mile east of Canada Road	SR-205 (Collierville- Arlington Road)	Widen from 4 to 6 lanes	Arlington/ Lakeland	TN	Interregional	\$75,287,963	NHPP
12		I-40 at SR-3/ SR-4 (Second Street)	N/A	N/A	Modify interchange	Memphis	TN	Interregional	\$24,057,169	NHPP
514		Paul R Lowry Road	Shelby Drive	Electrolux Drive	Widen from 2 and 3 lanes to 5 lanes	Memphis	TN	Regional Centers	\$24,984,943	IMPROVE- County
515		Raines Road at SR-176 (Getwell Road)	N/A	N/A	Construct new interchange	Memphis	TN	Town Centers	\$135,584,960	IMPROVE-State
95	TN-STBG-2020-01	SR-14 (Austin Peay Highway)	East of Kerrville- Rosemark Road	Tipton County line	Widen from 2 to 4 lanes (divided)	Shelby County	TN	Regional Centers	\$83,283,145	STBG-S
516		U.S51	Chelsea Road	Frayser Blvd	Complete streets retrofit improving multi modal travel, ITS, and safety	Memphis	TN	Neighborhood Communities	\$45,206,091	NHPP
517		U.S72/SR- 57 (Poplar Avenue)	Poplar Estates Parkway	New Riverdale Road	Widen to 7 lanes	Germantown	TN	Regional Centers	\$7,911,899	NHPP
71	STP-M-2000-16	Walnut Grove Road	Walnut Bend Road	Rocky Point Road	Widen 4 and 2 lane roadway to 6 lanes with median, realign Rocky Point Rd intersection	Shelby County	TN	Regional Centers	\$38,000,433	STBG
								2031-2035 Total	\$1,303,042,247	
					MISSISSIPPI	MDO				
1026		Roadway O&M	Varies	Varies	Road resurfacing and other preventative maintenance	MPO Planning Area	MS	O&M	\$288,694,350	Varies
1056		ITS/ Signalization	Varies	Varies	Traffic signals, optimization, communication, variable message signs	MPO Planning Area	MS	O&M	\$24,910,862	Varies



ATTACHMENT 3

Biological Resources Information

Phase I Environmental Site Assessment Holmes Road Development Project Property Shelby County, Tennessee

Photo 1: View of metal roofing observed on the ground within the southwest portion of the subject property.

Photo 2: View of the broken concrete presumed to be from a former building structure in the north-central portion of the subject property.

Phase I Environmental Site Assessment Holmes Road Development Project Property Shelby County, Tennessee

Photo 3: Partial view of the former gravel pit area in the northeast portion of the subject property.

Photo 4: View of used tires observed along the west portion of the subject property.

Phase I Environmental Site Assessment Holmes Road Development Project Property Shelby County, Tennessee

Photo 5: View of livestock feeding trough/ring observed in the northwest portion of the subject property.

Photo 6: View of trash and debris observed in the north-central portion of the property. Materials observed suggest a residential building may have been located in the area.

Photo Log – East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 1: View of Stream 1, facing northwest. (35.001349°, -89.970553°)

Photo 2: View of Stream 2 flowing out of the forested area, facing south. (35.005294°, -89.964738°)

Photo Log — East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 4: View of Stream 4, which receives drainage from Streams 2 and 3, facing south. (35.005933°, -89.965021°)

Photo Log – East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 5: View of Stream 5, showing a reach with weak bed and bank demarcation, facing east. (34.996663°, -89.970313°)

Photo 6: View of Stream 6, showing a reach with strong bed and bank demarcation. (34.995628°, -89.970949°)

Photo Log – East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 8: View of Pond 2, which drains via a seep into non-WOTUS linear drainage feature, facing south. (35.000748°, -89.970652°)

Photo Log — East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 9: View of Pond 3 and berm, which drains via a breach into non-WOTUS linear drainage feature, facing southwest. (34.99942°, -89.969566°)

Photo 10: View of breach in Pond 3 berm, which drains into a non-WOTUS linear drainage feature, facing south toward the pond. (34.99942°, -89.969566°)

Photo Log – East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 11: View of Portd 7, which appears to lack flydrologic conflection. (35:005481*, -69.966365*)

Photo 12: Overview of Wetland 1, facing south. Wetland 1 is located within a drainageway absent of stream morphology. (34.99763°, -89.965424°)

Photo Log – East Holmes Road and Swinnea Road Aquatic Resource Assessment April 15 and 16, 2020

Photo 13: Overview of Upland 1, taken within the wetland/upland mosaic area, facing south. (34.997301°, -89.965408°)

Photo 14: Overview of Wetland 2, which receives hydrologic input from a non-WOTUS linear drainage feature and then drains into Stream 1, facing south. (34.99977°, -89.969094°)

Photo 15: Overview of upland "island" (Upland 2) within Wetland 2, facing south. (34.999704°, -89.969185°)

Photo 16: Overview of Wetland 3, facing north. (35.004463°, -89.96676°)

Photo 17:Overview of Upland 3, taken from Pond 1 south berm, facing south. Pond 1 seepage drains into a non-WOTUS linear drainage feature and eventually Stream 1. (35.004463°, -89.96676°)

Photo 18: Overview of Wetland 4, a 60%/40% wetland/upland mosaic wetland, which drains into Stream 2, facing north. (35.001611°, -89.964722°)

Photo 19: View of Upland 4, taken adjacent to a small puddle (left) near a non-WOTUS linear drainage feature, facing southeast. (35.004841°, -89.965494°)

Photo 20: Overview of Wetland 5, which drains into Stream 3, facing east. (35.001478°, -89.964156°)

Photo 21: Overview of Wetland 6, in a drainageway lacking stream morphology, facing south. (35.002064°, -89.963546°)

Photo 22: Overview of Wetland 7, located within a drainageway lacking stream morphology, facing north. (35.00305°, -89.963707°)

Photo 23: Overview of Wetland 8, located near the toe of a slope to the east, facing north. No hydrologic connection to any other feature was observed. (35.00305°, -89.963707°)

Photo 24: Overview of Wetland 9, which drains westward into non-WOTUS linear drainage feature, facing east. (34.996997°, -89.968798°)

Photo 25: View of Wetland 10, which drains into Stream 5, facing east. (34.996613°, -89.969307°)

Photo 26: View of the berm (Upland 6) that Wetland 10 bisects to drain west. (34.996672°, -89.969509°)

Photo 27: View of no stream feature at northwest corner of Site, facing south. The topographic map shows a blue line stream leaving the Site in the northwest corner, but the stream feature is no longer present. (35.006216°, -89.972039°)

Photo 28: View of Stream 1 historical impact, entering culvert at the southern utility line easement and continuing on as a buried reach for approximately 200 feet, facing south. (34.997768°, -89.96608°)

Photo 29: Snag located at 34.998618°, -89.966856°.

Photo 30: Snag located at 34.998653°, -89.967028°.

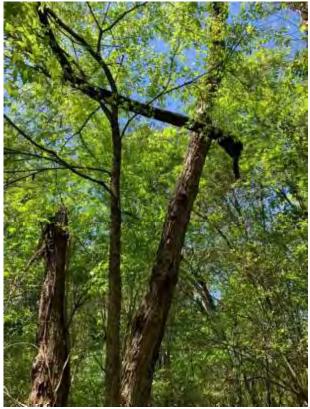

Photo 31: Snag located at 35.004437°, -89.966784°.

Photo 32: Another view of the snag located at 35.004437°, -89.966784°.

Photo 33: Snag located at 35.004715°, -89.966861°.

Photo 34: Another view of the snag located at 35.004715°, -89.966861°.

IPaCU.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Shelby County, Tennessee

Local office

Tennessee Ecological Services Field Office

(931) 528-6481

(931) 528-7075

446 Neal Street Cookeville, TN 38501-4027

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Indiana Bat Myotis sodalis

Endangered

There is **final** critical habitat for this species. Your location is outside the critical habitat.

https://ecos.fws.gov/ecp/species/5949

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> of <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the

Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be

used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

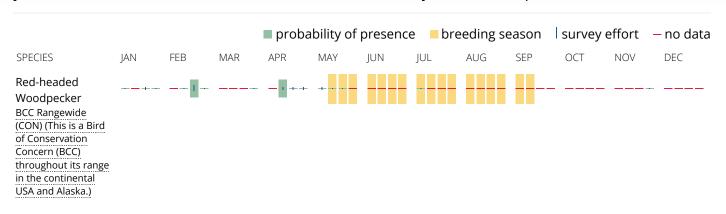
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

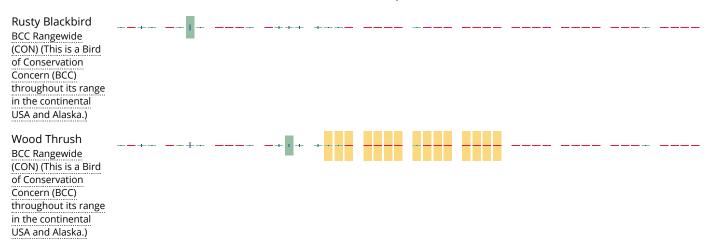
Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN</u>). This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u>

<u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize

potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Rare Species by Watershed Rare Species by County

Rare Species by Quadrangle Stormwater Programs

Help

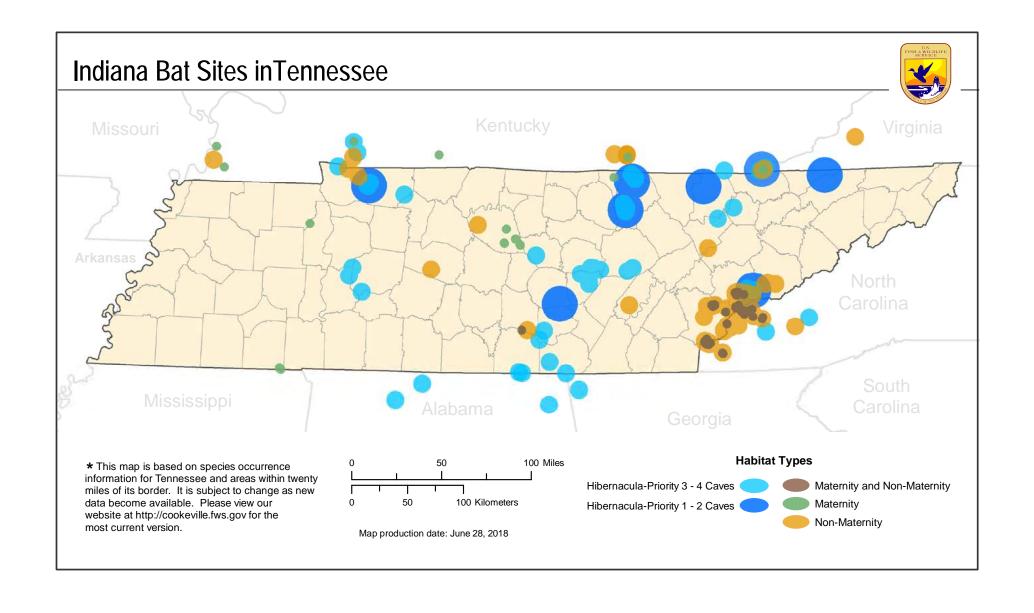
Ney to Status and Ranks Rare Species by County

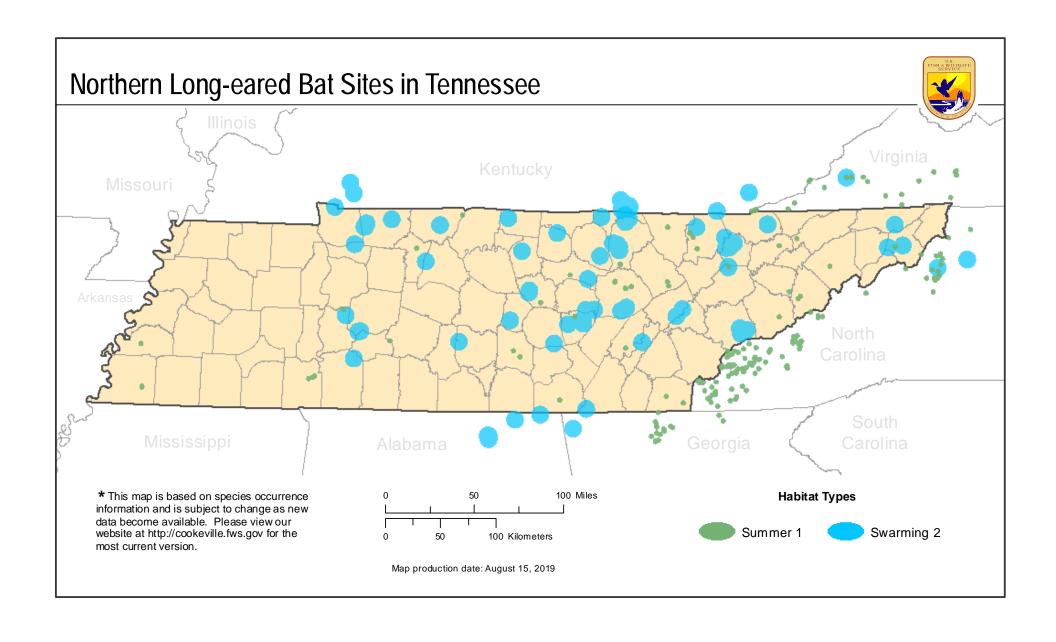
Data is refreshed on or around January and July each year.

	Qv	Go	Rows	25	Actions ~
_					

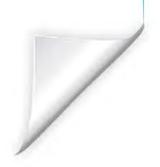
Download Status and Ranks

County	<u>Type</u> ↑=	<u>Category</u>	Scientific Name	Common Name	Global Rank	State Rank	Fed. Status	State Status	<u>Habitat</u>	Wet Habitat Flag
Shelby	Animal Assemblage	No Data	Rookery	Heron Rookery	G5	SNR		Rare, Not State Listed	No Data	No Data
Shelby	Invertebrate Animal	Insect	<u>Lycaena hyllus</u>	Bronze Copper	G5	S3		Rare, Not State Listed	Marshes, sedge meadows, moist to wet grassy meadows, ditches, fens, streamside or pondshore wetlands, or roads and right of ways through marshlands. West TN.	Possible
Shelby	Invertebrate Animal	Mollusc	<u>Lampsilis</u> <u>siliquoidea</u>	Fatmucket	G5	S2		Rare, Not State Listed	Slackwater with mud subst; Wolf R (Miss R trib); west TN; may occur at Reelfoot Lk; also rept Drakes Ck (Cumb R), Sumner Co.	Aquatic
Shelby	Invertebrate Animal	Mollusc	Obovaria jacksoniana	Southern Hickorynut	G2	S1		Rare, Not State Listed	Rivers with medium-sized gravel substrates and low- mod current; Wolf & Hatchie rivers; Mississippi River watershed; west Tennessee.	Aquatic
Shelby	Invertebrate Animal	Mollusc	Webbhelix multilineata	Striped Whitelip	G5	S2		Rare, Not State Listed	Low wet habitats, marshes, floodplains, meadows; lake margins; under leaf litter or drift; Mississippi River floodplain.	Possible
Shelby	Vascular Plant	Flowering Plant	Rhynchospora harveyi	Harvey's Beakrush	G4	S1		Т	Barrens And Other Open Areas	Possible
Shelby	Vascular Plant	Flowering Plant	Iris fulva	Copper Iris	G5	S2		Т	Bottomlands	Possible
Shelby	Vascular Plant	Flowering Plant	Hottonia inflata	Featherfoil	G4	S2		S	Wet Sloughs And Ditches	Aquatic
Shelby	Vascular Plant	Flowering Plant	Heteranthera multiflora	Multiflowered Mud-plantain	G4	S1		S	Shallow Water, Mud Flats	Possible
Shelby	Vascular Plant	Flowering Plant	Silene ovata	Ovate Catchfly	G3	S2		Е	Open Oak Woods	Upland
Shelby	Vascular Plant	Flowering Plant	Schisandra glabra	Red Starvine	G3	S2		Т	Rich Mesic Woods, Bluffs	Possible
Shelby	Vascular Plant	Flowering Plant	Panax quinquefolius	American Ginseng	G3G4	S3S4		S-CE	Rich Woods	Possible
Shelby	Vascular Plant	Flowering Plant	Magnolia virginiana	Sweetbay Magnolia	G5	S2		Т	Forested Acidic Wetlands	Possible
Shelby	Vascular Plant	Flowering Plant	Symphyotrichum praealtum	Willow Aster	G5	S1		Е	Moist Prairies And Marshes	Possible
Shelby	Vascular Plant	Flowering Plant	<u>Ulmus</u> <u>crassifolia</u>	Cedar Elm	G5	S2		S	Swamps	Possible
Shelby	Vertebrate Animal	Bird	Haliaeetus leucocephalus	Bald Eagle	G5	S3		D	Areas close to large bodies of water; roosts in sheltered sites in winter; communal roost sites common.	Aquatic
Shelby	Vertebrate Animal	Mammal	Neotoma floridana illinoensis	Eastern Woodrat	G5T5	S 3		D	Forested areas, caves & outcrops; west Tennessee generally.	Upland
helby	Vertebrate Animal	Reptile	Pituophis melanoleucus melanoleucus	Northern Pinesnake	G4T4	S3		Т	Well-drained sandy soils in pine/pine-oak woods; dry mountain ridges; E portions of west TN, E to lower elev of the Appalachians.	Upland
Shelby	Vertebrate Animal	Bird	<u>Limnothlypis</u> <u>swainsonii</u>	Swainson's Warbler	G4	S3		D	Mature, rich, damp, deciduous floodplain and swamp forests.	Possible
Shelby	Vertebrate Animal	Fish	Ammocrypta beani	Naked Sand Darter	G5	S2		D	Shifting sand bottoms & sandy runs; Hatchie & Wolf rivers & their larger tribs.	Aquatic


Shelby	Vertebrate Animal	Fish	Noturus gladiator	Piebald Madtom	G3	S3		D	Large creeks & rivers in moderate-swift currents with clean sand or gravel substrates; Mississippi River tributaries.	Aquatic
Shelby	Vertebrate Animal	Amphibian	Acris gryllus	Southern Cricket Frog	G5	S2S3		Rare, Not State Listed	Grassy margins of swamps, marshes, lakes, ponds, streams, ditches, and nearby temporary pools; far SW Tennessee.	Aquatic
Shelby	Vertebrate Animal	Bird	Setophaga cerulea	Cerulean Warbler	G4	S3B		D	Mature deciduous forest, particularly in floodplains or mesic conditions.	Upland
Shelby	Vertebrate Animal	Fish	<u>Cycleptus</u> <u>elongatus</u>	Blue Sucker	G3G4	S2		Т	Swift waters over firm substrates in big rivers.	Aquatic
Shelby	Vertebrate Animal	Bird	Vireo bellii	Bell's Vireo	G5	S1B	No Status	Rare, Not State Listed	Thickets adjacent to water, bottomlands; west Tennessee and one confirmed location in Western Highland Rim.	Possible


1 - 25 of 27 🗦

If you have any questions or comments, Email ask.tdec@tn.gov or call at (888) 891-TDEC (8332).



ATTACHMENT 4Farmlands Information

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Shelby County, Tennessee

East Holmes Rd Soil Map

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Shelby County, Tennessee	
Co—Collins silt loam, 0 to 2 percent slopes, occasionally flooded, brief	
duration	14
Fm—Falaya silt loam	15
GgD3—Grenada complex, 5 to 12 percent slopes, severely eroded	16
Gs—Gullied land, silty(udorthent, silty)	17
LoB—Loring silt loam, 2 to 5 percent slopes	17
LoC2—Loring silt loam, 5 to 8 percent slopes, eroded	18
LoD—Loring silt loam, 8 to 12 percent slopes, east	19
LoD2—Loring silt loam, 8 to 12 percent slopes, eroded	20
LoD3—Loring silt loam, 5 to 12 percent slopes, severely eroded	21
MeB2—Memphis silt loam, 2 to 5 percent slopes, moderately eroded,	
northern phase	22
W—Water	23
References	24

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

0

Δ

Water Features

Transportation

+++

-

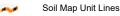
Background

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways


Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

4

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

*** Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Shelby County, Tennessee Survey Area Data: Version 15, Jun 1, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 1, 2020—May 9, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
Со	Collins silt loam, 0 to 2 percent slopes, occasionally flooded, brief duration	27.1	11.0%				
Fm	Falaya silt loam	19.4	7.9%				
GgD3	Grenada complex, 5 to 12 percent slopes, severely eroded	37.4	15.2%				
Gs	Gullied land, silty(udorthent, silty)	23.5	9.6%				
LoB	Loring silt loam, 2 to 5 percent slopes	78.7	32.1%				
LoC2	Loring silt loam, 5 to 8 percent slopes, eroded	8.8	3.6%				
LoD	Loring silt loam, 8 to 12 percent slopes, east	2.1	0.9%				
LoD2	Loring silt loam, 8 to 12 percent slopes, eroded	11.6	4.7%				
LoD3	Loring silt loam, 5 to 12 percent slopes, severely eroded	22.1	9.0%				
MeB2 Memphis silt loam, 2 to 5 percent slopes, moderately eroded, northern phase		4.8	2.0%				
W	Water	9.9	4.0%				
Totals for Area of Interest		245.5	100.0%				

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Custom Soil Resource Report

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion

Custom Soil Resource Report

of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Shelby County, Tennessee

Co—Collins silt loam, 0 to 2 percent slopes, occasionally flooded, brief duration

Map Unit Setting

National map unit symbol: 2t23l Elevation: 160 to 570 feet

Mean annual precipitation: 50 to 53 inches
Mean annual air temperature: 47 to 71 degrees F

Frost-free period: 193 to 242 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Collins and similar soils: 89 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Collins

Setting

Landform: Flood plains

Landform position (three-dimensional): Talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Coarse-silty alluvium derived from sedimentary rock

Typical profile

Ap - 0 to 8 inches: silt loam C - 8 to 62 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 24 to 60 inches Frequency of flooding: NoneOccasional

Frequency of ponding: None

Available water capacity: High (about 10.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: B

Ecological site: F134XY014AL - Northern Non-Acid Floodplain - PROVISIONAL

Hydric soil rating: No

Fm—Falaya silt loam

Map Unit Setting

National map unit symbol: m19n

Elevation: 250 to 450 feet

Mean annual precipitation: 46 to 63 inches Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Falaya and similar soils: 91 percent Minor components: 9 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Falaya

Setting

Landform: Flood plains

Landform position (three-dimensional): Talf

Parent material: Silty alluvium

Typical profile

H1 - 0 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 6 to 24 inches Frequency of flooding: OccasionalNone

Frequency of ponding: None

Available water capacity: Very high (about 12.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: B/D Hydric soil rating: No

Minor Components

Waverly

Percent of map unit: 9 percent Landform: Flood plains

Landform position (three-dimensional): Talf

Hydric soil rating: Yes

GgD3—Grenada complex, 5 to 12 percent slopes, severely eroded

Map Unit Setting

National map unit symbol: m19z Elevation: 210 to 490 feet

Mean annual precipitation: 46 to 63 inches Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Grenada and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Grenada

Setting

Landform: Loess hills

Landform position (three-dimensional): Base slope

Parent material: Loess

Typical profile

H1 - 0 to 6 inches: silt loam H2 - 6 to 22 inches: silt loam H3 - 22 to 26 inches: silt loam H4 - 26 to 40 inches: silt loam H5 - 40 to 60 inches: silt loam

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C/D Hydric soil rating: No

Gs—Gullied land, silty(udorthent, silty)

Map Unit Setting

National map unit symbol: m1b1

Mean annual precipitation: 46 to 63 inches Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Gullied land: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gullied Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: F134XY001TN - Northern Deep Loess Backslope Mesophytic

Forest

Hydric soil rating: No

LoB—Loring silt loam, 2 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2v7sn

Elevation: 260 to 410 feet

Mean annual precipitation: 35 to 63 inches Mean annual air temperature: 47 to 71 degrees F

Frost-free period: 189 to 240 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Loring and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loring

Setting

Landform: Loess hills

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave Parent material: Loess

Typical profile

Ap - 0 to 5 inches: silt loam Bt - 5 to 30 inches: silt loam Btx - 30 to 48 inches: silt loam C - 48 to 79 inches: silt loam

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: 26 to 35 inches to fragipan

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 21 to 27 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C Hydric soil rating: No

LoC2—Loring silt loam, 5 to 8 percent slopes, eroded

Map Unit Setting

National map unit symbol: m1b7

Elevation: 210 to 410 feet

Mean annual precipitation: 46 to 63 inches
Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Loring and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loring

Setting

Landform: Loess hills

Landform position (three-dimensional): Side slope

Parent material: Loess

Typical profile

H1 - 0 to 7 inches: silt loam H2 - 7 to 28 inches: silt loam H3 - 28 to 50 inches: silt loam H4 - 50 to 60 inches: silt loam

Properties and qualities

Slope: 5 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 28 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C/D Hydric soil rating: No

LoD—Loring silt loam, 8 to 12 percent slopes, east

Map Unit Setting

National map unit symbol: 2wn6d

Elevation: 240 to 410 feet

Mean annual precipitation: 52 to 55 inches Mean annual air temperature: 47 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Loring and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loring

Setting

Landform: Loess hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Loess

Typical profile

Ap - 0 to 7 inches: silt loam
Bt - 7 to 28 inches: silt loam
Btx - 28 to 50 inches: silt loam
C - 50 to 65 inches: silt loam

Properties and qualities

Slope: 8 to 12 percent

Depth to restrictive feature: 16 to 41 inches to fragipan

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 28 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water capacity: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C/D

Ecological site: F134XY012AL - Northern Loess Fragipan Upland -

PROVISIONAL Hydric soil rating: No

LoD2—Loring silt loam, 8 to 12 percent slopes, eroded

Map Unit Setting

National map unit symbol: m1b9

Elevation: 230 to 410 feet

Mean annual precipitation: 46 to 63 inches Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Loring and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loring

Setting

Landform: Loess hills

Landform position (three-dimensional): Side slope

Parent material: Loess

Typical profile

H1 - 0 to 7 inches: silt loam H2 - 7 to 28 inches: silt loam H3 - 28 to 50 inches: silt loam H4 - 50 to 60 inches: silt loam

Properties and qualities

Slope: 8 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 28 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C/D Hydric soil rating: No

LoD3—Loring silt loam, 5 to 12 percent slopes, severely eroded

Map Unit Setting

National map unit symbol: m1bb

Elevation: 230 to 410 feet

Mean annual precipitation: 46 to 63 inches Mean annual air temperature: 53 to 72 degrees F

Frost-free period: 226 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Loring and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loring

Setting

Landform: Loess hills

Landform position (three-dimensional): Side slope

Parent material: Loess

Typical profile

H1 - 0 to 7 inches: silt loam
H2 - 7 to 28 inches: silt loam
H3 - 28 to 50 inches: silt loam
H4 - 50 to 60 inches: silt loam

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 12 to 28 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C/D Hydric soil rating: No

MeB2—Memphis silt loam, 2 to 5 percent slopes, moderately eroded, northern phase

Map Unit Setting

National map unit symbol: 2t23z Elevation: 300 to 540 feet

Mean annual precipitation: 50 to 54 inches Mean annual air temperature: 47 to 71 degrees F

Frost-free period: 182 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Memphis, eroded, north, and similar soils: 88 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Memphis, Eroded, North

Setting

Landform: Loess hills

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Fine-silty noncalcareous loess

Typical profile

Ap - 0 to 6 inches: silt loam

Bt1 - 6 to 18 inches: silty clay loam
Bt2 - 18 to 74 inches: silt loam
C - 74 to 80 inches: silt loam

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very high (about 13.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F134XY002AL - Northern Deep Loess Summit - PROVISIONAL

Hydric soil rating: No

W-Water

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Soil Data Access (SDA) Prime and other Important Farmlands

An SDA-populated select list is used to pick a state and SSA which enables creation of a "Prime and other Important Farmlands" based upon those selections. The data is not static; it hits Soil Data Access Live. To reset the table hit F5 on the keyboard. Once a survey is selected and table appears, if a new survey is selected it will append to the table at the bottom. For more information about the table,

Tennessee	▼	
selected stateId = TN		
Shelby County, Tennessee		

selected SSA areasymbol = TN157

State_Sym	Area_Symbol	Area_Name	mukey	Mapunit_SYM	Mapunit_Name	Farm_Class
TN	TN157	Shelby County, Tennessee	567280	Ad	Adler silt loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567281	Во	Bonn silt loam	Not prime farmland
TN	TN157	Shelby County, Tennessee	567282	Bw	Bowdre silty clay	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567283	Ca	Calloway silt loam, 0 to 2 percent slopes	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567284	Со	Collins silt loam, 0 to 2 percent slopes, occasionally flooded, brief duration	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567285	Cr	Commerce silt loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567286	Cs	Convent silt loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567287	Cu	Crevasse fine sand	Not prime farmland
TN	TN157	Shelby County, Tennessee	567288	Cv	Crevasse silt loam (bruno overwash)	Not prime farmland
TN	TN157	Shelby County, Tennessee	567289	Fm	Falaya silt loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567290	Fs	Filled land, silty (udorthent, silty)	Not prime farmland
TN	TN157	Shelby County,	567291	Fy	Filled land, sandy (udorthent, loamy)	Not prime farmland

		Tennessee				
TN	TN157	Shelby County, Tennessee	567292	GaA	Grenada silt loam, 0 to 2 percent slopes	All areas ar prime farmland
TN	TN157	Shelby County, Tennessee	567293	GaB	Grenada silt loam, 2 to 5 percent slopes	All areas ar prime farmland
ΓN	TN157	Shelby County, Tennessee	567294	GaB2	Grenada silt loam, 2 to 5 percent slopes, eroded	All areas ar prime farmland
TN	TN157	Shelby County, Tennessee	567295	GaC	Grenada silt loam, 5 to 8 percent slopes	Not prime farmland
TN	TN157	Shelby County, Tennessee	567296	GaC3	Grenada silt loam, 5 to 8 percent slopes, severely eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567297	GaD	Grenada silt loam, 8 to 12 percent slopes	Not prime farmland
TN	TN157	Shelby County, Tennessee	567298	GaD2	Grenada silt loam, 8 to 12 percent slopes, eroded	Not prime farmland
ΓN	TN157	Shelby County, Tennessee	567299	GgD3	Grenada complex, 5 to 12 percent slopes, severely eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567300	Gr	Graded land, silty materials(udorthent, silty)	Not prime farmland
TN	TN157	Shelby County, Tennessee	567301	Gs	Gullied land, silty(udorthent, silty)	Not prime farmland
TN	TN157	Shelby County, Tennessee	567302	Не	Henry silt loam	Not prime farmland
ΤN	TN157	Shelby County, Tennessee	567303	Ib	Iberia silty clay loam	All areas ar prime farmland
ΓN	TN157	Shelby County, Tennessee	567304	Lb	Levees and borrow pits (udorthents, silty)	Not prime farmland
ΤN	TN157	Shelby County, Tennessee	567305	LoB	Loring silt loam, 2 to 5 percent slopes	All areas ar prime farmland
ΓN	TN157	Shelby County, Tennessee	567306	LoB2	Loring silt loam, 2 to 5 percent slopes, eroded	All areas ar prime farmland
TN	TN157	Shelby County, Tennessee	567307	LoC2	Loring silt loam, 5 to 8 percent slopes, eroded	Not prime farmland
TN	TN157	Shelby County,	567308	LoD	Loring silt loam, 8 to 12 percent slopes, east	Not prime farmland

		Tennessee				
TN	TN157	Shelby County, Tennessee	567309	LoD2	Loring silt loam, 8 to 12 percent slopes, eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567310	LoD3	Loring silt loam, 5 to 12 percent slopes, severely eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	1405377	MP	Mines and Gravel Pits	Not prime farmland
TN	TN157	Shelby County, Tennessee	567311	MeB	Memphis silt loam, 2 to 5 percent slopes, northern phase	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567312	MeB2	Memphis silt loam, 2 to 5 percent slopes, moderately eroded, northern phase	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567313	MeC2	Memphis silt loam, 5 to 8 percent slopes, eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567314	MeD2	Memphis silt loam, 8 to 12 percent slopes, eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567315	MeD3	Memphis silt loam, 5 to 12 percent slopes, severely eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567316	МеЕ	Memphis silt loam, 12 to 20 percent slopes	Not prime farmland
TN	TN157	Shelby County, Tennessee	567317	MeF3	Memphis silt loam, 12 to 30 percent slopes, severely eroded	Not prime farmland
TN	TN157	Shelby County, Tennessee	567318	MeG	Memphis silt loam, 30 to 65 percent slopes	Not prime farmland
TN	TN157	Shelby County, Tennessee	2548231	NOTCOM	No Digital Data Available	Not prime farmland
TN	TN157	Shelby County, Tennessee	567319	Rb	Robinsonville fine sandy loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567320	Rn	Robinsonville silt loam	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567321	Sh	Sharkey clay, 0 to 2 percent slopes, occasionally flooded	All areas are prime farmland
TN	TN157	Shelby County, Tennessee	567322	Sw	Swamp (rosebloom, ponded)	Not prime farmland
TN	TN157	Shelby County,	567323	Tu	Tunica silty clay	All areas are prime

		Tennessee				farmland
TN	TN157	Shelby County, Tennessee	567324		water	Not prime farmland
TN	TN157	Shelby County, Tennessee	567325	Wv	Waverly silt loam, 0 to 2 percent slopes, occasionally flooded, long duration	Not prime farmland

Report Metadata: Back to top

- **Area_Symbol:** A symbol that uniquely identifies a single occurrence of a particular type of area (e.g. Dane Co., Wisconsin is WI025).
- Area Name: The name given to the specified geographic area.
- mukey: A non-connotative string of characters used to uniquely identify a record in the Mapunit table.
- Mapunit SYM: The symbol used to uniquely identify the soil mapunit in the soil survey.
- Mapunit_Name: Correlated name of the mapunit (recommended name or field name for surveys in progress).
- **Prime and other Important Farmlands:** Identification of map units as prime farmland, farmland of statewide importance, or farmland of local importance.

Prime and other Important Farmlands Description:

This table lists the map units in the survey area that are considered important farmlands. Important farmlands consist of prime farmland, unique farmland, and farmland of statewide or local importance. This list does not constitute a recommendation for a particular land use.

In an effort to identify the extent and location of important farmlands, the Natural Resources Conservation Service, in cooperation with other interested Federal, State, and local government organizations, has inventoried land that can be used for the production of the Nation's food supply.

Prime farmland is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland

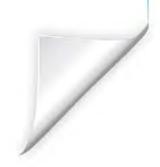
Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil quality, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. The water supply is dependable and of adequate quality. Prime farmland is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

For some of the soils identified in the table as prime farmland, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures.

A recent trend in land use in some areas has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

Unique farmland is land other than prime farmland that is used for the production of specific high-value food and fiber crops, such as citrus, tree nuts, olives, cranberries, and other fruits and vegetables. It has the special combination of soil quality, growing season, moisture supply, temperature, humidity, air drainage, elevation, and aspect needed for the soil to economically produce sustainable high yields of these crops when properly managed. The water supply is dependable and of adequate quality. Nearness to markets is an additional consideration. Unique farmland is not based on national criteria. It commonly is in areas where there is a special microclimate, such as the wine country in California.

In some areas, land that does not meet the criteria for prime or unique farmland is considered to be *farmland of statewide importance* for the production of food, feed, fiber, forage, and oilseed crops. The criteria for defining and delineating farmland of statewide importance are determined by the appropriate State agencies. Generally, this land includes areas of soils that nearly meet the requirements for prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some areas may produce as high a yield as prime farmland if conditions are favorable. Farmland of statewide importance may include tracts of land that have been designated for agriculture by State law.


In some areas that are not identified as having national or statewide importance, land is considered to be farmland of local importance for the production of food, feed, fiber, forage, and oilseed crops. This farmland is identified by the appropriate local agencies. Farmland of local importance may include tracts of land that have been designated for agriculture by local ordinance.

ATTACHMENT 5

Hazardous Materials, Solid Waste, and Pollution Prevention Information

PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT

HOLMES ROAD DEVELOPMENT PROJECT PROPERTY SOUTHEAST CORNER OF EAST HOLMES ROAD AND SWINNEA ROAD SHELBY COUNTY, TENNESSEE

EnSafe Project Number: 0888821806

Prepared for:

Memphis - Shelby County Airport Authority 4225 Airways Boulevard Memphis, Tennessee 38116

Issue Date: June 26, 2020

<u>Dean A. Stoker</u> Project Manager

Signature

Environmental Professional Statement:

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Prepared by:

EnSafe Inc. 5724 summer Trees Drive Memphis, Tennessee 38134 901-372-7962 800-588-7962 www.ensafe.com

TABLE OF CONTENTS

EXECU	TIVE SU	JMMARY	. iii
1.0	INTRO 1.1 1.2 1.3 1.4	DUCTION Purpose Scope of Services Client Information and User Responsibilities Non-Scope Items	1 3
2.0	PHYSIC	CAL SETTING	6
3.0	SUBJE0 3.1 3.2 3.3 3.4 3.5	Interviews Prior Environmental Assessments Historical Development and Uses 3.3.1 Historical Development 3.3.2 Historical Uses and Operations Current Uses Interior and Exterior Observations 3.5.1 Hazardous Substances and Petroleum Products and Storage Tanks 3.5.2 Pits, Ponds, or Lagoons Environmental Records Review	8 9 .10 .13 .14 .15 .16
4.0	AREA F 4.1 4.2 4.3	RECONNAISSANCEAdjoining Properties	18 20
5.0	RESUL ² 5.1 5.2 5.3 5.4 5.5 5.6	TS OF THE ENVIRONMENTAL PROFESSIONAL INQUIRY Summary of Findings and Conclusions Environmental Professional Opinion Data Gaps Limitations and Exceptions Significant Assumptions User Reliance	22 23 23 24 24
6.0	REFER	ENCES	. 26
		TABLES	
Table 2 Table 2 Table 3 Table 4 Table 5	2 3 4	Subject Property Parcels Physical Setting Summary Summary of Interviews Historical Subject Property Development Summary Subject Propery Observations	6 8

APPENDICES

Appendix A	Figures
Appendix B	Resumes
Appendix C	Environmental Database Search Report
Appendix D	Historical Documents
Appendix E	Government Records
Appendix F	Miscellaneous Supporting Documents
Appendix G	Photo Log

EXECUTIVE SUMMARY

EnSafe Inc. performed a Phase I Environmental Site Assessment (ESA) of an approximately 250-acre tract of land referred to as the "Holmes Road Development Project Property," which is located on the southeast corner of East Holmes Road and Swinnea Road and north of the Tennessee/Mississippi State line, all of which are currently owned by the Memphis-Shelby County Airport Authority (MSCAA) and being in Memphis, Shelby County, Tennessee (subject property) in general conformance with the ASTM International (ASTM) *Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process* Designation E1527-13 (ASTM 2013). The goal of this Phase I ESA is to identify evidence of *recognized environmental conditions*.¹ The findings, conclusions, and environmental professional opinion in this Phase I ESA report result from interviews, an environmental records search, historical and regulatory research, and a site visit on April 15 and 16, 2020.

This environmental assessment has identified the following associated with the subject property:

- The subject property is currently vacant and predominantly covered with timber. One generally cleared area in the northeast portion of the property is thought to be a former construction sand and gravel mining area. A Tennessee Valley Authority high-voltage electric transmission line easement is located within the south portion of the property, a Texas Gas natural gas line easement is within the northwest portion, and a Valero and Memphis Light Gas & Water gas line (presumed to convey various petroleum products) easement is along the west and south property boundaries. Various water features (creeks, streams, drainageways, wet weather conveyances, gullies, and ponds) are present throughout the property. Several building footprints and other evidence of historical development was observed in various areas of the property at the time of the site visit; however, active current development of the property was not identified. Materials observed (linoleum floorings, brick, roofing shingles, concrete, etc.) in the north-central and west portions of the subject property would suggest historical building structures; however, it is unknown if these structures represent former residential (homestead) dwellings or structures associated with historical mining operations. Scattered debris (concrete, plastic, metal roofing, used tires, a livestock feeding trough/ring with no bottom, etc.) was observed throughout these portions of the property. Although some of the debris was observed in presumed historical residential/mining operation areas, it was not determined if all the debris was the result of previous onsite activities or from more recent illegal dumping activities. Recreational vehicle use was evident on trails throughout the property.
- Based on information reviewed, the subject property is thought to have been under residential and/or homestead use as early as the 1930s. Historical information reviewed indicates at least portions of the subject property were repurposed for use in surface mining of construction sand and gravel from around 1950 until the mining operation was abandoned on April 4, 1979. Building structures and presumed operation areas are evident on various portions of the property on historical sources reviewed; however, actual site use and operations are not known. MSCAA acquired the subject property parcels from individuals from the late 1980s through the mid-1990s. The subject property has reportedly not been

iii

¹ ASTM defines a *recognized environmental condition* as "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: due to any release to the environment; under conditions indicative of a release to the environment; or under conditions that pose a material threat of a future release to the environment."

utilized commercially since MSCAA ownership. Evidence of possible former surface mining operation areas, former building structures, and open ponds (some presumably from previous mining activities), streams, gullies, and wet-weather conveyances were noted throughout the subject property at the time of the site reconnaissance.

- The subject property was inspected in 1980 by the United States Environmental Protection Agency and a site description on the inspection report indicated the site as an "old gravel pit, now overgrown, no sign of stain, leachate, or disturbance". Shovel test data generated during a recent cultural resources survey did not appear to identify artifacts that would be indicative of subsurface landfilling; however, surface trash and debris was noted at a number of the test locations. In addition, evidence of subsurface landfilling was not observed during the Phase I ESA site reconnaissance, but surface trash and debris was observed.
- Several adjoining and surrounding area sites were identified with environmental records. Regulatory records reviewed do not suggest that possible releases at the identified sites have had the potential to migrate to subject property soil, soil vapor, or groundwater.

This assessment has revealed no evidence of *recognized environmental conditions, controlled recognized environmental conditions, or historical recognized environmental conditions* in connection with the subject property. ^{2,3}

EnSafe identified the following business environmental risk. 4,

• The presence of remaining former building materials, surface debris and trash scattered throughout the subject property, and the presence of wetlands, wet-weather conveyances, and gullies is considered a business environmental risk due to potential costs associated with offsite disposal of building materials and trash/debris, and limitations due to site features requiring modification prior to planned future use of the property.

The following data gaps and limitations limited EnSafe's ability to identify *recognized environmental conditions* in connection with the subject property:

- Former owners and operators of the subject property were not identified or interviewed. Internet research was conducted; however, information on former operators was not found.
- It is unknown if potential landfilling was conducted onsite in association with backfilling and/or site grading of former mining excavation areas.
- City directories reviewed by the environmental database provider did not include any returns for the subject property or nearby addresses.

driven impact on the business associated with the current or planned use of a parcel of commercial real estate."

² ASTM defines a *historical recognized environmental condition* as "a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."

³ ASTM defines a *de minimis condition* as "a condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies."

⁴ ASTM defines a *business environmental risk* as an environmental condition that "can have a material environmental or environmentally

- Some portions of the subject property were covered with dense vegetation, which limited visual and physical observation.
- The quality and scale of some aerial photographs limited the ability to make observations related to subject property development and/or site-specific activities.
- Portions of the subject property were outside the field of view on some of the historical topographic maps reviewed.

This executive summary is an excerpt of a detailed Phase I ESA report that includes elements necessary for proper interpretation, including any limitations, exceptions, and deletions to ASTM 2013 and established scope of work. As such, the executive summary should not be used independently of the Phase I ESA report and its supporting documentation.

1.0 INTRODUCTION

EnSafe Inc. was retained by Memphis-Shelby County Airport Authority (MSCAA) to conduct a Phase I Environmental Site Assessment (ESA) of an approximately 250-acre tract of land referred to as the "Holmes Road Development Project Property," which is located on the southeast corner of East Holmes Road and Swinnea Road and north of the Tennessee/Mississippi State line, all being in Memphis, Shelby County, Tennessee (Figure 1, Appendix A). The subject property is comprised of three individual parcels owned by the MSCAA. Table 1 summarizes the parcels comprising the subject property.

Table 1 Subject Property Parcels					
Shelby County Parcel ID	Address	Size (acres)			
094400 00129	2845 East Holmes Road	4.3			
094400 00128	2853 East Holmes Road	143.02			
094400 00107	9200 Swinnea Road	98.52			

Notes:

Information obtained from the Shelby County Assessor of Property website, tax parcel information presented in the environmental database report, and project-specific documents provided by MSCAA.

MSCAA = Memphis-Shelby County Airport Authority

The subject property is currently vacant, unused, and predominantly covered with timber. A Tennessee Valley Authority (TVA) high-voltage electric transmission line easement is located within the south portion of the property, a Texas Gas natural gas pipeline easement is within the north portion, and a Valero and Memphis Light Gas & Water (MLGW) gas line easement (presumed to convey various petroleum products) is along the west and south property boundaries. Various water features (creeks, streams, drainageways, gullies, wet-weather conveyances, and ponds) are present throughout the property. Figure 2 (Appendix A) is the Site Layout and Vicinity Map, which shows the overall layout of the subject property as well as the subject property's relation to adjoining and surrounding area properties .

1.1 Purpose

The subject property was assessed with respect to the range of contaminants within the scope of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and petroleum products. This assessment is intended to constitute all appropriate inquiries (AAI) into the previous ownership and uses of the property consistent with good commercial and customary practice as defined in 42 U.S. Code Section 9601 (35)(B) and promulgated at 40 Code of Federal Regulations Part 312 (AAI Final Rule). As such, the assessment is intended to permit the designated *user* to satisfy one of the requirements to qualify for the innocent landowner, bona fide prospective

purchaser, or contiguous property owner limitations on CERCLA liability (hereinafter, the Landowner Liability Protections).

The ASTM International (ASTM) Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process Designation E1527-13 (ASTM 2013) is the current industry standard used to define good commercial and customary practice for conducting an environmental site assessment of a parcel of commercial real estate. The goal of a Phase I ESA is to identify evidence of recognized environmental conditions, defined by ASTM as, "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment."

In accordance with ASTM 2013, this Phase I ESA was also intended to identify the following:

- Controlled recognized environmental condition: "a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."
- Historical recognized environmental condition: "a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."
- Business environmental risk: "a risk which can have a material environmental or environmentally-driven impact on the business associated with the current or planned use of a parcel of commercial real estate, not necessarily limited to those environmental issues required to be investigated in this practice."

De minimis condition: "a condition that generally does not present a threat to human health
or the environment and that generally would not be the subject of an enforcement action if
brought to the attention of appropriate governmental agencies." A condition found to be de
minimis is not a recognized environmental condition or controlled recognized environmental
condition.

1.2 Scope of Services

The Phase I ESA includes the following:

- Visual assessment of the subject property on April 15 and 16, 2020 by Velita Thornton of EnSafe; a resume is included in Appendix B.
- Interviews with personnel discussed in Section 3.1.
- Review of standard and additional federal, state, and local environmental records sources for the subject property and properties within ASTM 2013 approximate minimum search distances. Database search information is provided in Appendix C.
- Review of the following historical and land-use documents; select copies and printed information is provided in Appendix D:
 - United States (U.S.) Geological Survey topographic maps
 - Aerial photographs
 - Sanborn/fire insurance maps (no coverage)
 - City directories (no address listings)
- Review of physical setting information provided in the environmental database report (Appendix C).
- Review of regulatory information available from the U.S. Environmental Protection Agency (U.S. EPA) Envirofacts and Enforcement and Compliance History Online (ECHO), U.S. Geological Survey Mineral Resources Data System (MRDS), U.S. Department of Labor Mine Safety and Health Administration (MSHA), Tennessee Department of Environment and Conservation (TDEC), and Mississippi Department of Environmental Quality (MDEQ) websites, and files obtained from the TDEC and MDEQ through a Freedom of Information Act (FOIA) request. Select information is provided in Appendix E.

- Review of the user questionnaire provided to the Client and information provided by Ms. Lori Morris, Manager of Environmental Services, Memphis International Airport, as documented in Appendix F.
- Review of property information obtained from review of the Shelby County Assessor of Property website. Select information is provided in Appendix F.
- Review of the following documents prepared in association with an ongoing National Environmental Protection Act (NEPA) Environmental Assessment concurrently being conducted for the subject property: "Wetlands and Jurisdictional Features Evaluation" prepared by Tioga Environmental Consultants and dated June 29, 2019; "Summary of Findings of Approximately 250 Acres of Vacant Property Located on the Southeast Corner of Holmes & Swinnea Road, Memphis, Shelby County, Tennessee" prepared by Real Estate Appraisers & Land Surveyors and dated March 8, 2007; "Phase I Cultural Resources Survey for the Memphis Shelby County Airport Authority Holmes Road Environmental Assessment, Shelby County, Tennessee" prepared by Panamerican Consultants, Inc. and dated May 2020; and "Exhibit A Property Map, Holmes and Swinnea Area, Memphis International Airport," prepared by THY, Inc. and dated November 1, 2016. Copies of these site-specific documents are included in Appendix F.

1.3 Client Information and User Responsibilities

EnSafe was retained by MSCAA to conduct the Phase I ESA. According to ASTM, the *user* shall make known the reason for the Phase I ESA. In contracting EnSafe for the Phase I ESA, Ms. Morris indicated the Phase I ESA was being conducted to establish baseline conditions at the property, to identify potential business environmental risks associated with the property, and as part of a NEPA Assessment that is being conducted for the subject property.

The AAI Final Rule and Section 6.0 of ASTM 2013 describe tasks to be performed by the *user* that are required to qualify for an Landowner Liability Protections to CERCLA liability. The information that results from those tasks should be provided to the environmental professional to consider with respect to identifying *recognized environmental conditions*. Appendix F contains a questionnaire provided to the *user* outlining those tasks. Ms. Morris indicated there is an aviation easement on the property, the property cannot be residentially developed, and the purchase price paid for the property reflects the fair market value of the property. She did not indicate having any specialized knowledge or experience related to chemicals and processes used on the subject property, she was not aware of commonly known or reasonably ascertainable information about the property that would help the

environmental professional to identify conditions indicative of releases or threatened releases, and she was not aware of any obvious indicators that point to the presence or likely presence of releases at the property

1.4 Non-Scope Items

At the request of Ms. Morris, and as documented in Appendix F, EnSafe's Phase I ESA scope of work was not expanded to include consideration of environmental issues or considerations that are beyond the scope of ASTM 2013. However, wetland and flood zone information presented in the environmental database report and other referenced sources is summarized in Section 2.

2.0 PHYSICAL SETTING

Table 2 summarizes information obtained from review of physical setting sources and other sources reviewed during the Phase I ESA listed in Section 1.2.

	Table 2				
Physical Setting Summary Topography					
Elevation (feet above mean sea level)	330 to 390				
Topography	Generally west-northwest, as affected by a ridgeline present within the south portion of the property.				
Evidence of landfilling or excavation	Portions of the subject property were historically used for surfacing mining of construction sand and gravel. Partially cleared areas presumedly from reported historical soil and gravel mining activities were noted during the site visit and during review of historic aerial photographs. Historical topographic maps denote areas within the east portion of the property as "gravel pits."				
	It is unknown if landfilling was conducted at the subject property in association with the backfilling of mining pits or operation areas. Tennessee Department of Environmental Conservation (TDEC) officials indicated it was typical for mining pits to have been backfilled with debris historically, particularly those backfilled prior to 1970.				
Adjoining — higher elevation	South				
Adjoining — lower elevation	North				
Surface Water and Subject Property Draina	ge				
Subject property surface water features	Multiple streams are present on the subject property. First order streams enter the property from the south and a second order stream enters the property from the east. Multiple open water ponds (possibly former mining pits or operation areas), wet weather conveyances, gullies, and other drainage ways are present throughout the property.				
Adjoining surface water features	Open water ponds adjoining the subject property to the north and west. Rocky Creek and associated tributaries are southwest of the property. Unnamed creeks and drainage ways are east of the property.				
Nearest water body	Greenbrook Lake and McKeller Park Lake A.				
Direction and approximate distance to nearest water body	Greenbrook Lake is approximately 3,200 feet southeast and McKeller Park Lake A is approximately 3,300 feet northeast.				
Storm Water management	Storm water would likely sheet flow across the property from higher areas (south) and either infiltrate surface soils or enter open water ponds, wet weather conveyances, gullies, or onsite streams.				
Flood zone (summarized from Appendix C)	Subject property not identified within flood hazard areas.				
Wetlands (summarized from Appendix C and F)	Environmental database report identified three small areas within the northeast, west, and southeast portions of the subject property as being included in the National Wetland Inventory. Project-specific documents indicate the second order stream on the property is a freshwater forested/shrub linear wetland (Appendix F).				

Table 2 Physical Setting Summary					
Geology					
Soil types (and estimated depths/thickness) Environmental database report identifies 7 soil types across subject property: Collins, Grenada, Loring, Water, Falaya, Gul Land, and Memphis. Each of these soil types is predomina comprised of silt loam extending up to 96 inches below grossurface. Falaya soils are considered partially hydric; others are considered hydric.					
Bedrock (depth and type)	Reported at depths greater than 46 inches below ground surface.				
Additional information	None				
Hydrogeology					
Wells on subject property	None identified.				
Approximate depth to groundwater (feet) at the subject property	Unknown to				
Reported direction of groundwater flow at the subject property	Unknown				
Relevant surrounding property wells	Five groundwater monitoring wells on nearby property (approximately 1,500 feet northwest) in association with underground storage tank system closure.				
Approximate depth to groundwater	2.58 to 7.09				
Reported direction of groundwater flow	Westerly				

3.0 SUBJECT PROPERTY

Subject property information discussed below was obtained from interviews and sources identified in Section 1.2 and referenced in Section 6.

3.1 Interviews

Table 3 lists personnel interviewed, indicates their association with the subject property or this Phase I ESA, and summarizes topics discussed and information provided.

	Table 3					
	1	Summary of In	<u>terviews</u>	Information Provided / Costion		
Name	Affiliation	Subject Property	Time ⁽¹⁾	Information Provided/Section Discussed		
Lori Morris	Manager of Environmental Services, Memphis International Airport	Key Site Manager/Current Owner	9	Ms. Morris was interviewed about current and known historical uses of the subject property and surrounding area. Ms. Morris also completed the user question providing limited information relating to current and historical site use. Information obtained is discussed throughout this report.		
NA	NA	Current Occupant/Operator	NA	The site is not currently occupied or under operation.		
NA	NA	Former Owner/Operator	NA	Based on available information, the subject property parcels were owned by individuals prior to ownership by MSCAA, and at least portions of the property may have historically been utilized for construction sand and gravel mining. At least two separate entities have been identified as potential former owners or operators, but definitive contact information has not become available.		
Mr. Brown	City of Memphis Fire Department — Station #52	Local Official	NA	Telephone call to local fire department was answered by Mr. Brown. Mr. Brown indicated he had no personal knowledge of environmental issues in the subject property area. Mr. Brown indicated the department lieutenant may be able to provide more information and that he would have him return call. A return call has yet to be received.		
Mr. John Boatright	TDEC Memphis Field Office Solid Waste Inspector	State Official	NA	Conducted telephone interview in an attempt to obtain information about landfilling on the subject property. Information is discussed in Section 3.6.		
Mr. Jordon English	TDEC Field Office DoR Manager	State Official	NA	Conducted a telephone interview in an attempt to obtain current regulatory status of surrounding area properties. Mr. English provided information relating to the surrounding area sites listed with environmental records, particularly Memphis Public Works/Jackson Pit. Information is discussed in Section 4.2.		

	Table 3 Summary of Interviews						
Name Affiliation Subject Property		Time ⁽¹⁾	Information Provided/Section Discussed				
Name	1 .	Summary of Recor					
Edwin Gray, Administrative Secretary	TDEC Memphis	gency Environmental Field Office	Result of Inquiry/Section Discussed Provided available regulatory records for nearb properties listed in the environmental database report				
Daisy Crary	Mar	on of Solid Waste nagement	area prop				
Melanie Vanderloop, Executive Administrative Assistant	TDEC Office of the Commissioner		Email correspondence pertaining to TDEC Division of Remediation records request. Numerous regulatory records were identified for one surrounding area site (Memphis Public Works/Jackson Pits), however site regulatory records review was limited due to the ongoing COVID-19 pandemic and anticipated costs for obtaining records under current limited access due to the pandemic. EnSafe contacted TDEC Memphis EFO personnel to discuss surrounding areas sites of interest and reviewed in-house records obtained from previous				
Scott Morgan and Phillip Davis	City of Memphis Public Works Department		Submitted a request for records for the subject property (sanitary sewer availability) and the nearby Memphis Public Works/Jackson Pits site. Mr. Morgan indicated the majority of the site is not currently served with city sewer service and would require a 4,000 linear foot sewer extension; however, he did indicate that city sewer became available to an area near the northeast corner of the property in 1972. Mr. Davis recommended a TDEC file review to obtain information relating the regulatory status of the nearby Memphis Public Works/Jackson Pits site.				
NA		ment of Environmental Quality	Submitted Available	I FOIA request for regulatory records. regulatory records for surrounding area sites yided to EnSafe via email.			

Notes:

(1) = Length of time or number of years the person has been affiliated or familiar with the subject property or surrounding area.

NA = Not applicable or not available.

TDEC = Tennessee Department of Conservation

EFO = Environmental Field Office FOIA = Freedom of Information Act

MSCAA = Memphis-Shelby County Airport Authority

DoR = Division of Remediation

3.2 Prior Environmental Assessments

Ms. Morris was not aware of any prior environmental reports for the subject property. EnSafe did review various documents generated in association with a NEPA Environmental Assessment that is being conducted concurrently with this Phase I ESA, as cited throughout this report.

3.3 Historical Development and Uses

The historical document review and interviews were conducted to identify evidence of *recognized environmental conditions* in connection with past uses of the subject property.

3.3.1 Historical Development

Table 4 is a summary of information relating to subject property development as obtained from review of historical sources, including those provided by the environmental database report provider and information obtained from review of historical sources included in the Panamerican Consultants report.

	Table 4				
Historical Subject Property Development Summary					
Date	Historical Source	Property Development Description			
1835	General Land Office Map ¹	Property appears to be a part of a larger tract of land appearing in Section 17, Township 1 North, Range 7 West of the Chickasaw Meridian of Mississippi. Reported surveying error caused the state line to be input in the wrong location and the property to be erroneously mapped in Mississippi rather than Tennessee.			
1888	W.T. Williamson Map of Shelby County ¹	State line had been resurveyed by this time and the state line now appears along the south boundary of the subject property. Property appears to remain as part of larger tract that is reportedly owned by Francis Holmes.			
1927 (revised 1932)	Shelby County Commissioner's Map ¹	Holmes Road first appears along the north property boundary and Swinnea Road first appears along the west boundary. Only identified site feature is a tributary of Hurricane Creek that enters the property in the northeast corner and meanders southward along the east property boundary.			
1937	Aerial Photograph	Shows the subject property mostly cleared with areas of possible surface mining. Although this aerial photograph is not of sufficient quality to discern specific site features, what appears to be possible building structures are within the north-central portion of the property and sporadic vegetation (timber) is visible throughout, along with apparent streams, ponds, and/or drainage areas.			
1939	Highway and Transportation Map ¹	Five structures are identified on the property. Three structures are located near the northeast corner (south of Holmes Road and west of a tributary of Hurricane Creek). Two structures are located on the west portion of the property (near Swinnea Road and south of another tributary of Hurricane Creek).			
1944	Topographic Map	Only shows the south half of the subject property; several building structures are present along the west property boundary.			
1953	Aerial Photograph	Shows numerous apparent building structures in the north-central and southwest portions of the property and one building structure is apparent along the west property boundary. A utility easement (current Texas Gas natural gas pipeline) footprint appears to traverse the north portion of the property.			
1956	County Engineering Department Map of Shelby County ¹	Natural gas pipeline easement that traverses the north portion of the property is present (pipeline denoted as having two 26-inch pipelines) At lease one tributary of Hurricane Creek crosses the property.			

Table 4				
Date	Historical Source	bject Property Development Summary Property Development Description		
1957	Aerial Photograph	Similar site features to that observed on the 1953 aerial photograph; however, the north utility easement does not appear as pronounced.		
1960 and 1961	Topographic Maps	Show the north two-thirds of the property; building structures are apparent within the north-central portion of the property and along the west property boundary.		
1961	Bartlett 15-Minute Quadrangle Map ¹	Seven structures, a road, and two ponds are identified. Four structures are present near the north-central portion of the property and three are present along Swinnea Road on the west side of the property. An unimproved road enters the property from Swinnea Road and traverses southeastward (one road branches off and terminates near the location of the north-central building structures).		
1963	Aerial Photograph	Property devoid of the apparent building structures within the north-central portion of the property; however, apparent building structures remain in the southwest portion of the property along with increased apparent building structures appearing along the west property boundary. The north utility easement is not apparent.		
1965	Aerial Photograph	Apparent building structures appear again in the north-central portion of the property along with the apparent building structures within the southwest portion, but the building structures previously apparent along the west property boundary are no longer visible. Portions of the north utility easement are again visible.		
1965 and 1997	Southeast Memphis 7.5-Minute Quadrangle Maps ¹	The 1965 topographic map indicates nine structures, the gas pipeline easement, several ponds, an unimproved road, and a gravel pit on the property. The unimproved road enters the property from Holmes Road near the central portion of the property and meanders southwestward and terminates south of the gas pipeline easement. Five of the structures appear as residences (two along Holmes Road and three along Swinnea Road). The remaining structures appear to be outbuildings and are located within the north-central portion of the property adjacent to the unimproved road and north of the gas pipeline easement. The gravel pit is located in the east-central portion of the property. The 1997 map shows only two structures remain, both being within the northwest portion.		
1971, 1973, and 1980	Aerial Photographs	Increased site activities are apparent in the north-central portion of the property on the 1971 aerial photograph and the utility easement in the north portion of the property appears much like current day. A defined area of clearing (presumed surface mining area) is southeast of the north-central building structures (south of the utility easement) and a network of unimproved roads extend southward from this area. Although building structures still appear in the north-central and southwest portions of the property on the 1973 aerial photograph, overall site activities appear to have decreased and the north utility easement is again not as pronounced as in previous aerial photographs. The 1980 aerial photograph continues to show building structures in the north-central portion of the property, the southwest portion, and along the west property boundary. The possible surface mining area southeast of the north-central building structures is still apparent; other portions of the property appear to be unused on this aerial photograph.		
1982 and 1996	Pleasant Hill 7.5-Minute Quadrangle Map ¹	Two structures and two outbuildings are present on the west side of the property. Several ponds are noted scattered across the property.		

Table 4			
Date	Historical Su Historical Source	bject Property Development Summary Property Development Description	
1975	Earth Explorer Aerial Photograph ¹	Most of the northern portion of the property appears cleared and possibly is being used as part of a mining operation. An apparent operation area is in the north-central portion of the property with an adjacent "quarry-like" area to the southeast. An unidentified oval-shaped features is visible in the northwest portion of the property. What appears to be a farmstead is in the west-central portion of the property along Swinnea Road.	
1990	Earth Explorer Aerial Photograph ¹	The northeast portion of the property remains cleared; however, the apparent operational area identified on the 1975 aerial does not appear as pronounced, and what appears to be an eroded gully now traverses the area. The apparent farmstead area identified on the 1975 aerial photograph appears to be more cleared on this aerial photograph, possibly indicting an operation area and adjacent "quarry-like" area. The unidentified oval-shaped features identified in the northwest corner of the property in the 1975 aerial photograph is not present.	
1991	Aerial Photograph	The subject property does not appear to be under active operation, with no apparent building structures present. Vegetation (timber) appears in previous apparent operation areas, and a utility easement (current TVA high-voltage electric line transmission easement) first appears in the south portion of the property.	
1992 and 1996	Aerial Photographs	Aerial photographs are not of sufficient quality to discern site activities; however, portions of the property appear with less vegetation than on the 1991 aerial photograph.	
1993 and 1997	Topographic Maps	Show less buildings on the property and the east portion is no longer denoted as a gravel pit.	
2008	Aerial Photograph	With the exception of the utility easements and one small cleared area within the extreme northeast portion of the property, the subject property appears covered with timber. Unidentified structures are evident along the west end of the current Texas Gas natural gas pipeline easement and one small structure is present on the west end of the current TVA high-voltage electric line transmission easement.	
2012	Aerial Photograph	The unidentified structures on the west end of the current Texas Gas natural gas pipeline easement are no longer present, otherwise the property appears much like that observed on the 2008 aerial photograph.	
2012	Topographic Map	Shows property devoid of structures.	
2016	Aerial Photograph	Shows the subject property generally covered with trees and similar to that observed on the 2012 aerial photograph.	

Notes:

Historical source included in the Panamerican Consultants. Inc. report titled "Phase I Cultural Resources Survey For The Memphis Shelby County Airport Authority Holmes Road Environmental Assessment Shelby County, Tennessee" (draft report), dated May 2020.

TVA = Tennessee Valley Authority

Sanborn fire insurance maps were not available for the subject property area through Environmental Database Report (EDR) who reportedly maintains the largest private collection of fire insurance maps. Sanborn no coverage documentation is provided in Appendix D.

3.3.2 Historical Uses and Operations

Based on interviews and review of historical sources and recently completed assessments, the subject property is thought to have been under residential and/or farmstead use as early as circa the mid-1930s or 1940s. Panamerican Consultants' recent survey of the property revealed five former twentieth-century residences and/or farmsteads within the north and west portions of the property. Evidence suggests that areas of the property may have been repurposed as possible quarry areas where construction sand and gravel were mined. Regulatory information reviewed on federal agency websites indicates mining operations were conducted by Al Crosby Construction Company under the name Dudley Anderson Pit from 1950 through the mid-1970s. A Modification of Right of Way Agreement provided by Ms. Morris indicates that Dudley Anderson and Nellie A. Anderson granted a right of way and easement to Texas Gas Transmission Corporation in October 1967. This is presumed to correspond to the current easement that transects the north portion of the subject property and confirms the previous Anderson ownership of the property. Regulatory records received from TDEC included a 1980 U.S. EPA Potential Hazardous Waste Site Preliminary Assessment conducted at the subject property that reported the site as inactive (site described as "old gravel pit, now overgrown, no sign of stain, leachate, or disturbance") and owned by W.S. Jordon and Sons Sand and Gravel (further discussed in Section 3.6). Ms. Morris of MSCAA (and others with MSCAA whom she consulted) nor Mr. Boatright with TDEC Memphis Environmental Field Office (EFO) were familiar with these entity names. EnSafe attempted to contact W.S Jordon and Sons Sand and Gravel at a telephone number provided on the U.S. EPA Preliminary Assessment and another telephone number obtained through internet research; however, the numbers were not operational. Contact information for Al Crosby Construction Company or Dudley Anderson Pit were not identified in records reviewed or through internet research.

Based on information provided by Ms. Morris, the MSCAA acquired the subject property parcels from individuals from the late 1980s through the mid-1990s. The subject property has reportedly not been utilized commercially since MSCAA ownership. Evidence of possible former surface mining operation areas, former building structures, and open ponds (some presumably from previous mining activities), an erosion gully, and streams and wet-weather conveyances were noted throughout the subject property at the time of the site reconnaissance.

Based on historical sources reviewed, interviews, and site reconnaissance, areas of suspected mining operations on the property may have been graded and or backfilled sometime after operations were terminated. Areas of clearing noted on historical sources reviewed later appeared more natural and mostly covered with tress and vegetation; however, some ponds and an erosion gully were noted in some of these areas at the time of the site visit. It is unknown if potential landfilling was conducted

onsite in association with backfilling and/or site grading of former mining excavation areas; however, Mr. Boatright of TDEC Memphis EFO indicated such practices were common, especially in mining pits backfilled prior to 1970.

EDR searched city directories for East Holmes Road for the years 1921 through 2017. No records were identified through the city directory search.

3.4 Current Uses

The subject property was visually assessed on April 15 and 16, 2020 by Velita Thornton of EnSafe. The purpose of the site reconnaissance was to determine current uses and to identify evidence of *recognized environmental conditions* in connection with the subject property. Photographs taken during the site visit are in Appendix G. EnSafe personnel walked the property perimeter, along wet weather conveyances, around ponds, along streams, and across easements, trails, and other accessible areas of the property. Adjacent and surrounding area properties were observed from the subject property boundaries and from nearby roads and driveways.

The subject property is currently vacant and predominantly covered with timber. One generally cleared area in the northeast portion of the property is thought to be a former construction sand and gravel mining area. A TVA high-voltage electric transmission line easement is located within the south portion of the property, a Texas Gas natural gas pipeline easement is within the northwest portion, and a Valero and MLGW gas line (presumed to convey various petroleum products) easement is along the west and south property boundaries. Various water features (creeks, streams, drainageways, wet weather conveyances, gullies, and ponds) are present throughout the property. Several building footprints and other evidence of historical development were observed in various areas of the property at the time of the site visit; however, active development of the property was not identified. Materials observed (linoleum floorings, brick, roofing shingles, concrete, etc.) in the north-central and west portions of the subject property would suggest historical building structures; however, it is unknown if these structures represent former residential (homestead) dwellings or structures associated with historical mining operations. Scattered debris (concrete, plastic, metal roofing, used tires, a livestock feeding trough/ring with no bottom, etc.) was observed throughout these portions of the property. Although some of the debris was observed in presumed historical residential/mining operation areas, it was not determined if the debris was the result of previous onsite activities or from illegal dumping. Recreational vehicle use was evident on trails throughout the property.

A recent survey of the site by Panamerican Consultants concluded that the only evidence of utilization of the property consisted of five twentieth-century historic resources, including four former residences or farmsteads and one breached earthen dam. Three of the residences were reported as razed and poorly preserved. A farmstead exhibited a concrete foundation/basement with a free-standing chimney. The report indicates the farmstead was occupied late into the twentieth century and was possibly reused as a quarry operation. Shovel test data generated as part of the survey, which ranged in depths up to 40 centimeters, did not appear to identify evidence of subsurface artifacts that would be indicative of landfilling; however, surface trash and debris was encountered at a number of the test locations.

According to the Real Estate Appraisers & Land Surveyors "Summary of Findings" (March 2007) obtained as part of the NEPA Environmental Assessment, all public utilities are available in the area of the subject property. Potable water, gas, and electricity are reportedly provided by MLGW and sanitary sewer is reportedly provided by the City of Memphis. Information obtained from the City of Memphis Public Works Department indicates sanitary sewer became available in 1979 for the area near the northeast corner of the subject property; however remaining portions of the property would reportedly require sewer line extensions prior to sewer service becoming available. With the reported historical and mining use prior to the time at which sewer service became available in the area, it is likely portions of the property would have been serviced by private septic systems; however, no confirmatory information has been obtained.

3.5 Interior and Exterior Observations

Table 5 lists environmental issues and identifies those present or applicable to the subject property, based upon EnSafe's visual observations of the interior and exterior, interviews, review of environmental records sources, regulatory research, and other publicly available and reasonably ascertainable information. Each environmental issue present or applicable is discussed in sections as noted in the table.

Table 5 Subject Property Observations			
Current or Past Use	Present or Applicable	Comment/Report Section	
Hazardous Substances and Petroleum Products	Yes	3.5.1	
Storage Tanks	Yes	3.5.1	
Odors (strong, pungent, or noxious)	No		
Pools of Liquids	No		
Drums (5 gallons and larger)	No		
Unidentified Substance Containers	No	-	

Table 5					
Subject Prop	Subject Property Observations				
Current or Past Use	Present or Applicable	Comment/Report Section			
Polychlorinated Biphenyls (associated with electric or hydraulic equipment)	No	_			
Fuel Source for Heating and Cooling Systems	No	_			
Stains or Corrosion (on building walls, floor, and ceilings)	No	_			
Floor Drains, Sumps, and Pits	No	_			
Pits, Ponds, or Lagoons	Yes	3.5.2			
Stained Soil or Pavement	No	_			
Stressed Vegetation	No	_			
Solid Waste	Yes	Various areas of solid waste debris (plastic, concrete, wood, used tires, floor materials, bricks, etc.) were observed throughout the subject property (Section 3.4).			
Hazardous Waste	No	_			
Wastewater	No	_			
Wells	Unknown	Possible due to property development prior to time when city water became available.			
Septic Systems or Cesspools	Unknown	Possible due to property development prior to city sanitary sewer service becoming available (Section 3.4).			

3.5.1 Hazardous Substances and Petroleum Products and Storage Tanks

A Texas Gas Company natural gas pipeline transects the north portion of the property. A Valero and MLGW gas line easement (presumed to convey various petroleum products) is along the west and south property boundaries.

One livestock feeding trough/ring was observed within the northwest portion of the property. The trough/ring did not have a bottom that would allow accumulation of rainwater or other liquids. No staining was noted on the trough/ring or on adjacent soil, and no stressed vegetation was noted in the area.

3.5.2 Pits, Ponds, or Lagoons

As previously mentioned, and as detailed in the July 29, 2019 letter prepared by Tioga Environmental Consultants, numerous wet weather conveyances, ponds, streams, gullies, and wetlands are present throughout the property. Some of these features may be associated with former mining operations.

3.6 Environmental Records Review

EnSafe obtained standard environmental record source information directly from a commercial service; U.S. EPA Envirofacts and ECHO, United States Geological Survey (USGS) MRDS, and U.S. Department of Labor MSHA, TDEC, and MDEQ websites, and regulatory files provided by TDEC and MDEQ through a FOIA request. The subject property was listed with environmental records.

Dudley Anderson Pit and Al Crosby Construction Company, which are mapped on the east-central portion of the subject property, are listed in the USGS MRDS databases under Mine ID 4001451 and MRDS ID W022891. The environmental database report suggests the facility was a past producer of sand and gravel. A review of online USGS MRDS documents indicates the Dudley Anderson Pit facility was owned by Dudley Anderson and operated by Al Crosby Construction Company. The website further indicates a MSHA health and safety inspection was conducted at the property in August 1975; however, the property was not included on the 1980 or 1981 MSHA list, possibly indicating the mining operation was terminated by this time.

The site listed as "Extraction Area South of Holmes Road" is mapped in the north-central portion of the subject property and is listed on the Superfund Enterprise Management System Archive database under U.S. EPA ID TND980728182. Previous regulatory records received by EnSafe from TDEC include a U.S. EPA Preliminary Assessment conducted on the subject property in August 1980. This assessment indicates the facility was owned by W.S. Jordon (presumed to be Jordon W.S. and Sons Sand and Gravel, Inc. based on internet research), was inactive at the time of the assessment, and not known potential hazard to the environment was identified. A January 1994 letter from Black & Veatch Science and Technology Corporation to U.S. EPA Region 4 suggests this site and the east-adjoining site (SES-31) are one and the same. Additional U.S. EPA records indicate the site was archived in 1994 and that the site reportedly did not qualify for the National Priorities List.

Mr. English with TDEC Memphis EFO was contacted about current regulatory status of this site. Mr. English did not have first-hand knowledge of the site or its current regulatory status. Mr. Boatright with TDEC Memphis EFO was also contacted to obtain information about any known landfilling operations at the subject property. Mr. Boatright also did not have first-hand knowledge of the property or knowledge of any authorized or unauthorized landfilling activities in the general area of the subject property. Mr. Boatright did indicate backfilling of historical gravel pits with debris was a common historical practice, especially pits backfilled prior to 1970.

4.0 AREA RECONNAISSANCE

The current and historical uses of adjoining and surrounding area properties described below are based upon visual observations during the site reconnaissance and information obtained from interviews, historical research, and regulatory research conducted for the subject property. A commercial environmental database company provided a database search report that made environmental records for surrounding area properties within the ASTM-defined search distances reasonably ascertainable. Sites listed in the environmental records search within the ASTM-defined search distances for the databases on which they appear are discussed in Sections 4.1 through 4.3.

4.1 Adjoining Properties

The subject property is adjoined on the north by East Holmes Road, then a church and timberland; on the east by a church, residences, and timberland; on the south by (from west to east) a church, a multi-tenant building, Servpro, a vacant distribution warehouse, and PFS Web; and on the west by Copart Salvage Auto Sales.

Based on review of historical sources, adjoining properties appear as rural and covered with timber or under agricultural use from the late 1930s through the 1970s when development is evident to the north (church building first appears) and northwest (unknown operation). The church and residential area east of the subject property first appears in the early 1980s. The properties to the south and west first appear commercially developed in the late 2000s, with increased development noted through present day.

Adjoining properties listed with environmental records are discussed below.

East

The SES-31/SES-31 Extraction Area site (address reported as South of 3025 East Holmes Road and South of Holmes/East of Swinnea/West of Tchulahoma) is listed in the Tennessee State Remediation Program (SRP) (now Division of Remediation or DoR) database with site IDs 79-765 and 79-768, and is also listed with an U.S. EPA ID of TND980728182.

Based on information reviewed, this site thought to be the same as the "Extraction Area South of Homes Road" site on the subject property and is discussed in Section 3.6.

South

Trane Climate Solutions located at 1560 East Stateline Road is listed in the environmental database report as a Resource Conservation and Recovery Act (RCRA) Non-Generator/No Longer Regulated

facility as of August 2016. The facility is listed as a previous small-quantity generator of hazardous waste with the following waste codes reported: ignitable waste (D001), corrosive waste (D002), barium (D005), methyl ethyl ketone (D035), tetrachloroethylene (D039), and trichloroethylene (D040). No violations were reported for the facility in the environmental database report or on the U.S. EPA ECHO website. Information received from FOIA requested submitted to MDEQ included a June 2016 Hazardous Waste Compliance Inspection Report. This inspection report indicates the facility was closed at the time of the inspection and the facility grounds were well maintained, and there was no evidence of any hazardous waste violations. The report further states that supplemental research suggests Trane Climate Solutions is closed with no immediate intention to reopen ether at this location or in the state.

Watsons Family Cleaners is mapped on the south-adjoining property at 1545 Stateline Road and is listed in the RCRA-Very Small Quantity Generator database. Based on area reconnaissance and internet research, this facility is thought to be located at 1545 Main Street, which is located over 2.5 miles southwest of the subject property and is therefore outside of the approximate minimum search distance for the database on which it appears.

Northwest

MLGW is mapped on the northwest-adjoining property at 2686 East Holmes Road and is listed in the RCRA Non-Generator/ No Longer Regulated database under U.S. EPA ID TNR000028761. The environmental database report indicates the facility was a previous small quantity generator of hazardous waste with corrosive waste (D002) being the only reported waste stream. No violations were reported for the facility in the environmental database report. Information obtained through the TDEC records request indicates the small quantity generator status was for a one-time generation of approximately 1,010 pounds of hydrogen peroxide (40 – 60%) in November 2009 by "MLGW — ASR Well Lot." Regulatory records received also included a September 2013 hazardous waste inspection report. This inspection report indicates no hazardous waste, universal waste, or used oil was observed and that no violations were cited during the inspection.

The former City of Memphis McKellar Nursery property listed as "Park Commission McKellar Nursery" is located on the northwest-adjoining property at 2684 Holmes Road and is listed in the underground storage tank (UST) and Historical UST databases under facility ID 9-791182. According to the environmental database report, the facility is registered with a 1,000-gallon diesel UST and a 1,000-gallon gasoline UST that are listed as permanently out of use as of June 15, 1990. Regulatory records obtained from TDEC indicates total petroleum hydrocarbon contamination was identified in soil at the time of UST closure at concentrations exceeding applicable standards. A letter from the

Tennessee Department of Health and Environment, Bureau of Environment (now TDEC), dated November 5, 1990, obtained through a TDEC FOIA request states "...it appears that all appropriate measures have been taken to remediate the release and to prevent future releases...at this time, the Division does not see the necessity for further investigation or enforcement...". Based on a local westerly groundwater flow direction determined at a nearby property (see discussion of site in Section 4.2), it is not anticipated that a petroleum product release to soil at this site has had the potential to migrate to soil, soil vapor, or groundwater on the subject property.

4.2 Surrounding Area Properties

The area surrounding the subject property is mixed residential, agricultural, timberland, commercial, and light industrial. The environmental database search identified a total of 3 sites with environmental records beyond the subject property and adjoining properties. Of these sites, 2 are within the ASTM-defined approximate minimum search distances, as discussed below.

OMS #15 is approximately 0.35-mile northwest of the northwest corner of the subject property at 2610 East Holmes Road and is listed in the UST, Historical UST, and Leaking UST databases under facility ID 790983. The facility is registered with a 6,000-gallon diesel UST and a 6,000-gallon gasoline UST. The environmental database report indicates both USTs were installed in 1982 and removed in May 1997. Regulatory files provided by TDEC includes a Permanent Closure Report submitted in May 1997 which reports total petroleum hydrocarbon-Diesel Range Organics was detected in a water sample collected from the tank pit at the time of tank closure at a concentration of 595 parts per million, which was above the 1.0 parts per million cleanup level for non-drinking water. Based on this detection above regulatory clean up levels a site characterization was performed. The site characterization report concluded that soil and groundwater beneath the property had not been impacted by hydrocarbons at concentrations exceeding applicable regulatory cleanup levels. Also, this report indicated a westerly groundwater flow direction (away from the subject property). TDEC issued case closure for the site in May 1999. Based on regulatory status and reported groundwater flow direction (away from the subject), it is not anticipated that contamination from this site has had the potential to migrate to soil, soil vapor, or groundwater at the subject property.

Memphis Public Works/Jackson Pit site is located approximately 0.5-mile north-northeast of the subject property. The site is listed in the State Hazardous Waste Sites, SRP/DoR, and Vapor databases under Facility ID/SRP Number 79-604 and U.S. EPA ID TND980709455. The site is reported as active on the environmental database report. The vapor database listing indicates soil and groundwater at the facility is impacted with volatile organic compounds/semivolatile organic

compounds (specifically tetrachloroethylene). The TDEC DoR website reports engineering controls have been implemented at the site.

TDEC records historically obtained by EnSafe indicate the Memphis Public Works/Jackson Pits site is a state hazardous waste site under investigation because of its prior use as a municipal and industrial waste landfill by Shelby County from 1961 to the early 1970s. Contaminants of concern at the site in soil and groundwater include volatile and semivolatile organic compounds, pesticides, herbicides, and heavy metals. Since at least 2000, the groundwater flow direction at the site has been to the west, away from the subject property. The landfill was closed in 2003 and a cap cover was installed along with 10 monitoring wells. Groundwater samples have been collected and analyzed for contaminants of concern. Records reviewed stated that the gradient at the site is west/northwest. EnSafe contacted Mr. Boatright of TDEC Memphis EFO to obtain current regulatory status of the site; however, Mr. Boatright referred EnSafe to the DoR. Mr. Jordon English with TDEC Memphis EFO indicated the site has basically remained idle since the early 2000s. He did indicate that TDEC is working with the property owner to complete additional soil and groundwater assessment offsite to the north-northwest, which he confirmed is the presumed general groundwater flow direction.

Based on information obtained, it is not anticipated that releases at this property have migrated to soil, soil vapor, or groundwater at the subject property, based on the site's distance from the subject property, the reported groundwater flow direction (not directed to the subject property), and the existing engineering controls at the site.

4.3 Unmapped Sites

The environmental database search identified 9 sites with environmental records which it could not map due to poor or inadequate address information. One of these sites (Watson's Cleaners) appears to correspond to the erroneously mapped south-adjoining property discussed in Section 4.1. The remaining sites were determined to be outside the ASTM-defined search distance for the database on which they appear or do not appear to have had releases with the potential to migrate to subject property soil, soil vapor, or groundwater.

5.0 RESULTS OF THE ENVIRONMENTAL PROFESSIONAL INQUIRY

EnSafe performed a Phase I ESA of the Holmes Road Development Project Property located at the southeast corner of East Holmes Road and Swinnea Road and north of the Tennessee/Mississippi state line, all being within Memphis, Shelby County Tennessee, in general conformance with the scope and limitations of ASTM 2013. Any exceptions to, or deletions from, this practice mentioned throughout the report are discussed in Sections 5.3 and 5.4.

5.1 Summary of Findings and Conclusions

- The subject property is currently vacant and predominantly covered with timber. One generally cleared area in the northeast portion of the property is thought to be a former construction sand and gravel mining operation area. A TVA high-voltage electric powerline transmission easement is located within the south portion of the property, a Texas Gas natural gas pipeline transmission easement is within the northwest portion, and a Valero and MLGW easement runs along the west and south property boundaries. Various water features (creeks, streams, drainageways, wet weather conveyances, gullies, and ponds) are present throughout the property. Several building footprints and other evidence of historical development was observed in various areas of the property at the time of the site visit; however, active development of the property was not identified. Materials observed (linoleum floorings, brick, roofing shingles, concrete, etc.) in the north-central and west portions of the subject property would suggest historical building structures; however, it is unknown if these structures represent former residential (homestead) dwellings or structures associated with historical mining operations. Scattered debris (concrete, plastic, metal roofing, used tires, a livestock feeding trough/ring with no bottom, etc.) was observed throughout these portions of the property. Although some of the debris was observed in presumed historical residential/mining operation areas, it was not determined if all of the debris was the result of previous onsite activities or from illegal dumping. Recreational vehicle use was evident on trails throughout the property.
- Based on information reviewed, the subject property is thought to have been under residential and/or farmstead use as early as the 1930s. Historical information reviewed indicates at least portions of the subject property were repurposed for use in mining of construction sand and gravel from around 1950 until the mining operation was abandoned on April 4, 1979. Building structures and presumed operation areas are evident on various portions of the property on historical sources reviewed; however, actual site use and operations are not known. MSCAA reportedly acquired the subject property parcels from individuals from the late 1980s through the mid-1990s. The subject property has reportedly not been utilized

commercially since MSCAA ownership. Evidence of possible former mining operation areas, former building structures, and open ponds (some presumably from previous mining activities), streams, gullies, and wet-weather conveyances were noted throughout the subject property at the time of the site reconnaissance.

- The subject property was inspected in 1980 by the United States Environmental Protection Agency and a site description on the inspection report indicated the site as an "old gravel pit, now overgrown, no sign of stain, leachate, or disturbance." Shovel test data generated during a recent cultural resources survey did not appear to identify artifacts that would be indicative of subsurface landfilling; however, surface trash and debris was noted at a number of the test locations. In addition, evidence of subsurface landfilling was not observed during the Phase I ESA site reconnaissance, but surface trash and debris was observed.
- Several adjoining and surrounding area sites were identified with environmental records. Regulatory records reviewed do not suggest that possible releases at the identified sites have had the potential to migrate to subject property soil, soil vapor, or groundwater.

5.2 Environmental Professional Opinion

This assessment has revealed no evidence of *recognized environmental conditions, controlled recognized environmental conditions, or historical recognized environmental conditions* in connection with the subject property.

The following *business environmental risk* was identified:

• The presence of remaining former building materials, surface debris and trash scattered throughout the subject property, and the presence of wetlands, wet-weather conveyances, and gullies is considered a *business environmental risk* due to potential costs associated with offsite disposal of building materials and trash/debris, and limitations due to site features requiring modification prior to planned future use of the property.

5.3 Data Gaps

The following data gaps were encountered that limited EnSafe's ability to identify *recognized environmental conditions*.

Former owners and operators of the subject property were not identified or interviewed.
 Internet research was conducted; however, information on former operators was not found.

- It is unknown if potential landfilling was conducted onsite in association with backfilling and/or site grading of former mining excavation areas.
- City directories reviewed by the environmental database provider did not include any returns for the subject property or nearby addresses.

Limitations and exceptions detailed in Section 5.4 are also considered data gaps that may have limited EnSafe's ability to identify *recognized environmental conditions*.

5.4 Limitations and Exceptions

EnSafe's Phase I ESA generally conforms to ASTM 2013. EnSafe did not sample soil, soil vapor, groundwater, or surface water as part of the Phase I ESA. Assessment of these items is based upon visual observations and sources as referenced throughout the report. This report should not be construed as verifying the present property owner or operator's compliance with federal, state, and local regulations or as a recommendation to purchase, sell, or develop the subject property. The following specific limitations and exceptions apply to this Phase I ESA:

- Some portions of the subject property were covered with dense vegetation, which limited visual and physical observation.
- The quality and scale of some aerial photographs limited the ability to make observations related to subject property development and/or site-specific activities.
- Portions of the subject property were outside the field of view on some of the historical topographic maps reviewed.

5.5 Significant Assumptions

This report is a prudent, reasonable evaluation of the subject property's observed environmental condition. EnSafe assumes no responsibility for conditions or information not practically reviewable, or information not accurately disseminated by any party. The following significant assumptions were used to formulate the conclusions and opinions contained in this report:

- Environmental database information is accurate and complete.
- Conditions at the time of the site visit were representative of ordinary conditions at the subject property.

The subject property boundaries depicted on figures and described herein are accurate.

5.6 User Reliance

The assessment was prepared under contract for the exclusive use of MSCAA. Any other party's reliance on this report is at risk unless EnSafe grants authorization. In accordance with ASTM 2013, this Phase I ESA is presumed to be valid for 180 days from the date of completion. A Phase I ESA that meets or exceeds this practice and was completed more than 180 days previously may be used to the extent allowed in Sections 4.7 and 4.8 of ASTM 2013.

6.0 REFERENCES

- ASTM International. Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. Designation E1527-13. 100 Barr Harbor Drive, West Conshohocken, Pennsylvania 19428. November 2013.
- Boatright, J. (telephone interview). Tennessee Depart of Environment and Conservation, Memphis Environmental Field Office. 901-371-3011.
- Brown, Mr. (phone interview). City of Memphis Fire Department, Station #52. 6675 Winchester Road, Memphis, Tennessee. 901-527-9516.
- Crary, D. (email correspondence). Records Officer, Tennessee Department of Environment and Conservation, 312 Rosa L. Parks Avenue, Nashville, Tennessee. 615-532-0346. Daisy.crary@tn.gov.
- Davis, P. (email correspondence). City of Memphis Public Works Department. 125 North Main Street, Room #608, Memphis, Tennessee. 901-636-6762. Phillip.davis@memphistn.gov.
- English, J. (telephone interview). Tennessee Depart of Environment and Conservation, Memphis Environmental Field Office. 901-371-3039.
- Environmental Data Resources, Inc. *The EDR Aerial Photo Decade Package.* Inquiry No. 6034858.8, 6 Armstrong Road, 4th Floor, Shelton, Connecticut 06484. 800-352-0050. 2020, April 8.
 - Certified Sanborn Map Report. Inquiry No. 6034858.3. 2020, April 8.
 - The EDR-City Directory Image Report. Inquiry No. 6034858.5. 2020, April 8.
 - EDR Historical Topographic Map Report. Inquiry No. 6034858.4. 2020, April 8.
 - The EDR Radius Map Report with GeoCheck. Inquiry No. 6034858.2s. 2020, April 8.

Google Earth. (website). Aerial imagery. 2020. Retrieved from: http://www.earth.google.com.

- Gray, E. (email correspondence). Administrative Secretary, Tennessee Department of Environment and Conservation, Memphis Environmental Field Office. 8383 Wolf Lake Drive, Bartlett, Tennessee. 901-371-3143. Edwin.gray@tn.gov.
- Mississippi Department of Environmental Quality. (regulatory information). 2020. Retrieved from: https://www.mdeq.ms.gov/ensearch.
- Mississippi Department of Environmental Quality. (electronic regulatory file request). Submitted via: https://www.mdeq.ms.gov/about-mdeq/public-records-request.
- Morgan, S. (email correspondence). City of Memphis Public Works Department. 125 North Main Street, Room #608, Memphis, Tennessee. 901-636-6762. Scott.morgan@memphistn.gov.
- Morris, L. (email interview). Manager of Environmental Services, Memphis International Airport, 2491 Winchester Road, Suite 106, Memphis, Tennessee. LMorris@flymemphis.com.
- Panamerican Consultants, Inc. *Phase I Cultural Resources Survey for the Memphis Shelby County Airport Authority Holmes Road Environmental Assessment, Shelby County, Tennessee.* 91 Tillman Street, Memphis, Tennessee. May 2020 (Draft Report).
- Shelby County Assessor of Property. (website). Property information. 2020. Retrieved from: http://www.assessor.shelby.tn.us/content.aspx.
- Tennessee Department of Environment and Conservation. (electronic regulatory file request). 312 Rosa L. Parks Avenue, Nashville, Tennessee. Submitted via: https://www.tn.gov/environment/contacts/public-records-request.html.
- Tennessee Department of Environment and Conservation. Website. (regulatory information). 2020. Retrieved from: https://www.tn.gov/environment.html.
- THY, Inc. Exhibit A Property Map, Holmes and Swinnea Area, Memphis International Airport (MEM).

 1760 Moriah Woods Boulevard, Suite 1, Memphis, Tennessee 38117. 901-362-3300.

 2016, November 1.

- Tioga Environmental Consultants. *Wetlands and Jurisdictional Features Evaluation, 250 Acre Tract at Holmes Road and Swinnea Road, Memphis, Shelby County, Tennessee, Tioga Project No. 541011.00.* 357 North Main Street, Memphis, Tennessee. 901-791-2432. 2019, July 20.
- United States Department of Labor. (website). Mine Safety and Health Administration. Regulatory information search. 2020. Retrieved from: https://www.msha.gov.
- United States Environmental Protection Agency. (website). Enforcement and Compliance History Online. Regulatory information search. 2020. Retrieved from: https://echo.epa.gov.
- United States Environmental Protection Agency. (website). Envirofacts. Regulatory information search. 2020. Retrieved from: www.epa.gov/enviro.
- United States Geological Survey. (website). Mineral Resources Data System. Regulatory information search. 2020. Retrieved from: https://mrdata.usgs.gov/mrds.
- Vanderloop, M. (email correspondence). Executive Administrative Assistant, Tennessee Department of Environment and Conservation, Office of the Commissioner. 312 Rosa L. Parks Avenue, Nashville, Tennessee. 615-532-5281. Melanie.vanderloop@tn.gov.

Appendix A Figures

Appendix B Resumes

DEAN A. STOKER ENVIRONMENTAL SCIENTIST

EDUCATION

BS, Biology, University of Arkansas, 1996

CERTIFICATIONS

- OSHA 40-Hour Hazardous Waste Operations
- Asbestos Hazard
 Emergency
 Response Act
 Asbestos Inspector
 Certification —
 Arkansas
- Fundamentals of Industrial Hygiene

Dean has expertise providing technology-based solutions for environmentally impacted sites and has completed complex due diligence and merger/acquisition projects (Phase I and Phase II ESAs); soil and groundwater investigations; regulatory compliance audits; and provided outside environmental, health and safety services. He has prepared and completed Comprehensive Site Assessments (CSA) and Environmental Assessments (EA) for Brownfields investigations for the Arkansas Department of Environmental Quality (ADEQ) and the Mississippi Department of Environmental Quality (MDEQ). Dean has in-depth experience managing projects relating to the redevelopment of environmentally impacted properties.

RELEVANT EXPERIENCE

SITE INVESTIGATION/BROWNFIELDS PROJECTS

Weyerhaeuser Co.; Philadelphia, MS

Project manager and team member conducting quarterly groundwater, surface water, and sediment sampling. Responsible for validating/managing analytical data, preparing quarterly reports, and constructing potentiometric maps and isoconcentration contour maps. Also involved in extensive groundwater and subsurface soil investigations and conducted routine sampling for various permits maintained by the facility.

Rixey Iron and Metal Co.; North Little Rock, AR

Team member during the remedial investigation at this State Superfund site. Duties included groundwater and soil sampling, perimeter air monitoring, and risk assessment. Removal action supervisor for removal action activities at the facility and was responsible for supervising removal action activities that included excavation of PCB- and lead-contaminated media; transportation and disposal of impacted hazardous and non-hazardous soil, ash, and sediment; PCB decontamination (pressure washing) and decommissioning of several onsite structures; and packaging, removal, and disposal of containerized hazardous and non-hazardous liquid and miscellaneous solid waste stored on site.

Brownfields Projects, Arkansas and Mississippi

Team member for Brownfields projects through ADEQ and the MDEQ. Duties involved assisting in the development of work plans, soil and groundwater sampling, evaluation of analytical data with respect to human risk-based levels and assisting with preparation of characterization reports.

Smarthouse Way, North Little Rock, AR

Field supervisor for this U.S. EPA Brownfields Cleanup Grant project. This project was the first Brownfields project funded by the Pulaski County loan project. Duties included managing day-to-day soil removal activities, conducting soil confirmation sampling, storm water management, and project reporting.

Whetstone Manufacturing Facility; Hot Springs, AR

Assessor for the Phase I ESA, which resulted in the identification of a number of recognized environmental conditions (REC), as defined by ASTM. A cost-savings Phase II ESA was recommended to further assess the potential environmental issues identified during the Phase I ESA. The Phase II ESA included sampling surface soils and trench excavations near the possible UST and the historical disposal pit. The trench excavations were considered a cost-savings measure, as Phase III ESA activities could be initiated immediately rather than having to conduct costly drilling activities to identify subsurface environmental hazards. The project was immediately pushed to a Phase III ESA to minimize the human health and ecological hazards identified during

the Phase II ESA. Served as the key field personnel in all phases of this project. Also authored all project-related reports, served as liaison among the attorneys, the current owner, and the potential purchaser. Following successful completion of all phases of the project, the ownership transaction was successfully completed.

Former Aermotor, Inc.; Conway, AR

Project manager for corrective actions at the site. Helped facility apply to the ADEQ Corrective Action Strategy (CAS) program for cleanup of petroleum-impacted surface and subsurface soils. Prepared CAS Wok Plan for planned corrective actions at the site. Upon acceptance of Work Plan by ADEQ, corrective actions were conducted. A Post-Corrective Action Risk Evaluation Plan, which documents the corrective actions completed at the site and evaluates future risk to human health and the environment, was submitted to and approved by ADEQ.

Jimelco Inc. Site, Little Rock, AR

Project manager for this CSA project at an approximately 14.7-acre parcel. At the request of ADEQ, a proposed Scope of Work (SOW) was prepared to determine the nature and extent of hazardous substances released into the environment, to determine the potential for additional releases of hazardous substances, and to determine the human health and environmental risk from hazardous substance releases at the site. The SOW was designed to investigate each of these particular concerns and included a site survey to establish site features as well as environmental media sampling to investigate the above potential concerns. The proposed SOW was subsequently approved by the ADEQ and a Work Plan (WP) was requested. Authored a WP that included the collection of 19 surface soil samples from eight Areas of Concern (AOCs), the installation of six subsurface soil borings, the installation of groundwater monitoring wells in five of the subsurface soil borings, the collection of six sediment samples from three onsite features and three sediment samples from two offsite features, the collection nine surface water samples from onsite and offsite features, the collection of five surface wipe samples from non-porous building surfaces, and the collection of one liquid and one sludge sample from an open pit inside an onsite building. His WP also included a complete human health and ecological risk assessment. The WP was approved by ADEQ with minimal or no requested modifications. Dean subsequently scheduled and managed all field activities, assisted contract personnel in requesting and awarding contracts to subcontractors, tracked project objectives and milestones, and prepared and submitted periodic project updates to the client. Following completion of field activities, Dean authored a CSA Report, which summarized and discussed all field activities, analytical results, and resulting human health and ecological risks for the site. The CSA Report was also approved by the ADEQ with minimal requested modifications.

Environmental Site Assessments, Multiple Locations

Conducted numerous Phase I and Phase II site assessments at numerous locations throughout the southeastern US. Projects involved site visit, personnel interviews, and record reviews to assess potential environmental liabilities at the site and surrounding properties. In addition to American Society for Testing and Materials (ASTM) requirements, many of these assessments have included expanded services, such as limited regulatory compliance audits, soil and/or groundwater screening, and AHERA asbestos inspections.

Comprehensive Site Assessments, ADEQ, Multiple Locations

Managed and performed CSAs for Arkansas Department of Environmental Quality (ADEQ) under an on-call services contract. Projects included the Fort Smith Smelter, Jimelco, I-Can, Butler Elementary, and Martindale Clinic.

Solid Waste Services, ADEQ, Multiple Locations

Participated in solid waste services and construction oversight for ADEQ at two sites: the C&L Landfill and Thompson Scientific.

NEPA Environmental Assessments, Multiple Locations

Subject matter expert for noise, transportation, hazardous materials, and environmental restoration for several EAs evaluating alternatives for a 5-6 mile railway extension at the Port of Cates Landing in Dyersburg,

Tennessee; a pipe line repair and dock walk replacement near Charleston, South Carolina; construction of a multimodal rail expansion at the Port of Memphis; and for a State Emergency Operations Center for the Arkansas Department of Emergency Management at Camp Robinson in North Little Rock, Arkansas

VELITA THORNTON

BIOLOGIST/ ENVIRONMENTAL SCIENTIST

EDUCATION

BS, Biology, 2013, Christian Brothers University, Memphis, TN

CERTIFICATIONS

- 40-hour Health and Safety Training: OSHA (29 CFR 1910.120)
- Level 1 Tennessee Erosion Prevention and Sediment Control certified
- RCRA Solid, Hazardous, and Universal Waste certified
- 40-hour Wetland
 Delineation Training
- Tennessee
 Hydrologic
 Determination
 Training (Qualified
 Hydrologic
 Professional In-Training)
- Tennessee Asbestos Inspector
- First Aid/CPR/AED

Velita is a Biologist/ Environmental Scientist with over four years of diverse experience that includes field team management and supervision, endangered species assessments, wetland delineations, stream determinations, wetland monitoring, plant/vegetation surveys, bat mist netting and habitat assessment, stormwater sampling, U.S. Army Corps of Engineers (USACE) permitting, Tennessee Department of Environment Conservation (TDEC) permitting, National Environmental Policy Act (NEPA) technical writing. Velita has also been responsible for reporting as part of Toxic Release Inventory (TRI) and Tier II programs, asbestos survey, Phase I and II Environmental Site Assessments (ESAs), contractor construction oversight, lab work, data analysis, soil and groundwater investigations and remediations, well installation and monitoring, and plant, fish, insect, amphibian, and benthic invertebrate collection and identification.

RELEVANT EXPERIENCE

Tenaha Wood Treating State Superfund Site, TCEQ, Tenaha, TX (2018)

As Biologist/ Environmental Scientist, Sample Manager, Field Team Lead, and Health and Safety Officer, Velita was responsible for soil, water, fish, benthic invertebrates, and amphibian sampling, collection, and identification. Managing samples and shipment, communications with client, reporting, and leading field events and sampling. Maintaining a safe work environment, reviewing safe work practices every day with field team, and safety monitoring.

Wetland and Stream Mitigation, Delineations, Determinations, Assessments, and Monitoring, Various Locations (2016-present)

As Biologist/ Environmental Scientist, Velita's responsibilities include report, photo log, and map preparation, as well as knowledge of wetland vegetation, hydric soils, and hydrology within the USACE Atlantic and Gulf Coastal Plain region. Also conducted wetland assessments using TVA Rapid Assessment Method and used Wetland Rapid Assessment Procedure to calculate mitigation requirements. Helped prepare Jurisdictional Determination application materials for USACE Memphis and Hydrologic Determination report for Tennessee Department of Environment and Conservation. Met regulators onsite for a concurrence site visit.

Stream determinations were made in accordance with TDEC's Hydrologic Determination Guidance. Assisted with annual monitoring which includes the assessment of hydrologic restoration and planted tree survival percentages, sample plots for vegetation surveys, and photo documentation. Performed hydrologic improvement design, conducted the annual monitoring, and wrote the monitoring report.

Bat Mist Netting, MSCAA-Memphis Shelby County Airport Authority, Memphis, Tennessee (2017)

As Biologist/ Environmental Scientist, Velita conducted habitat assessments for Indiana and northern longeared bats (Myotis sodalis and M. septentrionalis) and assisted with formal coordination with USFWS to identify regulatory requirements regarding federally listed bats. Setting up nets, logging bats collected, monitoring nets, and photo documentation.

Bat Habitat Assessment for Houston Levee Widening, Shelby County (2019); Shelby County, Tennessee As Environmental Scientist, conducted site visit to assess potential habitat for Indiana and northern long-eared bats (Myotis sodalis and M. septentrionalis) according to USFWS protocol. A letter report was submitted to the client.

Oak Hill Bat Habitat Assessment, Township Development Services (2017); Shelby County, Tennessee

As Environmental Scientist, conducted site visit to assess potential habitat for Indiana and northern longeared bats (Myotis sodalis and M. septentrionalis) according to USFWS protocol. A letter report was submitted to the client.

Bat Habitat Assessment, ARCO Murray (2018 and 2019); DeSoto County, Mississippi

As Environmental Scientist, conducted site visit to assess potential habitat for Indiana and northern longeared bats (Myotis sodalis and M. septentrionalis) according to USFWS protocol. A letter report was submitted to the client.

Stormwater Pollution Prevention Plan (2019-present)

As Environmental Scientist, creating and updating multiple facility SWPPPs in compliance with 40 CFR 122.26 (U.S EPA National Pollutant Discharge Elimination System requirements) and individual state storm water permit regulations for industrial clients nationwide.

TNEPSC Construction Inspections, Toyota Motor Manufacturing Tennessee (2019-present); Madison County, Tennessee

As Environmental Scientist, conducted bi-weekly erosion prevention and sediment control inspections of active construction site for compliance with TDEC General NPDES Permit for Stormwater Discharge from Construction Activities.

U.S. Navy, CLEAN, NAS Pensacola, Pensacola, FL (2016-present)

As Sample Manager, Field Team Lead, Health, and Safety Officer, Biologist/ Environmental Scientist, Velita assisted with soil, water, and fish sampling/collection, managing samples and sample shipment, and leading field events and sampling. Maintaining a safe work environment, reviewing safe work practices every day with field team, and safety monitoring.

U.S. Navy, CLEAN, NSA Mid-South, Millington, TN (2017-present)

As Sample Manager, Health and Safety Officer, and Environmental Scientist, Velita sampled, managed, tracked and aided with semi-annual groundwater sampling event. Provided support to multiple environmental assessments conducted for Navy CLEAN.

Helena Chemical Company, West Helena, AR; Tampa, FL (2017-present)

As Sample Manager and Environmental Scientist, Velita sampled groundwater, managed samples, organized sampling schedule, assisted with managing field team and tasks and aided with semi-annual groundwater sampling event.

McKellar Lake and Cypress Creek Sewer Line Break, Black & Veatch, Memphis, TN (2016-2017)

As Environmental Scientist, Velita collected water samples several times weekly, examined sludge, analyzed for nitrates and nitrites in the field, and took water quality reading to combat sewer release. Maintained and calibrated field equipment.

Stormwater sampling, Various Locations (2016-present)

As Environmental Scientist, Velita set up samplers, visual inspections, sample collection and managing, and managing client relations.

Vollrath Site Remediation, Bass Berry & Sims, Gallaway, TN (2016)

As Environmental Scientist, Velita oversaw SRS injections to remediate chlorinated solvent contamination at this facility.

Due Diligence/Phase I & II Environmental Site Assessments

Phase I Environmental Site Assessments, Multiple Locations (2016—Present)

As Environmental Scientist, Velia conducted Phase I ESAs for Comprehensive Environmental Response, Compensation and Liability Act due-diligence pre-acquisition real estate transactions at multiple sites

throughout the United States. Phase I ESAs were performed in accordance with American Society for Testing and Materials (ASTM) standards or client-directed formats and include historical and regulatory research, evaluation of state and federal environmental databases, visual reconnaissance of the property to document indications of potential environmental impairment, and report preparation. Clients include landowners, prospective purchasers, developers, financial institutions, and attorneys.

Phase II Environmental Site Assessments, Memphis, TN (2016—Present)

As Environmental Scientist, Velita conducted multiple Phase II ESAs conducted for various clients. Each Phase II ESA included sampling one or all of the following media: soil gas, soil, sediment, and/or groundwater. The investigation also included report preparation and result analysis.

Transaction Screen Assessments; ALSAC/St. Jude Children's Research Hospital, Multiple Locations (2016—Present)

As Environmental Scientist, Velita conducted limited environmental due diligence assessments in accordance with ASTM International standards for Transaction Screen Assessments on proposed properties for St. Jude. Duties included historical research, interviews, site observations, project coordination, and report preparation.

Asbestos Inspections and Sampling (2017—Present); Multiple Locations

As Environmental Scientist, Velita conducted several asbestos inspections that included bulk sampling and reporting laboratory findings. Sites inspected included the University of Memphis and Pleasant View Apartments in Memphis, Tennessee.

* Electron Microscopy Technician, St. Jude Children's Research Hospital, Memphis, TN (2010-2013, 2015)

As Electron Microscopy Technician, Velita expanded a number of projects, increased number of samples, and reduced turnaround time by implementing strategic workflow, procedures, and processes. She assisted in daily meetings and maintained a positive working environment, trained staff in electron microscopy techniques and assisted creating PowerPoint presentation for Director and faculty; compiled and organized complex data to summarize facility operations and achievements. She ordered and inventoried materials to maintain supplies, processed tissue samples using microtomy, embedding, staining, specialty techniques, and imaging, and monitored product quality to ensure compliance with standards and specifications. She also set up and conducted chemical experiments, tests, and analyses, using techniques such as chromatography, spectroscopy, biochemistry, general molecular biology, PCR, physical or chemical separation techniques, or microscopy and maintained, cleaned, or sterilized laboratory instruments or equipment.

*Biology Laboratory Assistant/ Teaching Assistant, Christian Brothers University, Memphis, TN (2009-2015) As Biology Laboratory Assistant/ Teaching Assistant, Velita set up, adjusted, calibrated, cleaned, maintained, and provided troubleshooting for laboratory and field equipment. She measured, weighed, and prepared compounds and solutions for use in laboratory classes, monitored laboratory work to ensure compliance with set standards and government organizations, maintained greenhouses and animals' safety, habitat, feeding schedules, and overall well-being and performed experiments in the laboratory with in vivo models. Velita also collected and analyzed biological data about relationships among and between organisms and their environment. She performed animal dissections and identified gross anatomy, trained new employees and recorded chemical and laboratory specimen inventories, prepared and cleaned laboratories for classes and supervised students' laboratory work. Velita assisted the professor, evaluate and grade students' laboratory work and assignments, initiated, facilitated, and moderated laboratory discussions, collaborated with colleagues to address teaching and research issues and assisted students with their coursework and laboratory work during class and in the field.

^{*} indicates work for a previous employer

Appendix C Environmental Database Search Report

MSCAA - Holmes Road EA

E Holmes Road Memphis, TN 38118

Inquiry Number: 6034858.2s

April 08, 2020

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-LBC-DVV

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	 3
Map Findings Summary	 4
Map Findings.	8
Orphan Summary	
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	A-5
Physical Setting Source Map.	A-13
Physical Setting Source Map Findings	A-15
Physical Setting Source Records Searched	PSGR-

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

E HOLMES ROAD MEMPHIS, TN 38118

COORDINATES

Latitude (North): 34.9995730 - 34° 59' 58.46" Longitude (West): 89.9679260 - 89° 58' 4.53"

Universal Tranverse Mercator: Zone 16 UTM X (Meters): 229122.4 UTM Y (Meters): 3876824.2

Elevation: 356 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 5944778 SOUTHEAST MEMPHIS, TN

Version Date: 2013

South Map: 5633941 PLEASANT HILL, MS

Version Date: 2012

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20140827, 20140823

Source: USDA

MAPPED SITES SUMMARY

Target Property Address: E HOLMES ROAD MEMPHIS, TN 38118

Click on Map ID to see full detail.

MAP				RELATIVE	DIST (ft. & mi.)
ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	ELEVATION	DIRECTION
A1	DUDLEY ANDERSON PIT		MINES MRDS	Lower	1 ft.
A2	DUDLEY ANDERSON PIT		MINES MRDS	Lower	1 ft.
3	EXTRACTION AREA	S OF HOLMES RD	SEMS-ARCHIVE	Higher	1 ft.
A4	CROSBY AL CONSTR CO		US MINES	Lower	1 ft.
B5	DUDLEY ANDERSON PIT		MINES MRDS	Higher	1 ft.
B6	ANDERSON PIT		MINES MRDS	Higher	1 ft.
C7	SES-31 EXTRACTION AR	SOUTH OF 3025 EAST H	TN SRP	Higher	431, 0.082, ENE
D8	MEMPHIS LIGHT, GAS A	2686 E. HOLMES ROAD	RCRA NonGen / NLR	Lower	450, 0.085, NW
D9	PARK COMM MCKELLAR N	2684 HOLMES ROAD	TN UST	Lower	457, 0.087, NW
D10	PARK COMM MCKELLAR N	2684 HOLMES ROAD	TN HIST UST	Lower	457, 0.087, NW
C11	SES -31	SOUTH OF HOLMES/EAST	TN SRP	Higher	464, 0.088, ENE
D12	OMS #15	2610 E HOLMES RD	TN LUST	Lower	721, 0.137, NW
D13	OMS #15	2610 EAST HOLEMS ROA	TN UST, TN HIST UST	Lower	721, 0.137, NW
D14	OMS #15	2610 EAST HOLEMS ROA	TN HIST UST	Lower	721, 0.137, NW
15	TRANE CLIMATE SOLUTI	1560 EAST STATELINE	RCRA NonGen / NLR, FINDS, ECHO	Higher	1197, 0.227, SSE
16	WATSONS FAMILY CLEAN	1545 STATELINE ROAD	RCRA-VSQG	Higher	1250, 0.237, SSE
17	ALVIN E GILLES	990 STATE LINE ROAD	MS LUST, MS UST	Higher	2210, 0.419, SSW
18	MEMPHIS PUBLIC WORKS	BLOCKS OF PITS RD	TN SHWS, TN SRP, TN VAPOR	Lower	3849, 0.729, NNE

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal	NPL	site	list

NPL...... National Priority List

Proposed NPL..... Proposed National Priority List Sites

NPL LIENS..... Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL...... National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY...... Federal Facility Site Information listing SEMS...... Superfund Enterprise Management System

Federal RCRA CORRACTS facilities list

CORRACTS...... Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF...... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

Federal institutional controls / engineering controls registries

LUCIS...... Land Use Control Information System US ENG CONTROLS..... Engineering Controls Sites List US INST CONTROLS..... Institutional Controls Sites List

Federal ERNS list

ERNS..... Emergency Response Notification System

State- and tribal - equivalent CERCLIS

MS SHWS..... CERCLA/Uncontrolled Sites File List

State and tribal landfill and/or solid waste disposal site lists

TN SWF/LF..... Solid Waste Disposal Facilities

MS SWF/LF..... Solid Waste Landfills

TN SWM COMPLAINTS..... Solid Waste Management Complaints

State and tribal leaking storage tank lists

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

TN LUST TRUST.....LUST TRUST Fund Database

TN HIST_LUST CO..... Leaking Underground Storage Tanks Sites

State and tribal registered storage tank lists

FEMA UST...... Underground Storage Tank Listing TN AST...... Aboveground Storage Tanks

MS AST..... Aboveground Storage Tanks

INDIAN UST...... Underground Storage Tanks on Indian Land

State and tribal institutional control / engineering control registries

TN ENG CONTROLS...... Engineering Control Sites MS ENG CONTROLS..... Sites with Engineering Controls

TN INST CONTROL..... Institutional Control Sites

MS INST CONTROL..... Sites with Institutional Controls

State and tribal voluntary cleanup sites

TN VCP...... Voluntary Cleanup, Oversight and Assistance Program Sites

INDIAN VCP...... Voluntary Cleanup Priority Listing MS VCP...... Voluntary Evaluation Program Sites

State and tribal Brownfields sites

TN BROWNFIELDS...... Superfund VOAP Listing MS BROWNFIELDS...... Uncontrolled Sites List

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI..... Report on the Status of Open Dumps on Indian Lands

ODI...... Open Dump Inventory

DEBRIS REGION 9...... Torres Martinez Reservation Illegal Dump Site Locations IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

TN CDL...... Registry of Contaminated Properties TN PRIORITYCLEANERS.... DCERP Remediation Sites Listing TN DEL SHWS...... Deleted State Hazardous Waste Sites US CDL...... National Clandestine Laboratory Register TN PFAS Contamination Site Location Listing

Local Land Records

TN LIENS..... Liens Information

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS..... Hazardous Materials Information Reporting System

TN SPILLS..... State Spills TN SPILLS..... State Spills

Other Ascertainable Records

FUDS..... Formerly Used Defense Sites DOD...... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR..... Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION............ 2020 Corrective Action Program List

ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS_____RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties PADS..... PCB Activity Database System

ICIS...... Integrated Compliance Information System

FTTS......FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide

Act)/TSCA (Toxic Substances Control Act)

..... Material Licensing Tracking System COAL ASH DOE..... Steam-Electric Plant Operation Data

COAL ASH EPA...... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS.....Lead Smelter Sites

US AIRS...... Aerometric Information Retrieval System Facility Subsystem

ABANDONED MINES..... Abandoned Mines

UXO...... Unexploded Ordnance Sites

DOCKET HWC..... Hazardous Waste Compliance Docket Listing

FUELS PROGRAM..... EPA Fuels Program Registered Listing

TN AIRS...... Listing of Permitted Sources
MS AIRS...... Air Quality Information Listing
TN DRYCLEANERS... Registered Facilities List
MS DRYCLEANERS... Drycleaner Facilities Listing
TN LEAD... Lead Safe Housing Registry
TN NPDES... Permitted Facility Listing

MS NPDES...... Industrial & Municipal NPDES Facilities

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
EDR Hist Auto	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

TN RGA LF	Recovered Government Archive Solid Waste Facilities List
MS RGA LF	Recovered Government Archive Solid Waste Facilities List
TN RGA LUST	Recovered Government Archive Leaking Underground Storage Tank
MS RGA LUST	Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes

available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

A review of the SEMS-ARCHIVE list, as provided by EDR, and dated 01/30/2020 has revealed that there is 1 SEMS-ARCHIVE site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
EXTRACTION AREA Site ID: 0403968 EPA Id: TND980728182	S OF HOLMES RD	0 - 1/8 (0.000 mi.)	3	10

Federal RCRA generators list

RCRA-VSQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-VSQG list, as provided by EDR, and dated 12/16/2019 has revealed that there is 1 RCRA-VSQG site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WATSONS FAMILY CLEAN	1545 STATELINE ROAD	SSE 1/8 - 1/4 (0.237 mi.)	16	28
EPA ID:: MSD985968544				

State- and tribal - equivalent NPL

TN SHWS: The State Hazardous Waste Sites records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. The data come from the Department of Health & Environment's Promulgated Sites.

A review of the TN SHWS list, as provided by EDR, and dated 12/30/2019 has revealed that there is 1 TN SHWS site within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
MEMPHIS PUBLIC WORKS Facility Id: 79604	BLOCKS OF PITS RD	NNE 1/2 - 1 (0.729 mi.)	18	32
Site Status: OPEN				

State and tribal leaking storage tank lists

TN LUST: A listing of leaking underground storage tank site locations.

A review of the TN LUST list, as provided by EDR, and dated 11/04/2019 has revealed that there is 1 TN LUST site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
OMS #15	2610 E HOLMES RD	NW 1/8 - 1/4 (0.137 mi.)	D12	19

Facility Id: 790983

Current Status: 8 Case Closed

Current Status: 1a Completed Tank Closure

MS LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Environmental Quality's LUST Status Report.

A review of the MS LUST list, as provided by EDR, and dated 12/18/2019 has revealed that there is 1 MS LUST site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
ALVIN E GILLES Status Code: Closed Facility Status: Inactive Facility Id: 2010	990 STATE LINE ROAD	SSW 1/4 - 1/2 (0.419 mi.)	17	29

State and tribal registered storage tank lists

Facility Id: 790983

TN UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environment & Conservation's Facility and Tank Report.

A review of the TN UST list, as provided by EDR, and dated 11/04/2019 has revealed that there are 2 TN UST sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
PARK COMM MCKELLAR N	2684 HOLMES ROAD	NW 0 - 1/8 (0.087 mi.)	D9	15
Compartment Status: Permanently	Out of Use	,		
Date Closed: 6/15/1990				
Facility Id: 9791182				
OMS #15	2610 EAST HOLEMS ROA	NW 1/8 - 1/4 (0.137 mi.)	D13	20
Compartment Status: Permanently	Out of Use	•		
Date Closed: 5/15/1997				

State and tribal voluntary cleanup sites

TN SRP: The State Remediation Program (SRP) was established in 1994 within the Division of Solid Waste Management for the purpose of providing owners, prospective purchasers and other interested parties the means to voluntarily investigate, clean up or monitor contaminated sites not regulated under RCRA, CERCLA or the Tennessee Division of Underground Tanks (UST).

A review of the TN SRP list, as provided by EDR, and dated 12/30/2019 has revealed that there are 2 TN SRP sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
SES-31 EXTRACTION AR State Remediation Program Site No Active?: CLOSED	SOUTH OF 3025 EAST H umber: 79675	ENE 0 - 1/8 (0.082 mi.)	C7	14
SES -31 State Remediation Program Site No Active?: CLOSED	SOUTH OF HOLMES/EAST umber: 79768	ENE 0 - 1/8 (0.088 mi.)	C11	18

ADDITIONAL ENVIRONMENTAL RECORDS

Local Lists of Registered Storage Tanks

TN HIST UST: This database is no longer updated by the agency. It contains records and detail fields that the current UST database does not.

A review of the TN HIST UST list, as provided by EDR, and dated 11/04/2019 has revealed that there are 3 TN HIST UST sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
PARK COMM MCKELLAR N Tank Status: Permanently Out of Use Facility Id: 9-791182	2684 HOLMES ROAD	NW 0 - 1/8 (0.087 mi.)	D10	17
OMS #15 Facility ld: 790983 Facility ld: 0790983	2610 EAST HOLEMS ROA	NW 1/8 - 1/4 (0.137 mi.)	D13	20
OMS #15 Tank Status: Permanently Out of Use Facility Id: 0-790983	2610 EAST HOLEMS ROA	NW 1/8 - 1/4 (0.137 mi.)	D14	24

Other Ascertainable Records

RCRA NonGen / NLR: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA NonGen / NLR list, as provided by EDR, and dated 12/16/2019 has revealed that

EXECUTIVE SUMMARY

there are 2 RCRA NonGen / NLR sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
TRANE CLIMATE SOLUTI EPA ID:: MSR000106542	1560 EAST STATELINE	SSE 1/8 - 1/4 (0.227 mi.)	15	26	
Lower Elevation	Address	Direction / Distance	Map ID	Page	
MEMPHIS LIGHT, GAS A EPA ID:: TNR000028761	2686 E. HOLMES ROAD	NW 0 - 1/8 (0.085 mi.)	D8	14	

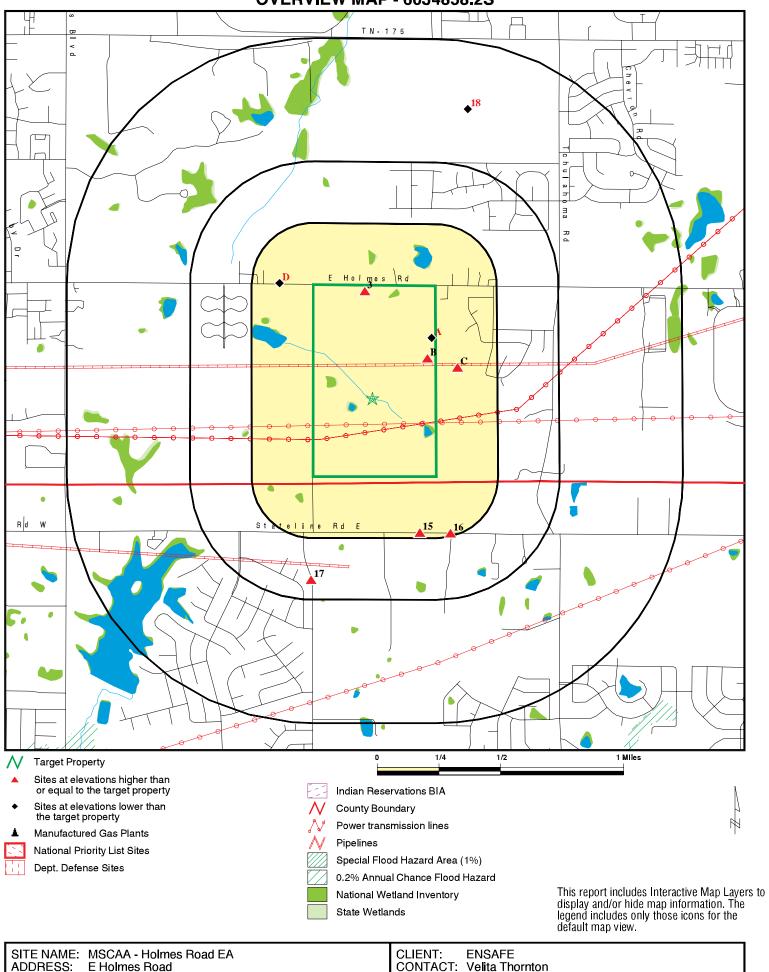
US MINES: Mines Master Index File. The source of this database is the Dept. of Labor, Mine Safety and Health Administration.

A review of the US MINES list, as provided by EDR, has revealed that there is 1 US MINES site within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
CROSBY AL CONSTR CO		0 - 1/8 (0.000 mi.)	A4	11
Database: US MINES, Date of Gover	nment Version: 11/06/2019			
Mine ID: 4001451				

MINES MRDS: Mineral Resources Data System

A review of the MINES MRDS list, as provided by EDR, and dated 04/06/2018 has revealed that there are 4 MINES MRDS sites within approximately 0.001 miles of the target property.

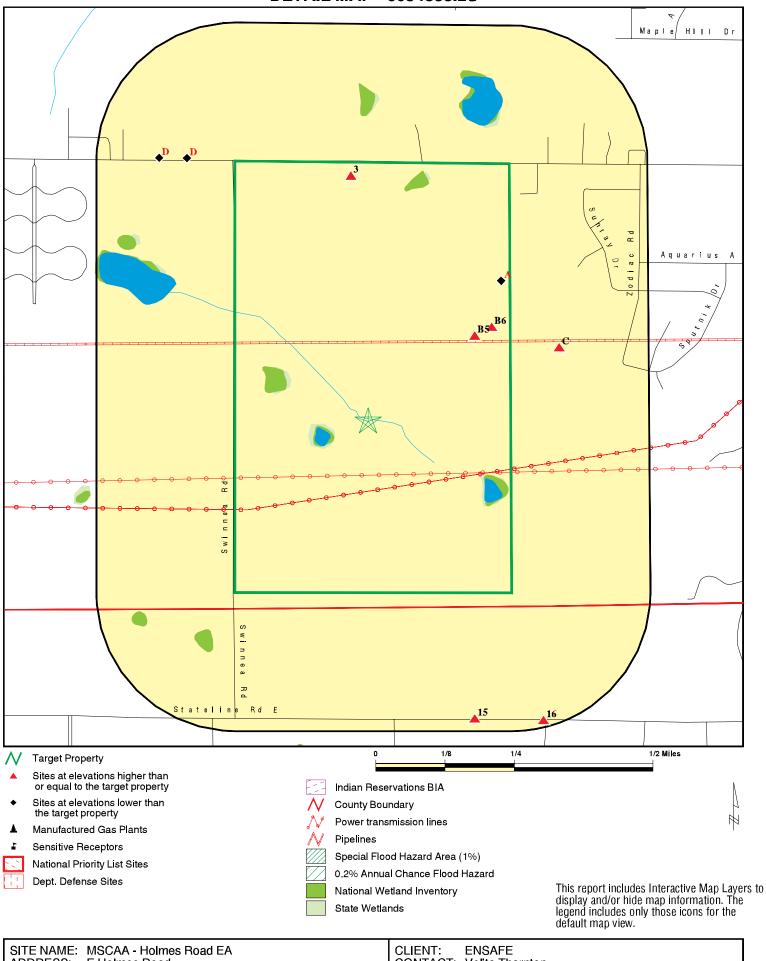

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
DUDLEY ANDERSON PIT ANDERSON PIT		0 - 1/8 (0.000 mi.) 0 - 1/8 (0.000 mi.)	B5 B6	12 13	
Lower Elevation	Address	Direction / Distance	Map ID	Page	

EXECUTIVE SUMMARY

Due to poor or inadequate address information, the following sites were not mapped. Count: 11 records.

Site Name	Database(s)
THOMAS - AIRWAYS/HOLMES INDUSTRIAL	TN SWM COMPLAINTS
VACANT ROADSIDE PROPERTY	TN SWM COMPLAINTS
	TN SPILLS
	TN SPILLS
WATSON'S CLEANERS	MS DRYCLEANERS
MEMPHIS ABANDONED DRUM	SEMS
"MINCEY" HOLMES ROAD SUBDIVISION,	TN NPDES
HOLMES ROAD EXPANSION	TN NPDES
IMPROVEMENTS TO HOLMES ROAD	TN NPDES
HOLMES ROAD IMPROVEMENTS	TN NPDES
THIRD STREET AND HOLMES ROAD INTER	TN NPDES
"MINCEY" HOLMES ROAD SUBDIVISION, HOLMES ROAD EXPANSION IMPROVEMENTS TO HOLMES ROAD HOLMES ROAD IMPROVEMENTS	TN NPDES TN NPDES TN NPDES TN NPDES TN NPDES

OVERVIEW MAP - 6034858.2S



Memphis TN 38118 34.999573 / 89.967926 LAT/LONG:

CONTACT: Velita Thornton INQUIRY#: 6034858.2s

DATE April 08, 2020 9:16 am

DETAIL MAP - 6034858.2S

ADDRESS: E Holmes Road

Memphis TN 38118 LAT/LONG: 34.999573 / 89.967926

CONTACT: Velita Thornton INQUIRY#: 6034858.2s DATE: April 08, 2020 9:16 am

Copyright © 2020 EDR, Inc. © 2015 TomTom Rel. 2015.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMENTAL RECORDS								
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal Delisted NPL site	e list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal CERCLIS NFRAI	P site list							
SEMS-ARCHIVE	0.500		1	0	0	NR	NR	1
Federal RCRA CORRACT	TS facilities li	ist						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-CORI	RACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	s list							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.250 0.250 0.250		0 0 0	0 0 1	NR NR NR	NR NR NR	NR NR NR	0 0 1
Federal institutional con engineering controls reg								
LUCIS US ENG CONTROLS US INST CONTROLS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	0.001		0	NR	NR	NR	NR	0
State- and tribal - equiva	lent NPL							
TN SHWS	1.000		0	0	0	1	NR	1
State- and tribal - equiva	lent CERCLIS	6						
MS SHWS	1.000		0	0	0	0	NR	0
State and tribal landfill a solid waste disposal site								
TN SWF/LF MS SWF/LF TN SWM COMPLAINTS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
State and tribal leaking s	storage tank l	ists						
TN LUST	0.500		0	1	0	NR	NR	1

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
MS LUST INDIAN LUST TN LUST TRUST TN HIST_LUST CO	0.500 0.500 0.500 0.500		0 0 0	0 0 0 0	1 0 0 0	NR NR NR NR	NR NR NR NR	1 0 0 0
State and tribal registere	d storage ta	nk lists						
FEMA UST TN UST MS UST TN AST MS AST INDIAN UST	0.250 0.250 0.250 0.250 0.250 0.250		0 1 0 0 0	0 1 0 0 0	NR NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR NR	0 2 0 0 0
State and tribal institution control / engineering control /		es						
TN ENG CONTROLS MS ENG CONTROLS TN INST CONTROL MS INST CONTROL	0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal voluntary	y cleanup sit	es						
TN VCP TN SRP INDIAN VCP MS VCP	0.500 0.500 0.500 0.500		0 2 0 0	0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 2 0 0
State and tribal Brownfie	lds sites							
TN BROWNFIELDS MS BROWNFIELDS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
ADDITIONAL ENVIRONMEN	TAL RECORD	<u>s</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	Solid							
TN SWRCY MS SWRCY INDIAN ODI ODI DEBRIS REGION 9 IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500 0.500		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	NR NR NR NR NR	NR NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardous Contaminated Sites	s waste /							
US HIST CDL TN CDL TN PRIORITYCLEANERS TN DEL SHWS	0.001 0.001 0.500 1.000		0 0 0 0	NR NR 0 0	NR NR 0 0	NR NR NR 0	NR NR NR NR	0 0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	<u>> 1</u>	Total Plotted
US CDL TN PFAS	0.001 0.500		0 0	NR 0	NR 0	NR NR	NR NR	0 0
Local Lists of Registered	l Storage Tai	nks						
TN HIST UST	0.250		1	2	NR	NR	NR	3
Local Land Records								
TN LIENS LIENS 2	0.001 0.001		0 0	NR NR	NR NR	NR NR	NR NR	0 0
Records of Emergency R	Release Repo	orts						
HMIRS TN SPILLS TN SPILLS	0.001 0.001 0.001		0 0 0	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
Other Ascertainable Rec	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR	0.250 1.000 1.000 0.500 0.001		1 0 0 0 0	1 0 0 0 NR	NR 0 0 0 NR	NR 0 0 NR NR	NR NR NR NR NR	2 0 0 0 0
EPA WATCH LIST 2020 COR ACTION TSCA TRIS	0.001 0.250 0.001 0.001		0 0 0 0	NR 0 NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
SSTS ROD RMP RAATS	0.001 1.000 0.001 0.001		0 0 0 0	NR 0 NR NR	NR 0 NR NR	NR 0 NR NR	NR NR NR NR	0 0 0 0
PRP PADS ICIS FTTS	0.001 0.001 0.001 0.001		0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
MLTS COAL ASH DOE COAL ASH EPA	0.001 0.001 0.001 0.500		0 0 0	NR NR 0	NR NR 0	NR NR NR	NR NR NR	0 0 0
PCB TRANSFORMER RADINFO HIST FTTS DOT OPS	0.001 0.001 0.001 0.001		0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
CONSENT INDIAN RESERV FUSRAP UMTRA	1.000 1.000 1.000 0.500		0 0 0 0	0 0 0	0 0 0	0 0 0 NR	NR NR NR NR	0 0 0
LEAD SMELTERS US AIRS US MINES ABANDONED MINES	0.001 0.001 0.250 0.250		0 0 1 0	NR NR 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 1 0
FINDS ECHO UXO	0.250 0.001 0.001 1.000		0 0 0	NR NR 0	NR NR NR 0	NR NR NR 0	NR NR NR NR	0 0 0

Appendix F Miscellaneous Supporting Documents

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
DOCKET HWC FUELS PROGRAM TN AIRS MS AIRS TN DRYCLEANERS MS DRYCLEANERS TN LEAD TN NPDES MS NPDES TN VAPOR	0.001 0.250 0.001 0.001 0.250 0.250 0.001 0.001 0.001		0 0 0 0 0 0 0	NR 0 NR NR 0 0 NR NR NR NR	NR NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR	NR	0 0 0 0 0 0 0
NAPOR								
EDR MGP EDR Hist Auto EDR Hist Cleaner EDR RECOVERED GOVER	1.000 0.125 0.125 NMENT ARCHI	<u>/ES</u>	0 0 0	0 NR NR	0 NR NR	0 NR NR	NR NR NR	0 0 0
Exclusive Recovered G	ovt. Archives							
TN RGA LF MS RGA LF TN RGA LUST MS RGA LUST	0.001 0.001 0.001 0.001		0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
- Totals		0	11	6	1	1	0	19

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Direction Distance

EDR ID Number Elevation Site **EPA ID Number** Database(s)

DUDLEY ANDERSON PIT MINES MRDS 1025568865 Α1

N/A

< 1/8 MEMPHIS, TN 38118

1 ft.

Site 1 of 3 in cluster A

Latitude:

Longitude:

Relative: MINES MRDS: Lower Name:

DUDLEY ANDERSON PIT Address: Not reported Actual:

Deposit identification Number: 10076012 345 ft.

City,State,Zip: MEMPHIS, TENNESSEE 38118

URL: https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10076012

MRDS Identification Number: W022891 MAS/MILS Identification Number: Not reported

Region: NA

Country: **United States**

Primary Commodities: Sand and Gravel, Construction

Secondary Commodities: Not reported **Tertiary Commodities:** Not reported Operation Type: Unknown Deposit Type: Sedimentary

Production Size: S - Small amount of material produced (we do not know what criteria

35.00317

-89.9637

are used to make this determination)

Development Status: Past Producer Ore Minerals or Materials: Sand and Gravel Gangue Minerals or Materials: Not reported Other Minerals or Materials: Not reported Not reported Ore Body Form: Workings Type: Not reported Mineral Deposit Model: Not reported Alteration Processes: Not reported Concentration Processes: Not reported Previous Names: Not reported Ore Controls: Not reported Reporter: Unknown Not reported Host Rock Unit Name: Host Rock Type: Not reported Associated Rock Unit Name: Not reported Associated Rock Type Code: Not reported Structural Characteristics: Not reported Tectonic Setting: Not reported References: Not reported First Production Year: Not reported Began Before/After FPY: Not reported Last Production Year: Not reported Ended Before/After LPY: Not reported Not reported Year Discovered: Found Before/After YD: Not reported Production History: Not reported Not reported Discovery Information:

Direction Distance

Distance EDR ID Number Elevation Site EDR ID Number Database(s) EPA ID Number

A2 DUDLEY ANDERSON PIT MINES MRDS 1025704105 N/A

< 1/8 MEMPHIS, TN 38118

1 ft.

Site 2 of 3 in cluster A

Relative: MINES MRDS:

Lower Name: DUDLEY ANDERSON PIT

Actual: Address: Not reported 345 ft. Deposit identification Number: 10226902

City, State, Zip: MEMPHIS, TENNESSEE 38118

URL: https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10226902

MRDS Identification Number: W022891
MAS/MILS Identification Number: 0471570005
Region: NA

Country: United States

Primary Commodities: Sand and Gravel, Construction

Secondary Commodities: Not reported **Tertiary Commodities:** Not reported Operation Type: Surface Deposit Type: Not reported Production Size: Not reported Past Producer **Development Status:** Ore Minerals or Materials: Not reported Not reported Gangue Minerals or Materials: Other Minerals or Materials: Not reported Ore Body Form: Not reported Workings Type: Not reported Mineral Deposit Model: Not reported Alteration Processes: Not reported Concentration Processes: Not reported

Previous Names: Al Crosby Construction Company

Ore Controls: Not reported

Reporter: Eastern Field Operations Center (EFOC)

Host Rock Unit Name: Not reported Host Rock Type: Not reported Associated Rock Unit Name: Not reported Associated Rock Type Code: Not reported Structural Characteristics: Not reported Tectonic Setting: Not reported References: Not reported Not reported First Production Year: Began Before/After FPY: Not reported Last Production Year: Not reported Ended Before/After LPY: Not reported Not reported Year Discovered: Found Before/After YD: Not reported Production History: Not reported Discovery Information: Not reported Latitude: 35.00321 -89.96369 Longitude:

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

3 EXTRACTION AREA SEMS-ARCHIVE 1003868632 S OF HOLMES RD TND980728182

< 1/8 MEMPHIS, TN 38111

1 ft.

SEMS Archive:

 Relative:
 Site ID:
 0403968

 Higher
 EPA ID:
 TND980728182

 Actual:
 Name:
 EXTRACTION AREA

 360 ft.
 Address:
 S OF HOLMES RD

 Address 2:
 Not reported

City,State,Zip: MEMPHIS, TN 38111

 Cong District:
 09

 FIPS Code:
 47157

 FF:
 N

NPL: Not on the NPL

Non NPL Status: NFRAP-Site does not qualify for the NPL based on existing information

SEMS Archive Detail:

 Region:
 04

 Site ID:
 0403968

 EPA ID:
 TND980728182

 Site Name:
 EXTRACTION AREA

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 VS

Action Name: ARCH SITE

SEQ:

Start Date: Not reported
Finish Date: 1994-05-17 04:00:00
Qual: Not reported
Current Action Lead: EPA Perf In-Hse

 Region:
 04

 Site ID:
 0403968

 EPA ID:
 TND980728182

 Site Name:
 EXTRACTION AREA

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 DS

 Action Name:
 DISCVRY

SEQ:

 Start Date:
 1980-04-01 05:00:00

 Finish Date:
 1980-04-01 05:00:00

 Qual:
 Not reported

Current Action Lead: EPA Perf

 Region:
 04

 Site ID:
 0403968

 EPA ID:
 TND980728182

 Site Name:
 EXTRACTION AREA

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 SI

 Action Name:
 SI

 SEQ:
 1

Start Date: Not reported

Direction Distance

EDR ID Number Database(s) **EPA ID Number** Elevation Site

EXTRACTION AREA (Continued)

1003868632

Finish Date: 1980-09-01 04:00:00

Qual: **Current Action Lead: EPA Perf**

Region: 04 Site ID: 0403968 EPA ID: TND980728182 Site Name: **EXTRACTION AREA**

NPL: Ν FF: Ν OU: 00 Action Code: PΑ Action Name: PΑ SEQ:

Start Date: Not reported

Finish Date: 1984-08-01 05:00:00

Qual: Current Action Lead: St Perf

Α4 **CROSBY AL CONSTR CO** US MINES 1011223423

N/A

< 1/8 SHELBY (County), TN 1 ft.

Site 3 of 3 in cluster A

Relative: US MINES: Lower Sic Code(s):

144200 Sic Code(s): 000000 Actual: Sic Code(s): 349 ft. 000000 Sic Code(s): 000000 Sic Code(s): 000000 Sic Code(s): 000000 Mine ID: 4001451

Entity Name: **DUDLEY ANDERSON PIT** Company: CROSBY AL CONSTR CO

Status:

Status Date: 19790430

Operation Class: 2 Number of Shops: 0 Number of Plants: 0 Latitude Degree: 00 Longitude Degree: 000 Latitude Minute: 00 Latitude Seconds: 00 00 Longitude Minutes: Longitude Seconds: 00 Number of Pits: 000

Direction Distance

EDR ID Numbe Elevation Site Database(s) **EPA ID Number**

B5 DUDLEY ANDERSON PIT MINES MRDS 1025532214 N/A

< 1/8 MEMPHIS, TN 38118

1 ft.

Site 1 of 2 in cluster B

Relative: MINES MRDS: Higher

DUDLEY ANDERSON PIT Name:

Address: Not reported Actual: 10025661 Deposit identification Number: 371 ft.

City, State, Zip: MEMPHIS, TENNESSEE 38118

URL: https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10025661

MRDS Identification Number: K001575 MAS/MILS Identification Number: Not reported

Region: NA

Country: **United States**

Primary Commodities: Sand and Gravel, Construction

Secondary Commodities: Not reported **Tertiary Commodities:** Not reported Operation Type: Unknown

Deposit Type: **Unconsolidated Sediments** Production Size: Y - Yes, production has occurred

Development Status: Producer Sand and Gravel Ore Minerals or Materials: Ganque Minerals or Materials: Not reported Other Minerals or Materials: Not reported Ore Body Form: Not reported Workings Type: Not reported Mineral Deposit Model: Not reported Alteration Processes: Not reported Concentration Processes: Not reported Not reported **Previous Names:** Not reported Ore Controls: Reporter: Fagan, James M. Host Rock Unit Name: Fluvial Deposits Host Rock Type: Alluvium Associated Rock Unit Name: Not reported

Not reported Associated Rock Type Code: Structural Characteristics: Not reported Tectonic Setting: Not reported Not reported References: First Production Year: Not reported Began Before/After FPY: Not reported Last Production Year: Not reported Ended Before/After LPY: Not reported Not reported Year Discovered: Found Before/After YD: Not reported Not reported Production History: Discovery Information: Not reported Latitude: 35.00178 -89.96453 Longitude:

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

В6 **ANDERSON PIT** MINES MRDS 1025771655

N/A

< 1/8 MEMPHIS, TN 38118

1 ft.

Site 2 of 2 in cluster B

Ore Controls:

Relative: MINES MRDS:

Higher Name: ANDERSON PIT Not reported Address Actual: Deposit identification Number: 10300075 357 ft.

City, State, Zip: MEMPHIS, TENNESSEE 38118

URL: https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10300075

MRDS Identification Number: Not reported MAS/MILS Identification Number: 0471570038 NA Region:

Country: **United States**

Primary Commodities: Sand and Gravel, Construction

Secondary Commodities: Not reported Tertiary Commodities: Not reported Operation Type: Surface Deposit Type: Not reported Production Size: Not reported **Development Status:** Producer Ore Minerals or Materials: Not reported Gangue Minerals or Materials: Not reported Other Minerals or Materials: Not reported Ore Body Form: Not reported Workings Type: Not reported Mineral Deposit Model: Not reported Alteration Processes: Not reported Concentration Processes: Not reported **Previous Names:** Not reported

Reporter: Eastern Field Operations Center (EFOC)

Not reported

Host Rock Unit Name: Not reported Host Rock Type: Not reported Associated Rock Unit Name: Not reported Associated Rock Type Code: Not reported Structural Characteristics: Not reported Tectonic Setting: Not reported References: Not reported First Production Year: Not reported Began Before/After FPY: Not reported Last Production Year: Not reported Ended Before/After LPY: Not reported Year Discovered: Not reported Found Before/After YD: Not reported Production History: Not reported Discovery Information: Not reported Latitude: 35.00201 -89.96399 Longitude:

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

C7 SES-31 EXTRACTION AREA TN SRP S123408914
ENE SOUTH OF 3025 EAST HOLMES ROAD N/A

< 1/8 MEMPHIS, TN

0.082 mi.

431 ft. Site 1 of 2 in cluster C

Relative: SRP:

Higher Name: SES-31 EXTRACTION AREA

Actual: Address: SOUTH OF 3025 EAST HOLMES ROAD

380 ft. City,State,Zip: MEMPHIS, TN Site Control Number: Not reported

EPAID: TND980728182
State Remediation Program Site Number: 79675
Project Manager Initials: Not reported

Field Office: Not reported Contaminants Of Concern: Not reported Active?: CLOSED Number Of Days In System: Not reported Program: Not reported Subprogram: Not reported Latitude: 35.001283 Longitude: -89.961954 Acres: Not reported

D8 MEMPHIS LIGHT, GAS AND WATER DIVISION RCRA NonGen / NLR

NW 2686 E. HOLMES ROAD < 1/8 MEMPHIS, TN 38118

0.085 mi.

450 ft. Site 1 of 6 in cluster D

Relative: RCRA NonGen / NLR:

Lower Date form received by agency: 2017-10-19 00:00:00.0

Actual: Facility name: MEMPHIS LIGHT, GAS AND WATER DIVISION

343 ft. Facility address: 2686 E. HOLMES ROAD

MEMPHIS, TN 38118

EPA ID: TNR000028761
Mailing address: P.O. BOX 430

MEMPHIS, TN 38118

Contact: KERRY ROY
Contact address: P.O. BOX 430

MEMPHIS, TN 38118

Contact country: US
Contact telephone: 901-528-4194
Contact email: Not reported
EPA Region: 04

Land type: Municipal
Classification: Non-Generator

Description: Handler: Non-Generators do not presently generate hazardous waste

Owner/Operator Summary:

Owner/operator address: MLGW
Owner/operator address: P.O.BOX 430
MEMPHIS, TN 38118

Owner/operator country: US

Owner/operator telephone: 901-528-4194
Owner/operator email: Not reported
Owner/operator fax: Not reported
Owner/operator extension: Not reported
Legal status: Municipal

1012212108 TNR000028761

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

MEMPHIS LIGHT, GAS AND WATER DIVISION (Continued)

1012212108

Owner/Operator Type: Owner

Owner/Op start date: 1980-01-01 00:00:00.

Owner/Op end date: Not reported

Owner/operator name: MLGW Owner/operator address: P.O.BOX 430

MEMPHIS, TN 38118

Owner/operator country: US

Owner/operator telephone: 901-528-4194 Owner/operator email: Not reported Owner/operator fax: Not reported Owner/operator extension: Not reported Legal status: Municipal Owner/Operator Type: Operator

Owner/Op start date: 1980-01-01 00:00:00.

Owner/Op end date: Not reported

Handler Activities Summary:

U.S. importer of hazardous waste: No Mixed waste (haz. and radioactive): No Recycler of hazardous waste: No Transporter of hazardous waste: No Treater, storer or disposer of HW: No Underground injection activity: No On-site burner exemption: No Furnace exemption: Nο Used oil fuel burner: No Used oil processor: No User oil refiner: No Used oil fuel marketer to burner: No Used oil Specification marketer: No Used oil transfer facility: No Used oil transporter: No

Historical Generators:

Date form received by agency: 2009-11-23 00:00:00.0

Site name: MEMPHIS LIGHT, GAS AND WATER DIVISION

Classification: Small Quantity Generator

Hazardous Waste Summary:

Waste code: D002

CORROSIVE WASTE Waste name:

Violation Status: No violations found

D9 PARK COMM MCKELLAR NURSERY TN UST U004174179 N/A

NW 2684 HOLMES ROAD < 1/8 MEMPHIS, TN 38103

0.087 mi.

Site 2 of 6 in cluster D 457 ft.

Relative: UST:

Lower PARK COMM MCKELLAR NURSERY Name:

Address: 2684 HOLMES ROAD Actual: City,State,Zip: MEMPHIS, TN 38103 344 ft.

> Facility ID: 9791182

Direction Distance

EDR ID N Elevation Site Database(s) EPA ID N

PARK COMM MCKELLAR NURSERY (Continued)

U004174

Facility Description: Local Government

Owner ID: 308910

CITY OF MEMPHIS/VEHICLE SERVICE CENTER Owner Name:

Owner Address: ATTN: RUSSELL HEASTON Owner Address 2: 671 ST. JUDE PLACE Owner City, St, Zip: MEMPHIS, TN 38105 Owner Description: Local Government

Tank Number: Tank ID: 50856 Tank Other Material: Not reported **RSN Red Tagged:** Not reported

Fac Red Tagged: Replacement: Not reported Compartment ID: 51599

Compartment Letter:

Compartment Status: Permanently Out of Use

Compartment Capacity: 1000

Small Delivery: Not reported Tank RD: Not reported Substance Description: Gasoline Date Installed: 12/31/1899 Date Last Used: 6/15/1990 Date Closed: 6/15/1990 Regulated: Not reported

Tank Material Desc: Tank Construction Material Other or Unknown

Tank Mod Desc: Inactive Tank Emergency: Tank LD No Tank No Fee: Not reported Overfill Type: Not reported

Overfill Device Installed: Spill Device Installed:

Date Removed From Ground: Not reported

Hazardous Substance Pipe Material Desc:

Pipe Other Material: Not reported Pipe RD: Not reported Pipe Repaired: Not reported Flex Piping Type: Not reported Year Flex Piping Installed: Not reported

Name: PARK COMM MCKELLAR NURSERY

2684 HOLMES ROAD Address: MEMPHIS, TN 38103 City,State,Zip:

Tank Number: 2 Tank ID: 50857 Tank Other Material: Not reported RSN Red Tagged: Not reported

Fac Red Tagged: Replacement: Not reported Compartment ID: 51600

Compartment Letter:

Compartment Status: Permanently Out of Use

Compartment Capacity: 1000 Small Delivery: Not reported Tank RD: Not reported ULS Diesel Substance Description:

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

PARK COMM MCKELLAR NURSERY (Continued)

U004174179

Date Installed: 12/31/1899 Date Last Used: 6/15/1990 6/15/1990 Date Closed: Regulated: Not reported

Tank Material Desc: Tank Construction Material Other or Unknown

Tank Mod Desc: Inactive Tank Emergency: Tank LD No Tank No Fee: Not reported Overfill Type: Not reported

Overfill Device Installed: Υ Spill Device Installed: Υ

Date Removed From Ground: Not reported

Pipe Material Desc: Hazardous Substance

Pipe Other Material: Not reported Pipe RD: Not reported Pipe Repaired: Not reported Flex Piping Type: Not reported Year Flex Piping Installed: Not reported

D10 PARK COMM MCKELLAR NURSERY TN HIST UST U003618496

N/A

NW **2684 HOLMES ROAD** < 1/8 MEMPHIS, TN 38103

0.087 mi.

Site 3 of 6 in cluster D 457 ft.

HIST UST: Relative:

PARK COMM MCKELLAR NURSERY Lower Name:

Address: 2684 HOLMES ROAD Actual: MEMPHIS, TN 38103 City, State, Zip: 344 ft.

Facility ID: 9-791182

Facility Description: Local Government

Owner ID: 1781

Owner Name: CITY OF MEMPHIS/PROPERTY MAINT.

281 East Pkwy. North Owner Address: Memphis, TN 38112 Owner City, St, Zip: Owner Telephone: (901) 272-1360 Owner Description: Local Government

Tank ID:

Tank Status: **Permanently Out of Use**

Tank Capacity: 1000 Tank Contents: Diesel Tank Material: Unknown Tank 2ndary Trait: None Tank Manual Gauge: False Tank Tightness: False Tank Inventory Control: False Tank ATG: False Tank Vapor Monitor: False Tank Groundwater Monitor: False Tank Double Walled: False Tank 2nd Contained: False False Tank SIR: Overfill Installed: False Spill Installed: False Cathodic Protection: False Date Installed: // Tank Leak Detection Listed: True

MAP FINDINGS Map ID

Direction Distance

EDR ID Numb Elevation Site Database(s) EPA ID Numb

PARK COMM MCKELLAR NURSERY (Continued)

U003618496

Pipe Material: Unknown Pipe Other Material: None Pipe Type: Not Listed Pipe Auto Line Leak Detect .: False Pipe Leak Detection Listed: False Pipe Vapor Monitor: False Pipe Groundwater Monitor: False Pipe Dbl Walled: Not reported Pipe 2nd Contained: False Pipe SIR: False Pipe Leak Detection Listed: True

Tank ID:

Tank Status: **Permanently Out of Use**

Tank Capacity: 1000 Tank Contents: Gasoline Unknown Tank Material: Tank 2ndary Trait: None Tank Manual Gauge: False Tank Tightness: False Tank Inventory Control: False Tank ATG: False Tank Vapor Monitor: False Tank Groundwater Monitor: False Tank Double Walled: False Tank 2nd Contained: False Tank SIR: False Overfill Installed: False Spill Installed: False Cathodic Protection: False Date Installed: Tank Leak Detection Listed: True Pipe Material: Unknown Pipe Other Material: None Pipe Type: Not Listed Pipe Auto Line Leak Detect.: False Pipe Leak Detection Listed: False Pipe Vapor Monitor: False Pipe Groundwater Monitor: False

Pipe Dbl Walled: Not reported Pipe 2nd Contained: False Pipe SIR: False Pipe Leak Detection Listed: True

C11 **SES -31** TN SRP S123408909

SOUTH OF HOLMES/EAST OF SWINNEA/WEST OF TCHULAHOMA **ENE** N/A

MEMPHIS, TN < 1/8

0.088 mi.

464 ft. Site 2 of 2 in cluster C

Relative: SRP: Higher Name: SES -31

SOUTH OF HOLMES/EAST OF SWINNEA/WEST OF TCHULAHOMA Address: Actual:

City,State,Zip: MEMPHIS, TN 377 ft. Site Control Number: Not reported TND051386258

State Remediation Program Site Number: 79768

Direction Distance

EDR ID Number Elevation Site **EPA ID Number** Database(s)

S123408909 SES -31 (Continued)

Not reported Project Manager Initials: Field Office: Not reported Contaminants Of Concern: Not reported **CLOSED** Active?: Number Of Days In System: Not reported Program: Not reported Subprogram: Not reported Latitude: 35.001471 -89.961846 Longitude: Acres: Not reported

D12 **OMS #15** TN LUST \$107464682

NW 2610 E HOLMES RD 1/8-1/4 MEMPHIS, TN 38118

0.137 mi.

Site 4 of 6 in cluster D 721 ft.

LUST: Relative: Lower Name: OMS #15

2610 E HOLMES RD Address: Actual: MEMPHIS, TN 38118 350 ft. City,State,Zip:

> Region: STATE Facility Id: 790983 **Current Status:** 8 Case Closed Product Released: Not reported MAR-13-1997 Discovery Date: How Discovered: 1 At Closure Cause: 7 Unknown Case Manager: Not reported

Case Description: Active case from Closure.

Section: Not reported Priority: Not reported

Company Name: HEADQUARTERS (AGTN-CFMO)

Owner Address: Not reported Owner City: Not reported Owner State: Not reported Owner Zip Code: Not reported Owner Telephone: Not reported Owner Address 2: Not reported fadd2: Not reported

Site Number:

Contact: Not reported Cac Contact: Not reported Not reported Contact Title: Consultant Address 1: Not reported Consultant Address 2: Not reported Contact City: Not reported Contact State: Not reported Contact Phone: Not reported Contact zip: Not reported Cac Type: Not reported

OMS #15 Name:

2610 E HOLMES RD Address: MEMPHIS, TN 38118 City,State,Zip:

Region: STATE Facility Id: 790983

Current Status: 1a Completed Tank Closure N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

OMS #15 (Continued) S107464682

Product Released: Not reported Discovery Date: Not reported How Discovered: 1 At Closure 7 Unknown Cause: Case Manager: Not reported

Case Description: Tank Closure; See case No 1 for Active Case

Section: Not reported Priority: Not reported

HEADQUARTERS TN ARMY Company Name:

Owner Address: Not reported Owner City: Not reported Owner State: Not reported Owner Zip Code: Not reported Owner Telephone: Not reported Owner Address 2: Not reported fadd2: Not reported

Site Number:

Contact: Not reported Cac Contact: Not reported Not reported Contact Title: Consultant Address 1: Not reported Consultant Address 2: Not reported Contact City: Not reported Contact State: Not reported Contact Phone: Not reported Not reported Contact zip: Cac Type: Not reported

OMS #15 TN UST U004162820 2610 EAST HOLEMS ROAD **TN HIST UST** N/A

NW 1/8-1/4

D13

MEMPHIS, TN 38118

0.137 mi. 721 ft. Site 5 of 6 in cluster D

UST: Relative:

Lower Name: OMS #15 Address:

2610 EAST HOLEMS ROAD Actual: MEMPHIS, TN 38118 City,State,Zip: 350 ft.

Facility ID: 790983 Federal Military Facility Description:

Owner ID: 300012

Owner Name: HDQS TN ARMY NAT GUARD

3041 SIDCO DRIVE Owner Address:

Owner Address 2: ATT:AGTN-DFE, CPT. HOUSTON BARRACKS

Owner City, St, Zip: NASHVILLE, TN 37204 Owner Description: State Government

Tank Number: Tank ID: 2144 Tank Other Material: Not reported RSN Red Tagged: Not reported Fac Red Tagged: Ν

Not reported Replacement: Compartment ID: 2154 Compartment Letter:

Permanently Out of Use Compartment Status:

Compartment Capacity: 6000 Small Delivery: Not reported

Direction Distance Elevation

Site EDR ID Number

Patabase(s) EPA ID Number

EDR ID Number

OMS #15 (Continued) U004162820

Tank RD:

Substance Description:

Date Installed:

Date Last Used:

Date Closed:

Regulated:

Not reported

4/30/1982

2/12/1997

Date Closed:

Not reported

Tank Material Desc: Fiberglass Reinforced Plastic

Tank Mod Desc: Inactive
Tank Emergency: Manual Tan
Tank No Fee: Not reported
Overfill Type: Not reported

Overfill Device Installed: Y
Spill Device Installed: Y

Date Removed From Ground: Not reported Pipe Material Desc: Steel Pipe Other Material: Not reported Pipe RD: Not reported Pipe Repaired: Not reported Flex Piping Type: Not reported Year Flex Piping Installed: Not reported

Name: OMS #15

Address: 2610 EAST HOLEMS ROAD City, State, Zip: MEMPHIS, TN 38118

Tank Number: 2
Tank ID: 2145
Tank Other Material: Not reported
RSN Red Tagged: Not reported

Fac Red Tagged: N

Replacement: Not reported Compartment ID: 2155
Compartment Letter: A

Compartment Status: Permanently Out of Use

Compartment Capacity: 6000 Small Delivery: Not reported Tank RD: Not reported Substance Description: Gasoline Date Installed: 4/30/1982 Date Last Used: 2/12/1997 Date Closed: 5/15/1997 Regulated: Not reported

Tank Material Desc: Fiberglass Reinforced Plastic

Tank Mod Desc: Inactive
Tank Emergency: Manual Tan
Tank No Fee: Not reported
Overfill Type: Not reported

Overfill Device Installed: Y
Spill Device Installed: Y

Date Removed From Ground:

Pipe Material Desc:

Pipe Other Material:

Pipe RD:

Pipe Repaired:

Pipe Repaired:

Pipe Repaired:

Pipe Repaired:

Pipe Repaired:

Not reported:

Not reported:

Not reported:

Not reported:

Not reported:

Year Flex Piping Installed:

Not reported

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

OMS #15 (Continued) U004162820

HIST UST:

OMS #15 Name:

2610 EAST HOLEMS ROAD Address: City,State,Zip: MEMPHIS, TN 38118 Facility ID: 790983

Facility Description: Federal Military

Owner ID: 300012

Owner Name: HDQS TN ARMY NAT GUARD

Owner Address: ATT:AGTN-DFE, CPT. HOUSTON BARRACKS

Owner City, St, Zip: NASHVILLE, TN 37204

Owner Telephone: Not reported Owner Description: State Government

Tank ID: 2144 **Tank Status:** Not reported

Tank Capacity: 6000 Tank Contents: Diesel

Tank Material: Fiberglass Reinforced Plastic

Tank 2ndary Trait: None Tank Manual Gauge: Not reported Not reported Tank Tightness: Tank Inventory Control: Not reported Tank ATG: Not reported Tank Vapor Monitor: Not reported Tank Groundwater Monitor: Not reported Tank Double Walled: Not reported Tank 2nd Contained: Not reported Tank SIR: Not reported Overfill Installed: Not reported Spill Installed: No

Cathodic Protection: Not reported Date Installed: APR-30-1982 Tank Leak Detection Listed: Not reported Pipe Material: Galvanized Steel Pipe Other Material: Not reported Pipe Type: Not reported Pipe Auto Line Leak Detect.: Not reported Pipe Leak Detection Listed: Not reported Not reported Pipe Vapor Monitor: Pipe Groundwater Monitor: Not reported Pipe Dbl Walled: Not reported Pipe 2nd Contained: Not reported Pipe SIR: Not reported Pipe Leak Detection Listed: Not reported

Tank ID: 2145 **Tank Status:** Not reported Tank Capacity: 6000 Tank Contents: Gasoline

Tank Material: Fiberglass Reinforced Plastic

Tank 2ndary Trait: Lined Interior Tank Manual Gauge: Not reported Tank Tightness: Not reported Tank Inventory Control: Not reported Tank ATG: Not reported Tank Vapor Monitor: Not reported

Map ID MAP FINDINGS
Direction

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

OMS #15 (Continued) U004162820

Tank Groundwater Monitor:

Tank Double Walled:

Tank 2nd Contained:

Tank SIR:

Overfill Installed:

Not reported

Not reported

Not reported

Not reported

Not reported

Spill Installed: No

Cathodic Protection: Not reported Date Installed: APR-30-1982 Tank Leak Detection Listed: Not reported Pipe Material: Galvanized Steel Pipe Other Material: Not reported Pipe Type: Not reported Pipe Auto Line Leak Detect .: Not reported Pipe Leak Detection Listed: Not reported Pipe Vapor Monitor: Not reported Pipe Groundwater Monitor: Not reported Pipe Dbl Walled: Not reported Pipe 2nd Contained: Not reported Pipe SIR: Not reported Pipe Leak Detection Listed: Not reported

Tank ID: 2144

Tank Status: Not reported
Tank Capacity: 6000
Tank Contents: Diesel

Tank Material: Fiberglass Reinforced Plastic

Tank 2ndary Trait: None Tank Manual Gauge: Not reported Tank Tightness: Not reported Tank Inventory Control: Not reported Tank ATG: Not reported Tank Vapor Monitor: Not reported Tank Groundwater Monitor: Not reported Tank Double Walled: Not reported Tank 2nd Contained: Not reported Tank SIR: Not reported Overfill Installed: Not reported Spill Installed: Nο

Cathodic Protection: Not reported Date Installed: APR-30-1982 Tank Leak Detection Listed: Not reported Pipe Material: Galvanized Steel Pipe Other Material: Not reported Pipe Type: Not reported Pipe Auto Line Leak Detect .: Not reported Pipe Leak Detection Listed: Not reported Pipe Vapor Monitor: Not reported Pipe Groundwater Monitor: Not reported Pipe Dbl Walled: Not reported Pipe 2nd Contained: Not reported Pipe SIR: Not reported Pipe Leak Detection Listed: Not reported

Tank ID: 2145 **Tank Status:** Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

OMS #15 (Continued) U004162820

Tank Capacity: 6000 Tank Contents: Gasoline

Fiberglass Reinforced Plastic Tank Material:

Tank 2ndary Trait: Lined Interior Tank Manual Gauge: Not reported Tank Tightness: Not reported Tank Inventory Control: Not reported Tank ATG: Not reported Tank Vapor Monitor: Not reported Not reported Tank Groundwater Monitor: Tank Double Walled: Not reported Tank 2nd Contained: Not reported Tank SIR: Not reported Overfill Installed: Not reported

Spill Installed: No

Cathodic Protection: Not reported Date Installed: APR-30-1982 Tank Leak Detection Listed: Not reported Pipe Material: Galvanized Steel Pipe Other Material: Not reported Pipe Type: Not reported Pipe Auto Line Leak Detect .: Not reported Not reported Pipe Leak Detection Listed: Pipe Vapor Monitor: Not reported Pipe Groundwater Monitor: Not reported Pipe Dbl Walled: Not reported Pipe 2nd Contained: Not reported Not reported Pipe SIR: Pipe Leak Detection Listed: Not reported

TN HIST UST U003608790 D14 **OMS #15** NW **2610 EAST HOLEMS ROAD** N/A

1/8-1/4 MEMPHIS, TN 38118

0.137 mi.

721 ft. Site 6 of 6 in cluster D

HIST UST: Relative: Lower Name:

Address: 2610 EAST HOLEMS ROAD Actual: MEMPHIS, TN 38118 350 ft. City, State, Zip:

Facility ID: 0-790983 Federal Military Facility Description: Owner ID:

HDQS TN ARMY/NAT GUARD Owner Name:

OMS #15

Owner Address: ATT:AGTN-DFE, Cpt. Houston Barracks 3041 Sidco Drive

Owner City, St, Zip: Nashville, TN 37204 Owner Telephone: (615) 532-3376 Owner Description: State Government

Tank ID:

Tank Status: **Permanently Out of Use**

Tank Capacity: 6000 Tank Contents: Gasoline

Tank Material: Fiberglass Reinforced Plastic

Tank 2ndary Trait: Lined Interior Tank Manual Gauge: False Tank Tightness: True Tank Inventory Control: False

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

OMS #15 (Continued) U003608790

Tank ATG: False Tank Vapor Monitor: False Tank Groundwater Monitor: False False Tank Double Walled: Tank 2nd Contained: False Tank SIR: False Overfill Installed: False Spill Installed: False Cathodic Protection: False Date Installed: 04/30/1982 Tank Leak Detection Listed: False

Pipe Material: Galvanized Steel

Pipe Other Material: None Pipe Type: Not Listed Pipe Auto Line Leak Detect.: False Pipe Leak Detection Listed: False Pipe Vapor Monitor: False Pipe Groundwater Monitor: False Pipe Dbl Walled: Not reported Pipe 2nd Contained: False Pipe SIR: False Pipe Leak Detection Listed: True

Tank ID:

Permanently Out of Use Tank Status:

Tank Capacity: 6000 Tank Contents: Diesel

Tank Material: Fiberglass Reinforced Plastic

Tank 2ndary Trait: None Tank Manual Gauge: False Tank Tightness: True Tank Inventory Control: False Tank ATG: False Tank Vapor Monitor: False Tank Groundwater Monitor: False Tank Double Walled: False Tank 2nd Contained: False Tank SIR: False Overfill Installed: False Spill Installed: False Cathodic Protection: False Date Installed: 04/30/1982 Tank Leak Detection Listed: False

Galvanized Steel Pipe Material:

Pipe Other Material: None Pipe Type: Not Listed Pipe Auto Line Leak Detect.: False Pipe Leak Detection Listed: False Pipe Vapor Monitor: False Pipe Groundwater Monitor: False Pipe Dbl Walled: Not reported Pipe 2nd Contained: False Pipe SIR: False Pipe Leak Detection Listed: True

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

15 TRANE CLIMATE SOLUTIONS RCRA NonGen / NLR 1016453781
SSE 1560 EAST STATELINE ROAD FINDS MSR000106542

SOUTHAVEN, MS 38671 ECHO

1/8-1/4 0.227 mi. 1197 ft.

Relative: RCRA NonGen / NLR:

Higher Date form received by agency: 2016-08-30 00:00:00.0

Actual:Facility name:TRANE CLIMATE SOLUTIONS385 ft.Facility address:1560 EAST STATELINE ROAD

SOUTHAVEN, MS 38671

EPA ID: MSR000106542
Contact: JASON GROHOSKI

Contact address: 1560 EAST STATELINE ROAD

SOUTHAVEN, MS 38671

Contact country: US

Contact telephone: 662-470-2039

Contact email: JASON.GROHOSKI@IRCO.COM

EPA Region: 04
Land type: Private
Classification: Non-Generator

Description: Handler: Non-Generators do not presently generate hazardous waste

Owner/Operator Summary:

Owner/operator name: INGERSOLL RAND

Owner/operator address: 800 EAST BEATY STREET

DAVIDSON, NC 28036

Owner/operator country: US

Owner/operator telephone: 704-655-4000
Owner/operator email: Not reported
Owner/operator fax: Not reported
Owner/operator extension: Not reported
Legal status: Private
Owner/Operator Type: Owner

Owner/Op start date: 2013-12-05 00:00:00.

Owner/Op end date: Not reported

Owner/operator name: TRANE CLIMATE SOLUTIONS
Owner/operator address: 1560 EAST STATELINE ROAD

SOUTHAVEN, MS 38671

Owner/operator country: US

Owner/operator telephone: 662-470-2039
Owner/operator email: Not reported
Owner/operator fax: Not reported
Owner/operator extension: Not reported
Legal status: Private
Owner/Operator Type: Operator

Owner/Op start date: 2013-12-05 00:00:00.

Owner/Op end date: Not reported

Handler Activities Summary:

U.S. importer of hazardous waste: No Mixed waste (haz. and radioactive): No Recycler of hazardous waste: No Transporter of hazardous waste: No Treater, storer or disposer of HW: No Underground injection activity: No On-site burner exemption: No

Direction Distance Elevation

ice EDR ID Number
tion Site Database(s) EPA ID Number

TRANE CLIMATE SOLUTIONS (Continued)

1016453781

Furnace exemption:

Used oil fuel burner:

Used oil processor:

User oil refiner:

Used oil fuel marketer to burner:

Used oil Specification marketer:

Used oil transfer facility:

No

Used oil transporter:

No

Historical Generators:

Date form received by agency: 2013-12-05 00:00:00.0
Site name: TRANE CLIMATE SOLUTIONS
Classification: Small Quantity Generator

Hazardous Waste Summary:

. Waste code: D001

. Waste name: IGNITABLE WASTE

Waste code: D002

. Waste name: CORROSIVE WASTE

. Waste code: D005 . Waste name: BARIUM

Waste code: D0

. Waste name: METHYL ETHYL KETONE

Waste code: D039

. Waste name: TETRACHLOROETHYLENE

. Waste code: D040

Waste name: TRICHLORETHYLENE

Violation Status: No violations found

FINDS:

Registry ID: 110056513651

Facility URL: http://ofmpub.epa.gov/enviro/fii_query_detail.disp_program_facility?p_

registry_id=110056513651

Environmental Interest/Information System:

RCRAInfo is a national information system that supports the Resource Conservation and Recovery Act (RCRA) program through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and

corrective action activities required under RCRA.

composite action activities required under restall

<u>Click this hyperlink</u> while viewing on your computer to access additional FINDS: detail in the EDR Site Report.

ECHO:

Envid: 1016453781 Registry ID: 110056513651

DFR URL: http://echo.epa.gov/detailed-facility-report?fid=110056513651

Name: TRANE CLIMATE SOLUTIONS
Address: 1560 EAST STATELINE ROAD

Map ID MAP FINDINGS Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

TRANE CLIMATE SOLUTIONS (Continued)

1016453781

City, State, Zip: SOUTHAVEN, MS 38671

WATSONS FAMILY CLEANERS 16 SSE 1545 STATELINE ROAD SOUTHAVEN, MS 38671

RCRA-VSQG 1004743061 MSD985968544

1/8-1/4 0.237 mi. 1250 ft.

RCRA-VSQG: Relative:

Higher Date form received by agency: 1990-09-19 00:00:00.0

Facility name: WATSONS FAMILY CLEANERS Actual: Facility address: 1545 STATELINE ROAD 402 ft. SOUTHAVEN, MS 38671

> EPA ID: MSD985968544 Mailing address: STATELINE ROAD SOUTHAVEN, MS 38671

Contact: GENE WATSON

Contact address: 1545 STATELINE ROAD

SOUTHAVEN, MS 38671

Contact country:

Contact telephone: 601-393-6666 Contact email: Not reported

EPA Region: 04

Conditionally Exempt Small Quantity Generator Classification:

Description: Handler: generates 100 kg or less of hazardous waste per calendar

month, and accumulates 1000 kg or less of hazardous waste at any time; or generates 1 kg or less of acutely hazardous waste per calendar month, and accumulates at any time: 1 kg or less of acutely hazardous waste: or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generates 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulates at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely

hazardous waste

Owner/Operator Summary:

Owner/operator name: **GENE WATSON**

Owner/operator address: 1545 STATELINE ROAD

SOUTHAVEN, MS 38671

Owner/operator country: Not reported Owner/operator telephone: 601-393-6666 Owner/operator email: Not reported Owner/operator fax: Not reported Owner/operator extension: Not reported Legal status: Private Owner/Operator Type: Owner Owner/Op start date: Not reported Owner/Op end date: Not reported

Handler Activities Summary:

U.S. importer of hazardous waste: No Mixed waste (haz. and radioactive): No Recycler of hazardous waste: No

Direction Distance

Distance EDR ID Number Elevation Site EDR ID Number Database(s) EPA ID Number

WATSONS FAMILY CLEANERS (Continued)

1004743061

Transporter of hazardous waste: No Treater, storer or disposer of HW: No Underground injection activity: No On-site burner exemption: No Furnace exemption: Nο Used oil fuel burner: No Used oil processor: No User oil refiner: No Used oil fuel marketer to burner: No Used oil Specification marketer: No Used oil transfer facility: No Used oil transporter: No

Hazardous Waste Summary:

Waste code: F002

. Waste name: THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE,

METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE,

CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE,

ORTHO-DICHLOROBENZENE, TRICHLOROFLUOROMETHANE, AND 1,1,2,

TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND

MS LUST

MS UST

U001298097

N/A

SPENT SOLVENT MIXTURES.

Violation Status: No violations found

17 ALVIN E GILLES SSW 990 STATE LINE ROAD 1/4-1/2 SOUTHAVEN, MS 38671

0.419 mi. 2210 ft.

Relative: LUST: Higher Nan

Actual: Addit City,

Name: ALVIN E GILLES
Address: 990 STATE LINE ROAD
City,State,Zip: SOUTHAVEN, MS 38671

Facility Id: 2010
Facility Satus: Inactive
Lust Status: Closed
AIID: 34101
Event #: 1

Project Manager: Lynn Chambers
Date Of Report: 05/18/1988
Trust Fund Status: NTFE
Confirmed On: 05/18/1988
NFA Date: 06/30/1998

UST:

Name: Alvin E Gilles Address: 990 State Line Road

 City:
 Southaven

 Facility ID:
 2010

 Facility Status:
 Inactive

 Latitude:
 34 59' 30.9400"

 Longitude:
 89 58' 20.3200"

Permanently Out of Use Tanks: 5

Direction Distance

Distance EDR ID Number EDevation Site EDR ID Number Database(s) EPA ID Number

ALVIN E GILLES (Continued)

U001298097

 Active Tanks:
 0

 AIID:
 34101

 Owner Name:
 Alvin E Gilles

 Owner Address:
 PO Box 205

 Owner Tele:
 (662)342-0989

Tank:

Tank No: 1 Tank ID: 4566

Tank Status: Permanently Out of Use

Tank Capacity: 6000
Date Installed: 01/01/1970
Substance: Gasoline
Reported Release: Yes
Close Type: Closed
Date Removed: 01/01/1988
Close Type: 01/01/1988

Tank Material: Asphalt Coated or Bare Steel

2nd Containmnt:NoneTank Lead Detection:N/AOverfill Protection:NoSpill Prevention:No

Pipe:

Tank No: 1
Tank Id: 4566
Pipe Id: 1

Pipe Status: Permanently Out of Use

Type Of Closure: Closed

Pipe Material Construction: Bare/Galvanized Steel

Secondary Pipe Material:

Piping Type:

N/A

Pipe Leak Detection:

None

N/A

Not Listed

Tank:

Tank No: 2 Tank ID: 4567

Tank Status: Permanently Out of Use

Tank Capacity: 6000
Date Installed: 01/01/1970
Substance: Gasoline
Reported Release: Yes
Close Type: Closed
Date Removed: 01/01/1988
Close Type: 01/01/1988

Tank Material: Asphalt Coated or Bare Steel

2nd Containmnt: None
Tank Lead Detection: N/A
Overfill Protection: No
Spill Prevention: No

Pipe:

 Tank No:
 2

 Tank Id:
 4567

 Pipe Id:
 2

Map ID MAP FINDINGS Direction

Distance EDR ID Numb
Elevation Site EDR ID Numb
Database(s) EPA ID Numb

U001298097

ALVIN E GILLES (Continued)

Pipe Status: Permanently Out of Use

Type Of Closure: Closed

Pipe Material Construction: Bare/Galvanized Steel

Secondary Pipe Material:
Piping Type:
N/A
Pipe Leak Detection:
Not Listed

Tank:

Tank No: 3 Tank ID: 4568

Tank Status: Permanently Out of Use

Tank Capacity: 6000
Date Installed: 01/01/1970
Substance: Gasoline
Reported Release: Yes
Close Type: Closed
Date Removed: 01/01/1988
Close Type: 01/01/1988

Tank Material: Asphalt Coated or Bare Steel

2nd Containmnt:NoneTank Lead Detection:N/AOverfill Protection:NoSpill Prevention:No

Pipe:

 Tank No:
 3

 Tank Id:
 4568

 Pipe Id:
 3

Pipe Status: Permanently Out of Use

Type Of Closure: Closed

Pipe Material Construction: Bare/Galvanized Steel

Secondary Pipe Material: None
Piping Type: N/A
Pipe Leak Detection: Not Listed

Tank:

Tank No: 4 Tank ID: 4569

Tank Status: Permanently Out of Use

Tank Capacity: 6000
Date Installed: 01/01/1970
Substance: Gasoline
Reported Release: Yes
Close Type: Closed
Date Removed: 01/01/1988
Close Type: 01/01/1988

Tank Material: Asphalt Coated or Bare Steel

2nd Containmnt: None
Tank Lead Detection: N/A
Overfill Protection: No
Spill Prevention: No

Pipe:

MAP FINDINGS Map ID

Direction Distance

Elevation **EPA ID Number** Site Database(s)

ALVIN E GILLES (Continued)

U001298097

EDR ID Number

Tank No: Tank Id: 4569 Pipe Id: 4

Pipe Status: Permanently Out of Use

Type Of Closure: Closed

Pipe Material Construction: Bare/Galvanized Steel

Secondary Pipe Material: None Piping Type: N/A Pipe Leak Detection: Not Listed

Tank:

Tank No: 5 Tank ID: 4570

Tank Status: **Permanently Out of Use**

Tank Capacity: 500 Date Installed: Not reported Substance: Used Oil Reported Release: Yes Close Type: Closed Date Removed: 08/25/1994 Close Type: 08/25/1994 Tank Material: Unknown 2nd Containmnt: None Tank Lead Detection: N/A Overfill Protection: Nο

MEMPHIS PUBLIC WORKS/JACKSON PITS

Spill Prevention:

NNE BLOCKS OF PITS RD 1/2-1

MEMPHIS, TN

0.729 mi. 3849 ft.

18

Relative: SHWS: Lower

MEMPHIS PUBLIC WORKS/JACKSON PITS Name:

No

Address: **BLOCKS OF PITS RD** Actual: City,State,Zip: MEMPHIS, TN 337 ft.

Facility ID: 79604 Status: **OPEN** Federal: No

Promulgated Date: 05/23/1985

Promulgated List: Υ Acres: 120 DOR EFO: **MEMPHIS** Latitude: 35.01667 -89.96111 Longitude:

SRP:

MEMPHIS PUBLIC WORKS/JACKSON PITS Name:

BLOCKS OF PITS RD Address: City,State,Zip: MEMPHIS, TN Site Control Number: Not reported EPAID: TND980709455

State Remediation Program Site Number: 79604 Project Manager Initials: Not reported TN SHWS

TN VAPOR

TN SRP

S122524184

N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

MEMPHIS PUBLIC WORKS/JACKSON PITS (Continued)

S122524184

Field Office: Not reported Contaminants Of Concern: Not reported OPEN Active?: Number Of Days In System: Not reported Program: Not reported Not reported Subprogram: Latitude: 35.01667 -89.96111 Longitude: Acres: 120

VAPOR:

Site Status: Open COC Type: VOCs/SVOCs

Known COC: TETRACHLOROETHYLENE (PCE)

COC Media: Groundwater; Soil Control Type: Engineering

Control Description: **Engineering Controls**

Section: State Monitoring Required: Yes Control Latitude: 35.017 Control Longitude: -89.959 35.01667 Latitude: Longitude: -89.96111

Count: 11 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
MEMPHIS	S114526070	"MINCEY" HOLMES ROAD SUBDIVISION,	+/- 775 FEET EAST OF THE INTER	38118	TN NPDES
MEMPHIS	S108322417		FORREST HILL IRENE AT HOLMES		TN SPILLS
MEMPHIS	S123318999	THOMAS - AIRWAYS/HOLMES INDUSTRIAL	2353 EAST HOLES ROAD(FORMERLY)		TN SWM COMPLAINTS
MEMPHIS	S117556679	HOLMES ROAD EXPANSION	HOLMES RD BETWEEN TCHULAHOMA R		TN NPDES
MEMPHIS	S111817409	IMPROVEMENTS TO HOLMES ROAD	HOLMES RD FROM LAMAR AVE TO JU		TN NPDES
MEMPHIS	S111818655	HOLMES ROAD IMPROVEMENTS	HOLMES ROAD FROM EAST OF TCHUL		TN NPDES
MEMPHIS	S111819870	THIRD STREET AND HOLMES ROAD INTER	INTERSECTION OF SOUTH THIRD (U		TN NPDES
MEMPHIS	S123323219	VACANT ROADSIDE PROPERTY	NEAR INTERSECTION OF RAINES AN		TN SWM COMPLAINTS
MEMPHIS	1018149295	MEMPHIS ABANDONED DRUM	EAST RAINES ROAD/TCHULAHOMA RO	38118	SEMS
SHELBY COUNTY	S113741447		INTERSECTION OF HACKS CROSS &		TN SPILLS
SOUTHAVEN	S116237922	WATSON'S CLEANERS	1545 STATELINE RD.	38671	MS DRYCLEANERS

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

MSCAA - HOLMES ROAD EA E HOLMES ROAD MEMPHIS, TN 38118

TARGET PROPERTY COORDINATES

Latitude (North): 34.999573 - 34° 59' 58.46" Longitude (West): 89.967926 - 89° 58' 4.53"

Universal Tranverse Mercator: Zone 16 UTM X (Meters): 229122.4 UTM Y (Meters): 3876824.2

Elevation: 356 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 5944778 SOUTHEAST MEMPHIS, TN

Version Date: 2013

South Map: 5633941 PLEASANT HILL, MS

Version Date: 2012

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

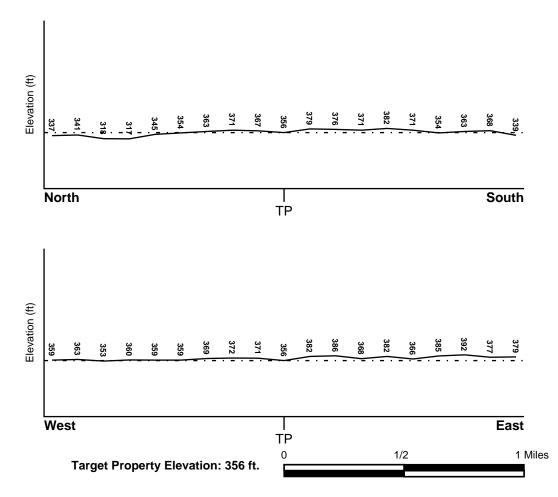
Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General WNW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

28033C0077G FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

47157C0440FFEMA FIRM Flood data47157C0275EFEMA Q3 Flood data28033C0076GFEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Electronic

NWI Quad at Target Property Data Coverage

PLEASANT HILL YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

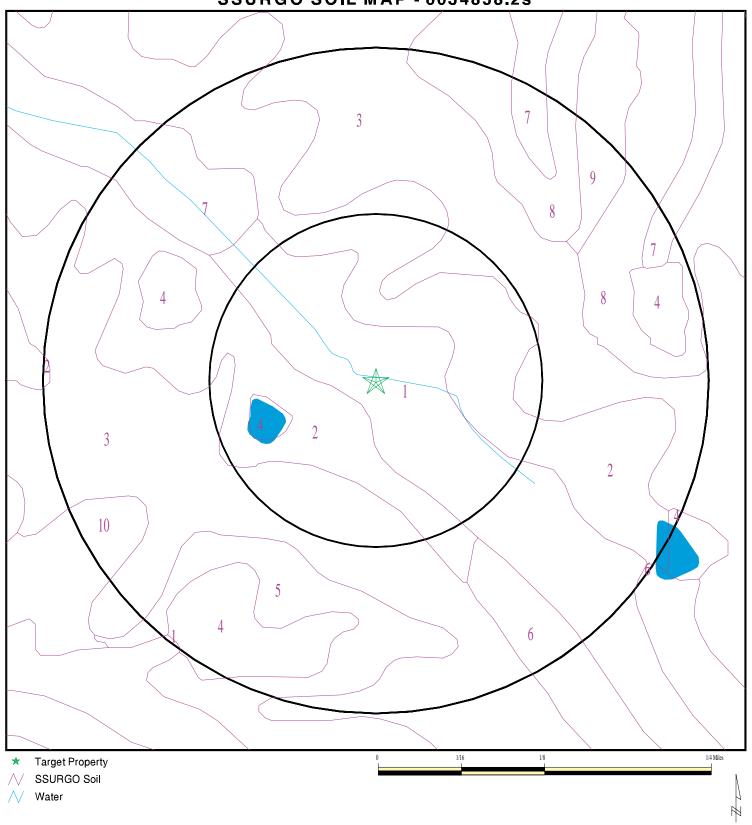
GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Stratified Sequence


System: Tertiary

Series: Eocene Claiborne Group

Code: Te2 (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 6034858.2s

SITE NAME: MSCAA - Holmes Road EA ADDRESS: E Holmes Road

Memphis TN 38118 LAT/LONG: 34.999573 / 89.967926 CLIENT: ENSAFE
CONTACT: Velita Thornton
INQUIRY #: 6034858.2s
DATE: April 08, 2020 9:17 am

Copyright © 2020 EDR, Inc. © 2015 TomTom Rel. 2015.

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: COLLINS

Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 107 inches

	Soil Layer Information									
Boundary			Classification		Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)			
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 4	Max: 5.5 Min: 4.5			
2	7 inches	50 inches	silt loam	Not reported	Not reported	Max: 14 Min: 4	Max: 5.5 Min: 4.5			

Soil Map ID: 2

Soil Component Name: GRENADA

Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information										
	Bou	ındary		Classi	fication	Saturated hydraulic					
Layer	Upper Lower		Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)				
1	0 inches	5 inches	silt loam	Not reported	Not reported	Max: 1.4 Min: 0.42	Max: 7.3 Min: 5.1				
2	5 inches	22 inches	silt loam	Not reported	Not reported	Max: 1.4 Min: 0.42	Max: 7.3 Min: 5.1				
3	22 inches	25 inches	silt loam	Not reported	Not reported	Max: 1.4 Min: 0.42	Max: 7.3 Min: 5.1				
4	25 inches	40 inches	silt loam	Not reported	Not reported	Max: 1.4 Min: 0.42	Max: 7.3 Min: 5.1				
5	40 inches	59 inches	silt loam	Not reported	Not reported	Max: 1.4 Min: 0.42	Max: 7.3 Min: 5.1				

Soil Map ID: 3

Soil Component Name: LORING

Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information											
	Boundary			Classi	fication	Saturated hydraulic						
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec						
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5					
2	7 inches	27 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5					
3	27 inches	50 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5					
4	50 inches	59 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5					

Soil Map ID: 4

Soil Component Name: WATER
Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

Soil Map ID: 5

Soil Component Name: LORING
Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information										
	Bou	ndary		Classi	fication	Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)				
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
2	7 inches	27 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
3	27 inches	50 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
4	50 inches	59 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				

Soil Map ID: 6

Soil Component Name: LORING

Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information									
	Bou	ndary		Classification		Saturated hydraulic				
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)			
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5			

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

	Soil Layer Information										
	Boundary			Classi	fication	Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Roadion				
2	7 inches	27 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
3	27 inches	50 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
4	50 inches	59 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				

Soil Map ID: 7

Soil Component Name: FALAYA

Soil Surface Texture: silt loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Somewhat poorly drained

Hydric Status: Partially hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information										
	Boundary			Classif	ication	Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)				
1	0 inches	59 inches	silt loam	Not reported	Not reported	Max: 14 Min: 4	Max: 5.5 Min: 4.5				

Soil Map ID: 8

Soil Component Name: GULLIED LAND

Soil Surface Texture: silt loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

Soil Map ID: 9

Soil Component Name: MEMPHIS
Soil Surface Texture: silt loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information											
	Boundary			Classi	fication	Saturated hydraulic						
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)					
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 4	Max: 6 Min: 4.5					
2	7 inches	18 inches	silty clay loam	Not reported	Not reported	Max: 14 Min: 4	Max: 6 Min: 4.5					
3	18 inches	98 inches	silt loam	Not reported	Not reported	Max: 14 Min: 4	Max: 6 Min: 4.5					

Soil Map ID: 10

Soil Component Name: LORING

Soil Surface Texture: silt loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information										
	Bou	ındary		Classi	fication	Saturated hydraulic					
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Oon Roudin				
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
2	7 inches	27 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
3	27 inches	50 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				
4	50 inches	59 inches	silt loam	Not reported	Not reported	Max: 14 Min: 1.4	Max: 6.5 Min: 4.5				

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
	USGS40001143130	1/4 - 1/2 Mile North
B5	USGS40001143138	1/2 - 1 Mile NW
B7	USGS40001143139	1/2 - 1 Mile NW
11	USGS40000681306	1/2 - 1 Mile South
D13	USGS40001143140	1/2 - 1 Mile NW
D14	USGS40001143136	1/2 - 1 Mile NW
16	USGS40000681305	1/2 - 1 Mile SE
E18	USGS40001143137	1/2 - 1 Mile ENE

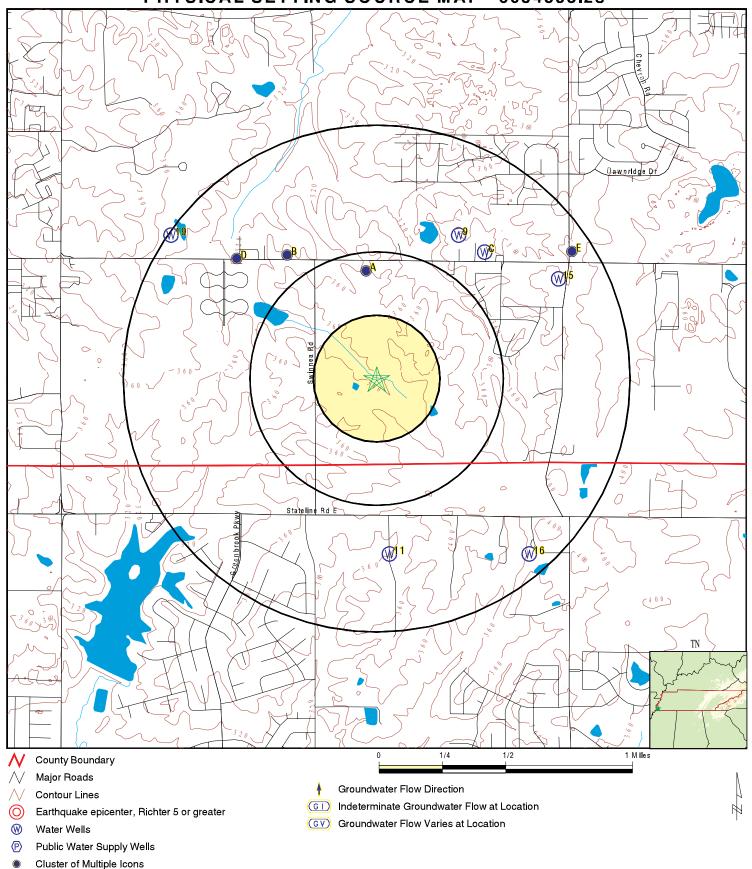
GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL USGS WELL INFORMATION

MAP ID WELL ID LOCATION FROM TP

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID LOCATION FROM TP


No PWS System Found

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A2	TN7000000068347	1/4 - 1/2 Mile North
B3	TN700000069826	1/2 - 1 Mile NW
B4	TN700000069818	1/2 - 1 Mile NW
B6	TN700000068350	1/2 - 1 Mile NW
C8	TN700000069008	1/2 - 1 Mile NE
9	TN700000069099	1/2 - 1 Mile NNE
C10	TN700000068399	1/2 - 1 Mile NE
D12	TN700000068714	1/2 - 1 Mile NW
15	TN700000068348	1/2 - 1 Mile ENE
E17	TN700000068710	1/2 - 1 Mile ENE
19	TN700000068839	1/2 - 1 Mile NW

PHYSICAL SETTING SOURCE MAP - 6034858.2s

SITE NAME: MSCAA - Holmes Road EA ADDRESS: E Holmes Road

Memphis TN 38118 LAT/LONG: 34.999573 / 89.967926 CLIENT: ENSAFE
CONTACT: Velita Thornton
INQUIRY #: 6034858.2s

DATE: April 08, 2020 9:17 am

Map ID Direction Distance

Elevation Database **EDR ID Number**

North 1/4 - 1/2 Mile Higher

> Organization ID: **USGS-TN** Organization Name: **USGS** Tennessee Water Science Center

FED USGS

Well

USGS40001143130

Monitor Location: SH:K-146 Type:

Description: 2853 HOLMES RD ASK LANDOWNER AT TIME OF VISIT

HUC: 08010211 Drainage Area: Not Reported Not Reported Contrib Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area Unts: Not Reported Aquifer: Other aquifers Formation Type: **Terrace Deposits** Aquifer Type: Not Reported

Construction Date: Well Depth: Not Reported 56 Well Depth Units: ft Well Hole Depth: 56

Well Hole Depth Units: ft

1988-10-17 Ground water levels, Number of Measurements: Level reading date: 1 Feet below surface: 47.71 Feet to sea level: Not Reported

Note: Not Reported

Residential

Municipal

TN7000000068347 North **TN WELLS**

1/4 - 1/2 Mile Higher

> 15700210 Well #: License Code: 108 Total Depth: 338 Est Yield:

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: Depth to Water: 0 Intended Well Use:

B3 NW **TN WELLS** TN7000000069826 1/2 - 1 Mile

Well #: 15709087 License Code: 30 Total Depth: Est Yield: 400 0

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: Depth to Water:

Intended Well Use: Farm

B4 NW **TN WELLS** TN7000000069818

1/2 - 1 Mile Lower

Intended Well Use:

Lower

Well #: 15709079 License Code: 30 Total Depth: 370 Est Yield: 0

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: Depth to Water: 0 360

Map ID Direction Distance

Elevation Database **EDR ID Number**

B5 NW

1/2 - 1 Mile

Lower

Organization ID: **USGS-TN** Organization Name: USGS Tennessee Water Science Center

FED USGS

FED USGS

USGS40001143138

USGS40001143139

Monitor Location: SH:K-087 Type: Well

Description: Not Reported HUC: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported

Mississippi embayment aquifer system Aquifer:

Formation Type: Memphis Sand Aquifer Type: Not Reported

Construction Date: Not Reported Well Depth: 402

Well Depth Units: Well Hole Depth: Not Reported

Well Hole Depth Units: Not Reported

B6 TN WELLS TN7000000068350 NW

1/2 - 1 Mile Lower

> Well #: 15700213 License Code: 108 Est Yield: Total Depth: 347 0

Driller Tag #: Quad #: 0409SW7 Not Reported

Casing Depth: Depth to Water: 0

Intended Well Use: Municipal

1/2 - 1 Mile Lower

> Organization ID: USGS-TN Organization Name: USGS Tennessee Water Science Center

Monitor Location: SH:K-079 Type: Well

INFORMATION COPIED FROM 1966 FORMS Description:

HUC: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported

Contrib Drainage Area Unts: Not Reported

Mississippi embayment aquifer system Aquifer:

Formation Type: Memphis Sand Aquifer Type: Not Reported

Well Depth: Construction Date: Not Reported 370 Well Depth Units: Well Hole Depth: 400 ft

Well Hole Depth Units: ft

Ground water levels, Number of Measurements: 1961-12-19 Level reading date: 1 Feet below surface: Feet to sea level: Not Reported

Note: Not Reported

Map ID Direction Distance

Elevation Database EDR ID Number

C8 NE 1/2 - 1 Mile

TN WELLS TN700000069008

Higher

 Well #:
 15700872
 License Code:
 108

 Total Depth:
 338
 Est Yield:
 15

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: 318 Depth to Water: 302

Intended Well Use: Not Reported

9 NNE TN WELLS TN700000069099

1/2 - 1 Mile Higher

 Well #:
 15700963
 License Code:
 198

 Total Depth:
 80
 Est Yield:
 0

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: 80 Depth to Water: 27

Intended Well Use: Not Reported

C10
NE TN WELLS TN700000068399

1/2 - 1 Mile Higher

 Well #:
 15700262
 License Code:
 286

 Total Depth:
 66
 Est Yield:
 3

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: 60 Depth to Water: 45

Intended Well Use: Residential

South FED USGS USGS40000681306

1/2 - 1 Mile Higher

Organization ID: USGS-MS

Organization Name: USGS Mississippi Water Science Center C0001 DE SOTO Monitor Location: Well Type: HÜC: Description: Not Reported 08010211 Drainage Area: Not Reported Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth Units: Well Depth: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

Map ID Direction Distance

Elevation EDR ID Number Database

NW 1/2 - 1 Mile

D12 **TN WELLS** TN7000000068714

Lower

Well #: 15700577 License Code: 198 Total Depth: Est Yield: 10 43

Driller Tag #: Quad #: 0409SW7 Not Reported

Casing Depth: Depth to Water: 43

Intended Well Use: Commercial

D13

NW 1/2 - 1 Mile Lower

> Organization ID: **USGS-TN** Organization Name: **USGS Tennessee Water Science Center**

Monitor Location: SH:K-127 Type: Well

HÜC: Not Reported Description: Not Reported Drainage Area: Not Reported **Drainage Area Units:** Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported Well Depth Units: Well Depth: Not Reported Not Reported

Well Hole Depth: Well Hole Depth Units: 1251

D14 NW 1/2 - 1 Mile Lower

Intended Well Use:

Organization ID: **USGS-TN** Organization Name: USGS Tennessee Water Science Center

Monitor Location: SH:K-106 Type: Well

Description: Not Reported HUC: Not Reported Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Other aquifers Formation Type: **Terrace Deposits** Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: 43 Well Depth Units:

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

ENE **TN WELLS** TN700000068348 1/2 - 1 Mile Higher

Well #: 15700211 License Code: 740 Total Depth: Est Yield: 0 0

Quad #: 0409SW8 Driller Tag #: Not Reported

Casing Depth: Depth to Water: 0

Not Reported

FED USGS

FED USGS

USGS40001143140

USGS40001143136

Map ID Direction Distance

Elevation Database EDR ID Number

SE 1/2 - 1 Mile

16 **FED USGS** USGS40000681305

Higher

USGS-MS Organization ID:

Organization Name: USGS Mississippi Water Science Center C0026 DE SOTO Monitor Location: Type:

Well Description: Not Reported HUC: 08010211 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Mississippi embayment aquifer system Aquifer:

Sparta Sand Formation Type: Aquifer Type: Not Reported

Construction Date: 20020405 Well Depth: 310 Well Depth Units: Well Hole Depth: ft 330

Well Hole Depth Units: ft

Ground water levels, Number of Measurements: Level reading date: 2002-04-05 Feet below surface: 140. Feet to sea level: Not Reported

Note: Not Reported

TN7000000068710 **TN WELLS ENE**

1/2 - 1 Mile Higher

> Well #: 15700573 License Code: 198 Total Depth: 94 Est Yield: 10

0409SW8 Driller Tag #: Not Reported Quad #:

Casing Depth: 94 Depth to Water: 80

Intended Well Use: Residential

E18

1/2 - 1 Mile Higher

> Organization ID: **USGS-TN** Organization Name: **USGS Tennessee Water Science Center**

> > Well Depth Units:

Monitor Location: Sh:K-129 Type: Well Description: Not Reported HUC: 08010211 Not Reported Drainage Area: Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Other aquifers Formation Type: **Terrace Deposits** Aquifer Type: Not Reported Construction Date: 19670714

Well Depth: 94

Well Hole Depth Units: Well Hole Depth: Not Reported Not Reported

Ground water levels, Number of Measurements: 1 Level reading date: 1967-07-14 Feet to sea level: Not Reported

Feet below surface: 80

Note: Not Reported **FED USGS**

USGS40001143137

Map ID Direction Distance Elevation

19 NW 1/2 - 1 Mile Lower **TN WELLS** TN700000068839

15700703 286 Well #: License Code: Total Depth: 82 Est Yield:

Quad #: 0409SW7 Driller Tag #: Not Reported

Casing Depth: Depth to Water: 72

Intended Well Use: Residential Database

EDR ID Number

AREA RADON INFORMATION

State Database: TN Radon

Radon Test Results

County	Total Sites	Avg	Max	<4 pCi/L	4-10 pCi/L	10-20 pCi/L	20-50 pCi/L	50-100 pCi/L	>100 pCi/L
						 -			
SHELBY	31	1.1	2.5	31	0	0	0	0	0

Federal EPA Radon Zone for SHELBY County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 38118

Number of sites tested: 9

Area Average Activity % <4 pCi/L % 4-20 pCi/L % >20 pCi/L Living Area - 1st Floor 0.722 pCi/L 100% 0% 0% Living Area - 2nd Floor Not Reported Not Reported Not Reported Not Reported Not Reported Basement Not Reported Not Reported Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map

Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory

Source: Department of Environment & Conservation

Telephone: 651-532-0052

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at

least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after

August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

County Water Wells in Tennessee

Source: Department of Environment and Conservation

Telephone: 615-532-0160

Water well locations for the entire state.

OTHER STATE DATABASE INFORMATION

RADON

State Database: TN Radon

Source: Department of Environment & Conservation

Telephone: 615-299-9725 Radon Test Results

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at

private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Appendix D Historical Documents

MSCAA - Holmes Road EA

E Holmes Road Memphis, TN 38118

Inquiry Number: 6034858.8

April 08, 2020

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

04/08/20

Site Name: Client Name:

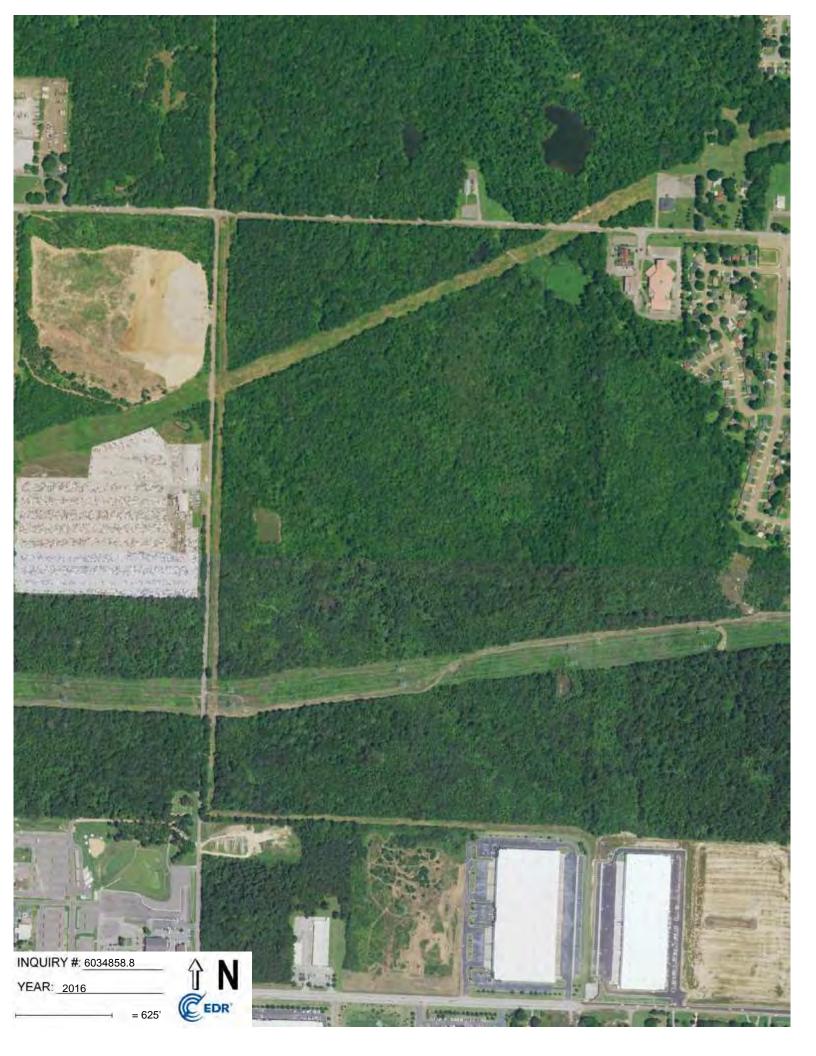
MSCAA - Holmes Road EA ENSAFE

E Holmes Road 5724 Summer Trees Drive Memphis, TN 38118 Memphis, TN 38134 EDR Inquiry # 6034858.8 Contact: Velita Thornton

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

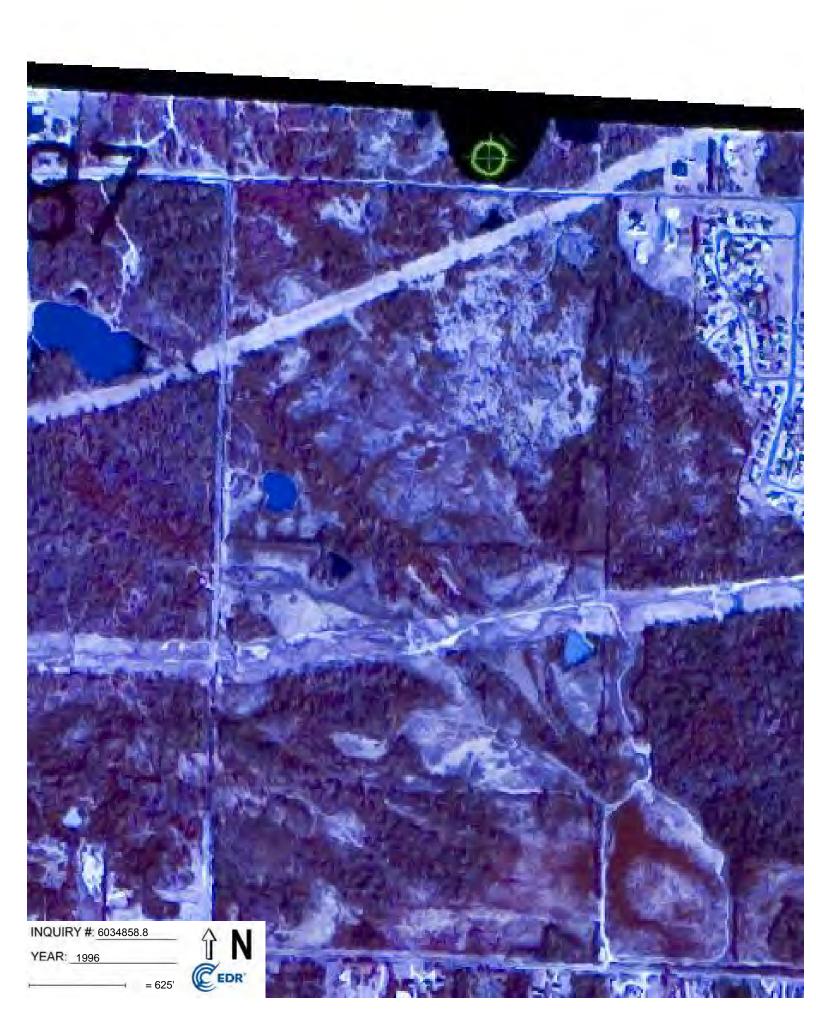
Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2016	1"=625'	Flight Year: 2016	USDA/NAIP
2012	1"=625'	Flight Year: 2012	USDA/NAIP
2008	1"=625'	Flight Year: 2008	USDA/NAIP
1996	1"=625'	Flight Date: February 17, 1996	USGS
1992	1"=625'	Flight Date: February 29, 1992	USGS
1991	1"=625'	Acquisition Date: February 02, 1991	USGS/DOQQ
1980	1"=625'	Flight Date: November 01, 1980	USDA
1973	1"=625'	Flight Date: March 01, 1973	USGS
1971	1"=625'	Flight Date: November 07, 1971	USDA
1965	1"=625'	Flight Date: September 27, 1965	USDA
1963	1"=625'	Flight Date: March 06, 1963	USGS
1957	1"=625'	Flight Date: December 30, 1957	USDA
1953	1"=625'	Flight Date: October 11, 1953	USDA
1937	1"=625'	Flight Date: August 10, 1937	USDA


When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.


Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

MSCAA - Holmes Road EA E Holmes Road Memphis, TN 38118

Inquiry Number: 6034858.4

April 08, 2020

EDR Historical Topo Map Report

with QuadMatch™

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Historical Topo Map Report

04/08/20

Site Name: Client Name:

MSCAA - Holmes Road EA ENSAFE

E Holmes Road 5724 Summer Trees Drive Memphis, TN 38118 Memphis, TN 38134 EDR Inquiry # 6034858.4 Contact: Velita Thornton

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by ENSAFE were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results: Coordinates:

P.O.# NA Latitude: 34.999573 34° 59' 58" North

Project: MSCAA - E Holmes Road Phas Longitude: -89.967926 -89° 58' 5" West

 UTM Zone:
 Zone 16 North

 UTM X Meters:
 229128.67

 UTM Y Meters:
 3877021.77

Elevation: 355.63' above sea level

Maps Provided:

2012, 2013 1944

1997

1993, 1996

1982, 1983

1973

1965

1961 1960

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2012, 2013 Source Sheets

Pleasant Hill 2012 7.5-minute, 24000

Southeast Memphis 2013 7.5-minute, 24000

1997 Source Sheets

Southeast Memphis 1997 7.5-minute, 24000 Aerial Photo Revised 1997

1993, 1996 Source Sheets

Southeast Memphis 1993 7.5-minute, 24000 Aerial Photo Revised 1990

Pleasant Hill 1996 7.5-minute, 24000 Aerial Photo Revised 1996

1982, 1983 Source Sheets

Pleasant Hill 1982 7.5-minute, 24000 Aerial Photo Revised 1975

Southeast Memphis 1983 7.5-minute, 24000 Aerial Photo Revised 1980

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1973 Source Sheets

Southeast Memphis 1973 7.5-minute, 24000 Aerial Photo Revised 1973

1965 Source Sheets

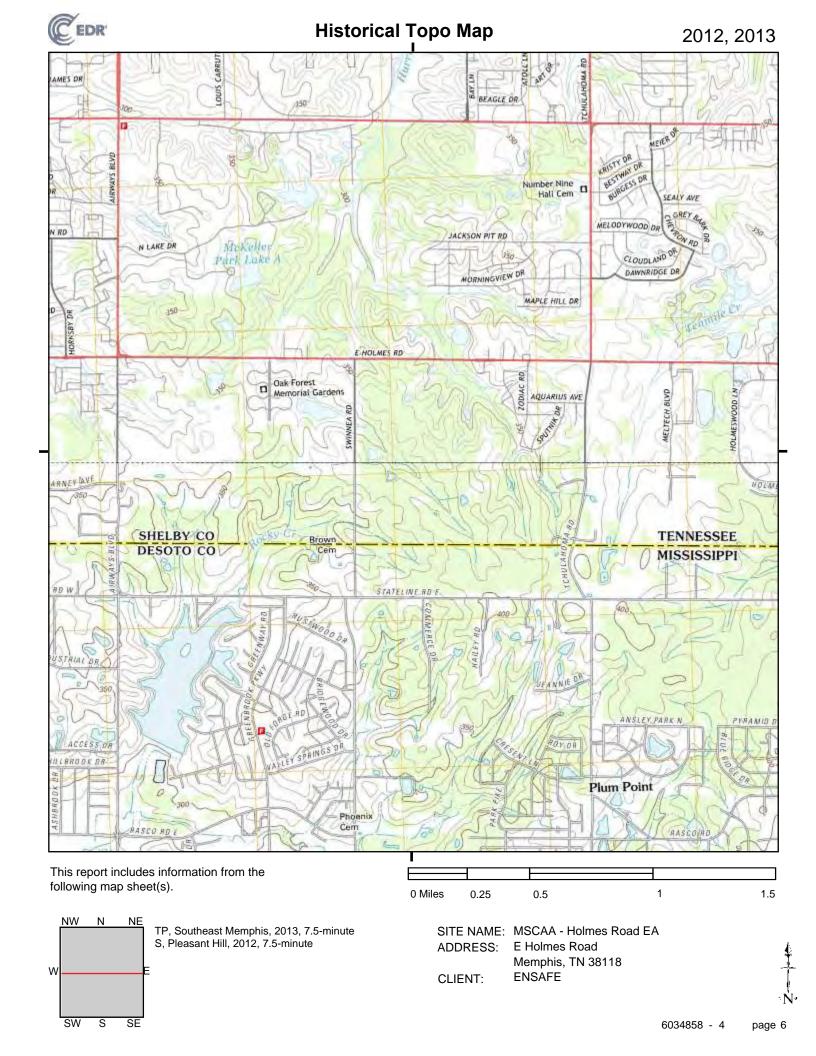
Southeast Memphis 1965 7.5-minute, 24000 Aerial Photo Revised 1963

1961 Source Sheets

Bartlett 1961 15-minute, 62500 Aerial Photo Revised 1958

1960 Source Sheets

Bartlett 1960 15-minute, 62500 Aerial Photo Revised 1958


Topo Sheet Key

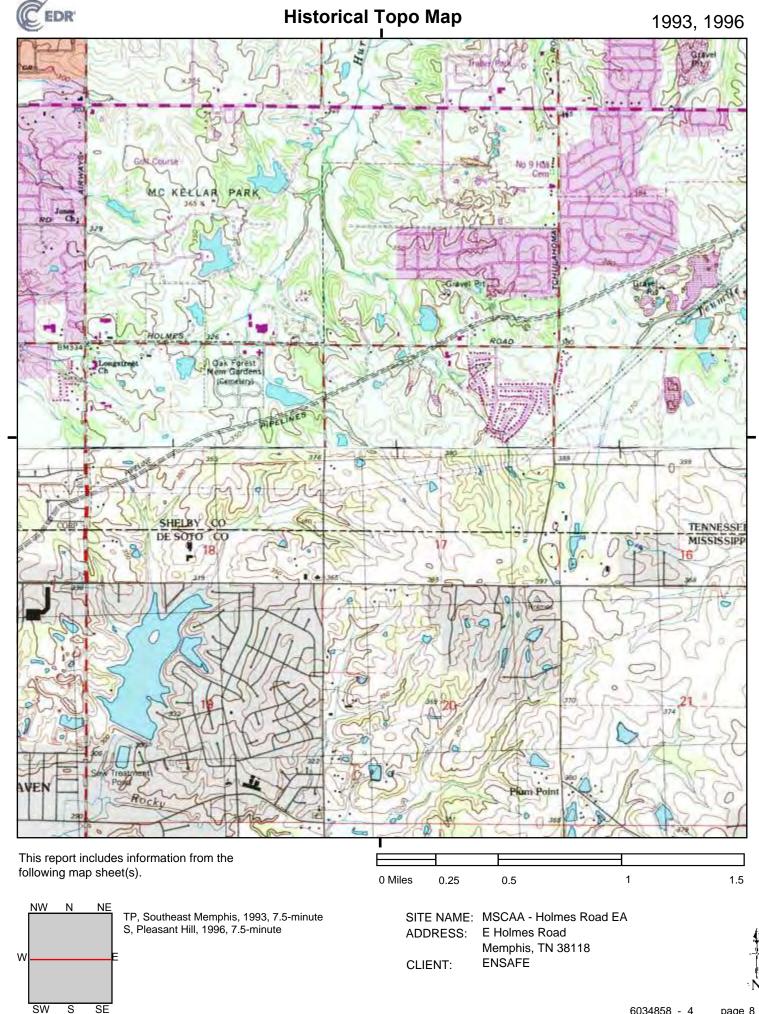
This EDR Topo Map Report is based upon the following USGS topographic map sheets.

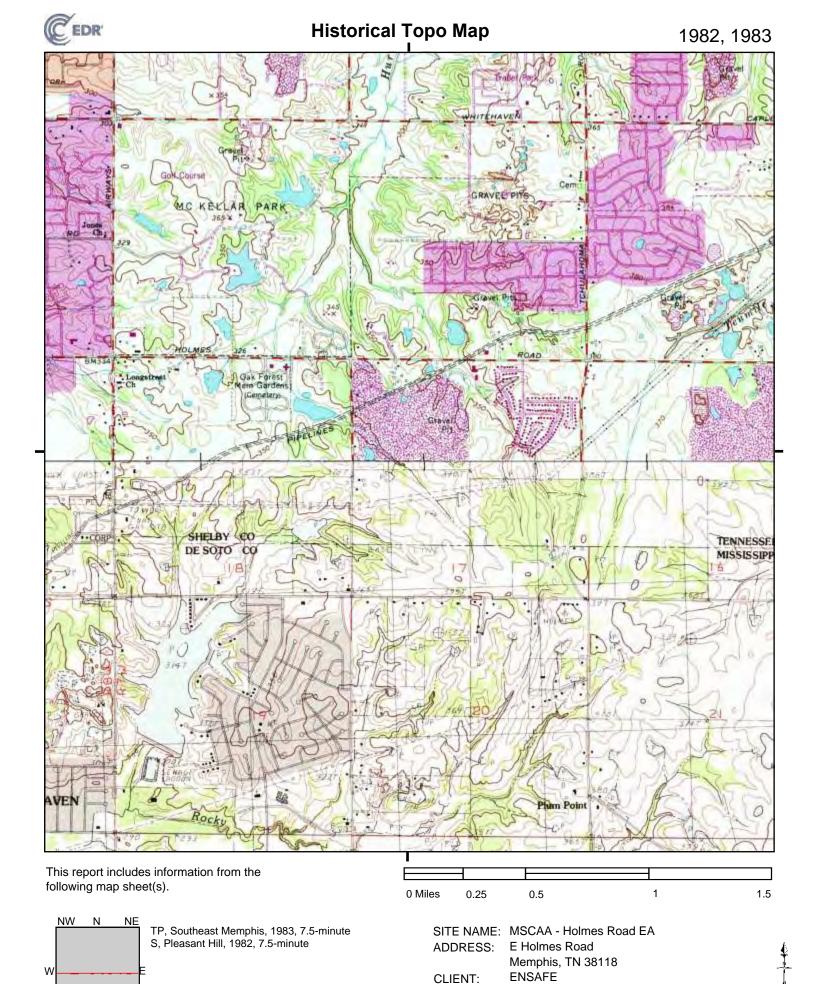
1944 Source Sheets

Hernando 1944 15-minute, 62500

6034858 - 4 page 7

E Holmes Road

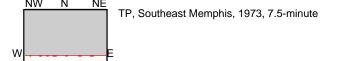

ENSAFE


Memphis, TN 38118

ADDRESS:

CLIENT:

W



SW

SE

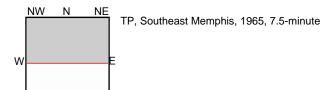
This report includes information from the following map sheet(s).

SE

SITE NAME: MSCAA - Holmes Road EA

ADDRESS: E Holmes Road

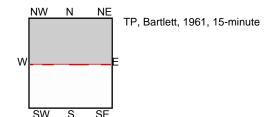
Memphis, TN 38118

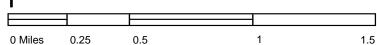

CLIENT: ENSAFE

UNMAPPED

UNMAPPED UNMAPPED UNMAPPED

This report includes information from the following map sheet(s).

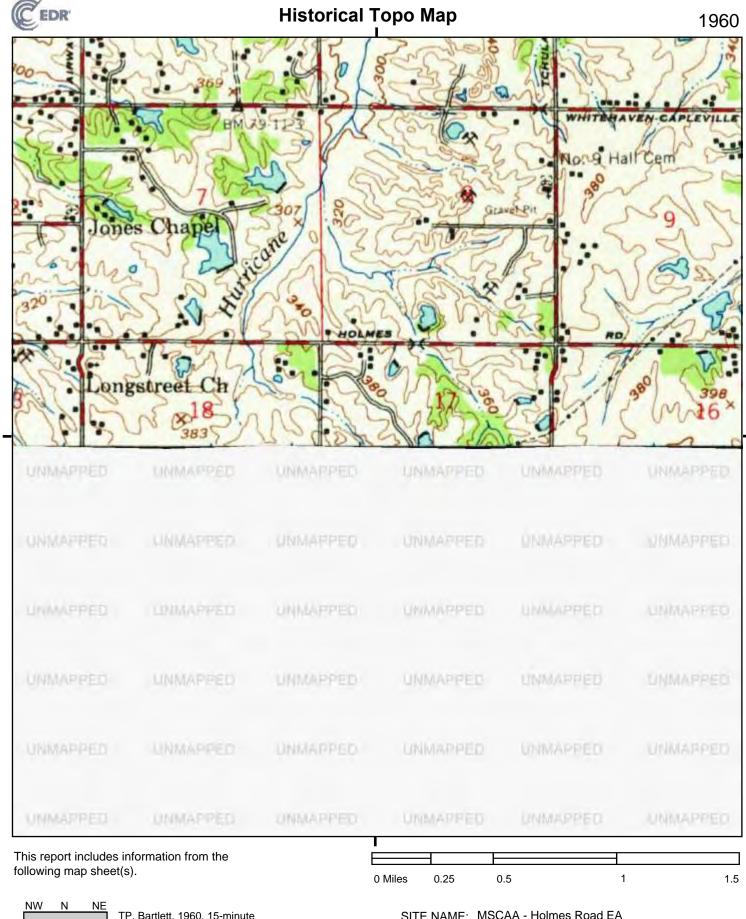

SITE NAME: MSCAA - Holmes Road EA

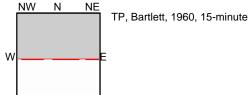

ADDRESS: E Holmes Road

Memphis, TN 38118

CLIENT: ENSAFE

This report includes information from the following map sheet(s).




SITE NAME: MSCAA - Holmes Road EA

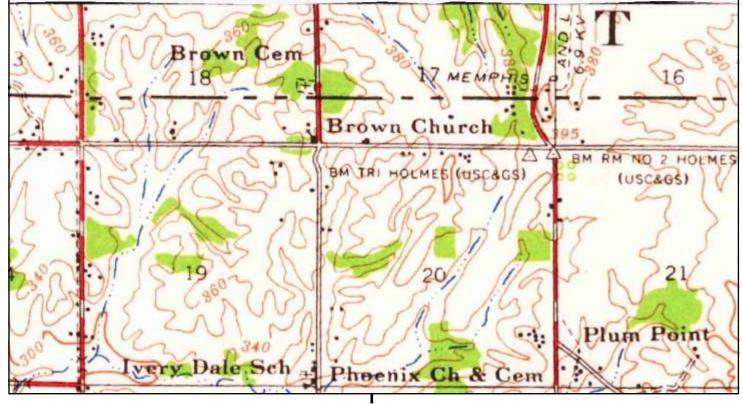
ADDRESS: E Holmes Road

Memphis, TN 38118

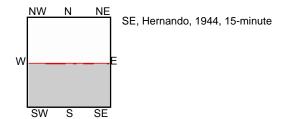
CLIENT: ENSAFE

SITE NAME: MSCAA - Holmes Road EA

ADDRESS: E Holmes Road


Memphis, TN 38118

ENSAFE CLIENT:


Historical Topo Map

UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED
UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED
UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED
UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED
UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED
UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED	UNMAPPED

0 Miles

This report includes information from the following map sheet(s).

SITE NAME: MSCAA - Holmes Road EA

0.5

ADDRESS: E Holmes Road

Memphis, TN 38118

CLIENT: ENSAFE

0.25

1.5

MSCAA - Holmes Road EA E Holmes Road Memphis, TN 38118

Inquiry Number: 6034858.3

April 08, 2020

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name: Client Name:

MSCAA - Holmes Road EA ENSAFE

E Holmes Road 5724 Summer Trees Drive

Memphis, TN 38118 Memphis, TN 38134

EDR Inquiry # 6034858.3 Contact: Velita Thornton

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by ENSAFE were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # C70A-48DA-8363

PO# NA

Project MSCAA - E Holmes Road Phase I

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: C70A-48DA-8363

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

✓ University Publications of America

✓ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

ENSAFE (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

MSCAA - Holmes Road EA

E Holmes Road Memphis, TN 38118

Inquiry Number: 6034858.5

April 08, 2020

The EDR-City Directory Abstract

6 Armstrong Road Shelton, CT 06484 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Abstract includes a search and abstract of available city directory data. For each address, the directory lists the name of the corresponding occupant at five year intervals.

Business directories including city, cross reference and telephone directories were reviewed, if available, at approximately five year intervals for the years spanning 1921 through 2017. This report compiles information gathered in this review by geocoding the latitude and longitude of properties identified and gathering information about properties within 660 feet of the target property.

A summary of the information obtained is provided in the text of this report.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. An "X" indicates where information was identified in the source and provided in this report.

<u>Year</u>	Source	<u>TP</u>	<u>Adjoining</u>	Text Abstract	Source Image
2017	Cole Information Services	-	-	-	-
2014	Cole Information Services	-	-	-	-
2009	Cole Information Services	-	-	-	-
2006	Polk City Directory	-	-	-	-
2004	Cole Information Services	-	-	-	-
2003	Polk City Directory	-	-	-	-
1999	Cole Information Services	-	-	-	-
1997	R. L. Polk Co., Publishers	-	-	-	-
1994	Cole Information Services	-	-	-	-
1992	R. L. Polk Co.	-	-	-	-
1987	R.L. Polk Co., Publishers	-	-	-	-
1982	R.L. Polk Co., Publishers	-	-	-	-

EXECUTIVE SUMMARY

<u>Year</u>	<u>Source</u>	<u>TP</u>	<u>Adjoining</u>	Text Abstract	Source Image
1978	R.L. Polk Co., Publishers	-	-	-	-
1973	R.L. Polk Co., Publishers	-	-	-	-
1968	R.L. Polk Co., Publishers	-	-	-	-
1963	R.L. Polk Co., Publishers	-	-	-	-
1958	R.L. Polk Co., Publishers	-	-	-	-
1953	R.L. Polk Co., Publishers	-	-	-	-
1948	R.L. Polk Co., Publishers	-	-	-	-
1943	R.L. Polk Co., Publishers	-	-	-	-
1938	R.L. Polk Co., Publishers	-	-	-	-
1932	R.L. Polk Co., of Memphis, Publishers	-	-	-	-
1926	R.L. Polk Co., of Memphis	-	-	-	-
1921	R.L. Polk CO.	-	-	-	-

TARGET PROPERTY: ADDRESS NOT IDENTIFIED IN RESEARCH SOURCE

The following Target Property addresses were researched for this report, and the addresses were not identified in the research source.

Address Researched

Address Not Identified in Research Source

E Holmes Road

2017, 2014, 2009, 2006, 2004, 2003, 1999, 1997, 1994, 1992, 1987, 1982, 1978, 1973, 1968, 1963, 1958, 1953, 1948, 1943, 1938, 1932, 1926, 1921

Appendix E Government Records

(https://www.usgs.gov/)

Mineral Resources (https://www.usgs.gov/energy-and-minerals/mineral-resources-program) / Online Spatial Data (/) / Mineral Resource Data System (MRDS) (/mrds/)

Dudley Anderson Pit

Past Producer in Shelby county in Tennessee, United States with commodity Sand and Gravel, Construction

Map (https://www.google.com/maps/place/35.0		
XML (/mrds/xml/10076012)	JSON (/mrds/js	
D (/mrds/grade-summary.php?dep_id=100760		

Geologic information

Identification information		
Deposit ID	10076012 (/mrds/show-mrds.php?dep_id=10076012)	
MRDS ID	W022891	
Record type	Site	
Current site name	Dudley Anderson Pit	
Related records	10226902 (/mrds/show-mrds.php?dep_id=10226902)	

Geographic coordinates		
Geographic coordinates:	-89.9637, 35.00317 (WGS84)	
Elevation	105	
Political divisions (FIPS codes)		
Shelby (county)		
Tennessee (state)		
United States (country)		
North America (continent)		
Land (continent)		
USGS map quadrangles		
Southeast Memphis (quadrangle 1:24,000 scale)		
Memphis East (quadrangle 1:100,000 scale)		
Blytheville (quadrangle 1:250,000 scale)		
Hydrologic units (watersheds)		
Horn Lake-Nonconnah (hydrologic unit)		
Hatchie-Obion (hydrologic accounting unit)		
Lower Mississippi-Hatchie (hydrologic subregion	n)	
Lower Mississippi (hydrologic region)		

Geographic areas		
Country	State	County

Country	State	County
United States	Tennessee	Shelby

Commodities	
Commodity	Importance
Sand and Gravel, Construction	Primary

Materials information		
Materials	Type of material	
Sand and Gravel	Ore	

N	Nearby scientific data				
(1)	Loess (/geology/state/sgmc- unit.php? x=-89.9637&y=35.00317)	List (/general/near-pc inMzhpp(/พท-สมาัติธีp7-สิง/หาชิวโวเวล-878886-37-8-1/-8-វេ-មេ-17-8-វេ-) 14)			

Economic information

Economic information about the deposit and operations		
Development status Past Producer		
Commodity type	Non-metallic	
Significant No		

Land status	
Ownership category	Private

Reference information

Links to other databases				
Agency	Database name	Acronym	Record ID	Notes
USGS	Mineral Resources Data System	MRDS	W022891	

Bibliographic references
Deposit CRIB MINERAL RESOURCES FILE, RECORD NUMBER K001575.
Deposit MESA HEALTH AND SAFETY INSPECTION REPORT AUGUST 6, 1975.

Deposit

PROPERTY IS OWNED BY DUDLEY ANDERSON AND IS OPERATED BY AL COSBY

Deposit

CONSTRUCTION COMPANY.

Reporter information				
Туре	Date	Name	Affiliation	Comment
Reporter	01-JAN-1973	Unknown	U.S. Bureau of Mines	

DOI Privacy Policy (https://www.doi.gov/privacy) | Legal (https://www.usgs.gov/laws/policies_notices.html) |

Accessibility (https://www2.usgs.gov/laws/accessibility.html) | Site Map (https://www.usgs.gov/sitemap.html) |

Contact USGS (https://answers.usgs.gov/)

U.S. Department of the Interior (https://www.doi.gov/) | DOI Inspector General (https://www.doioig.gov/) |

White House (https://www.whitehouse.gov/) | E-gov (https://www.whitehouse.gov/omb/management/egov/) |

No Fear Act (https://www.doi.gov/pmb/eeo/no-fear-act) | FOIA (https://www2.usgs.gov/foia)

Mineral Resources (https://www.usgs.gov/energy-and-minerals/mineral-resources-program) / Online Spatial Data (/) / Mineral Resource Data System (MRDS) (/mrds/)

Dudley Anderson Pit

Past Producer in Shelby county in Tennessee, United States with commodity Sand and Gravel, Construction

Map (https://www.google.com/maps/place/35.003		
XML (/mrds/xml/10226902) JSON (/mrds/json.		
D (/mrds/grade-summary.php?dep_id=10226902)		

Geologic information

Identification information	
Deposit ID	10226902 (/mrds/show-mrds.php?dep_id=10226902)
MRDS ID	W022891
MAS/MILS ID	0471570005
Record type	Site
Current site name	Dudley Anderson Pit
Alternate or previous names	Al Crosby Construction Company
Related records	10076012 (/mrds/show-mrds.php?dep_id=10076012)

Geographic coordinates		
Point of reference	Ore Body	
Geographic coordinates:	-89.96369, 35.00321 (WGS84)	
Elevation	105	
Political divisions (FIPS codes) Shelby (county)		
Tennessee (state)		
United States (country)		
North America (continent)		
Land (continent) USGS map quadrangles		
Southeast Memphis (quadrangle 1:24,000 scale)		
Memphis East (quadrangle 1:100,000 scale)		
Blytheville (quadrangle 1:250,000 scale)		
Hydrologic units (watersheds)		
Horn Lake-Nonconnah (hydrologic unit)		
Hatchie-Obion (hydrologic accounting unit)		
Lower Mississippi-Hatchie (hydrologic subregion)		
Lower Mississippi (hydrologic region)		

Country	State	County
United States	Tennessee	Shelby

Commodities	
Commodity	Importance
Sand and Gravel, Construction	Primary

Nea	Nearby scientific data				
Ore Body (1)	Loess (/geology/state/sgmc- unit.php? x=-89.96369&y=35.00321)	List (/general/near-po	DirMppq//mrd891943369-8-ун-18-75x0-0-352-198-360-8-ун-8-35-гоова2-11-8-та-1-1-4)		

Economic information

Economic information about the deposit and operations		
Operation type Surface		
Development status	Past Producer	
Commodity type	Non-metallic	
Significant	No	

Land status	
Ownership category	Private

Туре	Unknown	
туре	Officiowit	
Owner	Crosby Construction Co., Al	
ID	4001451	
Year	1981	

Reference information

Links to other databases				
Agency	Database name	Acronym	Record ID	Notes
U.S. Bureau of Mines	Minerals Availability System	MAS	0471570005	
USGS	Mineral Resources Data System	MRDS	W022891	MAS references MRDS

Agency	Database name	Acronym	Record ID	Notes
Mine Safety and Health Administration	MSHA	MSHA	4001451	

Bibliographic references

Deposit

CRIB MINERAL RESOURCES FILE, RECORD NUMBER K001575.

Deposit

MESA HEALTH AND SAFETY INSPECTION REPORT AUGUST 6, 1975.

Deposit

PROPERTY IS OWNED BY DUDLEY ANDERSON.

Deposit

RCF LIST 10/81

Deposit

NOT ON 1980 OR 1981 MSHA LIST; ASSUME PAST PRODUCER

Reporte	Reporter information				
Туре	Date	Name	Affiliation	Comment	
Reporter	15-NOV-1983	Eastern Field Operations Center (EFOC)	U.S. Bureau of Mines		

DOI Privacy Policy (https://www.doi.gov/privacy) | Legal (https://www.usgs.gov/laws/policies_notices.html) |

Accessibility (https://www2.usgs.gov/laws/accessibility.html) | Site Map (https://www.usgs.gov/sitemap.html) |

Contact USGS (https://answers.usgs.gov/)

U.S. Department of the Interior (https://www.doi.gov/) | DOI Inspector General (https://www.doioig.gov/) |

White House (https://www.whitehouse.gov/) | E-gov (https://www.whitehouse.gov/omb/management/egov/) |

No Fear Act (https://www.doi.gov/pmb/eeo/no-fear-act) | FOIA (https://www2.usgs.gov/foia)

(https://www.usgs.gov/)

Mineral Resources (https://www.usgs.gov/energy-and-minerals/mineral-resources-program) / Online Spatial Data (/) / Mineral Resource Data System (MRDS) (/mrds/)

Anderson Pit

Producer in Shelby county in Tennessee, United States with commodity Sand and Gravel, Construction

Map (https://www.google.com/maps/place/35.0020			
XML (/mrds/xml/10300075)	JSON (/mrds/json/1		
D (/mrds/grade-summary.php?dep_id=10300075)			

Geologic information

Identification information		
Deposit ID	10300075 (/mrds/show-mrds.php?dep_id=10300075)	
MAS/MILS ID	0471570038	
Record type	Site	
Current site name	Anderson Pit	

Point of reference	Trench		
Geographic coordinates:	-89.96399, 35.00201 (WGS84)		
Elevation	110		
Political divisions (FIPS codes)			
Shelby (county)			
Tennessee (state)			
United States (country)			
North America (continent)			
Land (continent)			
USGS map quadrangles			
Southeast Memphis (quadrangle 1:24,000 scale)			
Memphis East (quadrangle 1:100,000 scale)			
Blytheville (quadrangle 1:250,000 scale)			
Hydrologic units (watersheds)			
Horn Lake-Nonconnah (hydrologic unit)			
Hatchie-Obion (hydrologic accounting unit)			
Lower Mississippi-Hatchie (hydrologic subregion	on)		
Lower Mississippi (hydrologic region)			

Geographic areas			
Country	State	County	
United States	Tennessee	Shelby	

Commodities	
Commodity	Importance
Sand and Gravel, Construction	Primary

Nearl	Nearby scientific data				
Trench (1)	Loess (/geology/state/sgmc- unit.php? x=-89.96399&y=35.00201)	List (/general/near-poi ៅស្រុកក្រស់ទី១១១៤៤ (/general/near-poiM ស្រុកក្រស់ទី១១១៤៤ (/general/near-poi M ស្រុកក្រស់ទី១១១៤៤ (/general/near-poiM (/general/near-poiM			

Economic information

Economic information about the deposit and operations		
Operation type Surface		
Development status Producer		
Commodity type	Non-metallic	
Significant	No	

Land status	
Ownership category	Private

Ownership	information	
Туре	Unknown	
Owner	W. S. Johnson And Sons Sand And Gravel, Inc.	
ID	4002425	
Year	1980	

Reference information

Links to other databases						
Agency	Database name	Acronym	Record ID	Notes		
U.S. Bureau of Mines	Minerals Availability System	MAS	0471570038			
Mine Safety and Health Administration	MSHA	MSHA	4002425			

Bibliographic references
Deposit MSHA INSPECTION 5-20-80.

Deposit
PHONE CALL 2-11-81.

Deposit
1981 MSHA LIST

Deposit
RCF & CMS LISTS 10/81

Reporte	ter information						
Туре	Date	Name	Affiliation	Comment			
Reporter	15-NOV-1983	Eastern Field Operations Center (EFOC)	U.S. Bureau of Mines				

DOI Privacy Policy (https://www.doi.gov/privacy) | Legal (https://www.usgs.gov/laws/policies_notices.html) |

Accessibility (https://www2.usgs.gov/laws/accessibility.html) | Site Map (https://www.usgs.gov/sitemap.html) |

Contact USGS (https://answers.usgs.gov/)

U.S. Department of the Interior (https://www.doi.gov/) | DOI Inspector General (https://www.doioig.gov/) |
White House (https://www.whitehouse.gov/) | E-gov (https://www.whitehouse.gov/omb/management/egov/) |
No Fear Act (https://www.doi.gov/pmb/eeo/no-fear-act) | FOIA (https://www2.usgs.gov/foia)

-	
-	
2	
-	

POTENTIAL HAZARDOUS WASTE SITE

IFICATION
02 SITE NUMBER 0 051386258

SEPA PAR	PRELIMINARY AS RT 1 - SITE INFORMATIO	SESSMENT N AND ASSESSM	IENT TA	0 05138625
II. SITE NAME AND LOCATION				
01 SITE NAME (Legal, common, or descriptive name of site) SS - 3 03 CITY		asi of ICK	REPECIFIC LOCATION IDENTIFIED TO A LANGE M. & ROAD TO BE COUNTY	A SWINDER ROPE
The state of the s	LONGITUDE	N 38129	shelby	15,7 08
35 00 05 89 10 DIRECTIONS TO SITE ISIATING from nearest pulse roads [m med 1.	ately south	of dre	kson Pits	Aren
III. RESPONSIBLE PARTIES				
01 OWNER IN KNOWN W. S. JOHAN		TREET (Business, making, re	(3090(IM)	+
Memplie		TATE 05 ZIP CODE	1901 363 - 230	P
OT OPERATOR III known and different from owners	08 57	REET (Business, making, re-	1.101, 262 ×2.	[5]
09 CITY	10 57	ATE 11 ZIP CODE	12 TELEPHONE NUMBER	1
13 TYPE OF OWNERSHIP (Check one) A. PRIVATE DB. FEDERAL: F. OTHER: (SO 14 OWNER/OPERATOR NOTIFICATION ON FILE (Check as that appr	(Agency name)	☐ C. STATE		MUNICIPAL
A. RCRA 3001 DATE RECEIVED: / MONTH DAY YEAR	B. UNCONTROLLED WA	STE SITE (CERCLA 103	DATE RECEIVED:	DAY YEAR C. NONE
TON SITE INSPECTION A YES DATE MONTH DAY YEAR	ICROCC AND ITALIA RODY) A. EPA B. EPA CONT B. LOGAL HEALTH OFFICIAL NTRACTOR NAME(S):	TRACTOR (C)	C. STATE D. OTHI	ER CONTRACTOR
2 SITE STATUS (Check one) A. ACTIVE B. INACTIVE C. UNKNOWN	D3 YEARS OF OPERATION	G YEAR ENDING Y	₩ UNKNO	wn
DA DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, KNOW	WN. OR ALLEGED			700
DONE KN				***
PRIORITY ASSESSMENT				
1 PRIORITY FOR INSPECTION (Check one, if high or medium is checked ☐ A. HIGH ☐ B. MEDIUM (Inspection required promotity)	A C. LOW	D. NONE	ous Conditions and incidents: school needed, complete current disp	
I. INFORMATION AVAILABLE FROM	T. A. Company	jag lodger	Compare current disp	GSAKIN TOTAL
W.S. LONDAN	02 OF IAGENCY: OTGENEZION			(901) 363-2345
Michael de Hiss	TW. Dept. of DIV	GANIZATION ISION OF Solid te Minnagement	07 TELEPHONE NUMBER - (615 1741-6267	12 20 53

SES-31

€EPA	POTENTIAL NAZARDO SITE INSPECTION P	*STE SITE		REGION 4	TNOODOO 1040
ica en tala form to develop	S: Complete Sections I and ill through a Tentative Disposition (Section II). Il appropriate Supplemental Reports it ting System; Hazardous Waste Enforce	- the file Sub	mit a copy of the	fonns to:	U.S. Environmental Pro-
3 7 C W 2 25 - 4 4 4 4	I. SITE IDI	ENTIFICATION			10 1 112
SE SE	5-31 1517	The state of the s			is of Holmes Follows; lations
Memp	olice	Jenn	E. ZIP CODE	flee	lby
SITE OPERATOR INFORM	HOITAN			Z. TEL	EPHONE NUMBER
3. STREET				S. STA	TE E. ZIP CODE
I. REALTY OWNER INFORM	TATION (if different from operator of alle)		2. TE	LEPHONE NUMBER
5. city — — —				4. 574	
I. SITE DESCRIPTION OF	d gravel pit. now overge	own. no	sign of ste	in, lead	hate, or disturbance
1. FEDERAL] 2. STATE 3. COUNTY [4. MUNICIPA	L 🔀 S. PRI	VATE	*
	II. TENTATIVE DISPOSIT	ION (complete	this section last)	
A. ESTIMATE DATE OF TE DISPOSITION (ma., day, &	NTATIVE B. APPARENT SERIOUSN		M □ 3. LOV	, M	4. NONE
1. NAME Jon Rung		404 / X81-	ONE NUMBER -7428		TE (mo., day, & yr.) /80
	III. INSPECT	ION INFORMAT	TIOH		
A. PRINCIPAL INSPECTOR 1. HAME Jonn Runn		2. TITLE	nmental En	gr.	
3. ORGANIZATION U.S. EPa,	Region TI				LEPHONE NO. (area code à /881-7428
B. INSPECTION PARTICIPA	ANTS				3. TELEPHONE NO.
1. NAME	1 200 Mg 1 1	TU TU		404	1/881-4901
Leonge Harvell Tom Runyon	15 11			40	4/881-7428
John Ton J		9		13	
C. SITE REPRESENTATIV	ES INTERVIEWED (corporate officiale, s	rorkers, residents)		
1. NAME	2. TITLE & TELEPHONE	NO.		S. ADDR	
7	sectioning adjacent	Leural 345			
Mr. W. S. Jordan	901 / 363-2	34,			.+
				*	
					100000
79-76	8				000002

2. PHOTOS IN CUSTODY OF:	2-202461	17.5	AMPLING INFOR	MA	TION (continued)	_	
Sometime Some Som	C. PHOTOS		2. PHOTOS I	N C	USTODY OF:		
D. STEMPLED STORES STARK, BELOW GROUND SUPPLEMENTAL REPORTS STARK, BELOW GROUND SUPPLEMENTAL REPORTS STARK, BELOW GROUND SUPPLEMENTAL REPORTS SUPP		Tom 1	2	44774			
LATITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. STE STATUS 2. CTIVET (Those inductrial or municipal sites which are being used on a continuing basis, even if inference of the site of		70-170		yon	-	7	
LATITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. LONGITUDE (deg-min-sec.) 2. STE STATUS 2. CTIVET (Those inductrial or municipal sites which are being used on a continuing basis, even if inference of the site of	YES, SPECIFY LOCA	TION OF MAPS: Sou	theost qua	11	map of Memphis (Epi	cu	ule#31 ned)
V. SITE INFORMATION 1. ACTIVE (Those inductrial or municipal sites which are bring used as a site which no longer receive which we bring used on a continuing bests, even if infrequently. 1. ACTIVE (Those inductrial or municipal sites which no longer receive which we shall used on a continuing bests, even if infrequently. 1. ACTIVE (Those inductrial or municipal sites which no longer receive which we site in the sit	. COORDINATES		63		LONGITUDE (degmin,-sec.)		
LISTE STATUS 1. ACTIVE (Those industrial or murrouped sites which have being used for easite seasions, storage, or disposal on a continuing bests, seen if inferencently. (Those sites that include such incidents like "midright dumpming on a continuing bests, seen if inferencently." (Those sites that include such incidents like "midright dumpming on a continuing bests, seen if inferencently." (The same of the site for waste disposal on a continuing bests, seen if inferencently. (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same of the site for waste disposal have occurred.) (The same occurred.) (The same occurred.) (The same is that include auth incidents like "midright dumpming have of the site for waste disposal have occurred.) (The same occurred.) (The same is that include auth incidents like "midright dumpming have of the site for waste occurred.) (The same is that include auth incidents like "midright dumpming have occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like inpose occurred.) (The same is that include auth incidents like incidents like incidents like	: 3	5 00 0	5"10		-89°57'44"	J	
A. ACTIVE (Those inductival or provided by the serior of the which no bringer receive provided by maste treatment, storage, or disposal for maste disposal master or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for maste disposal where no regular or continuing use of the site for masted disposal where no regular or continuing use of the site for section. 1. NO			V. SITE INF	OR	HOITAM		
These sites which we being used for easier seminal states, or disposal on a continuing basis, even if inference of the site of inference of the si	. SITE STATUS	V-2	ar media				
1. NO 2. YES(specify generator's four-digit SIC Code)	municipal altes which are be- for wests treatment, storage, on a continuing besis, even i	or disposal wastes.)		1	(Those sites that include such inc where no regular or continuing use	ol	nts like "midnight dumping" the aits for weste disposal
D. ARE THERE BUILDINGS ON THE SITE? 1. NO 2. YES(specify): 1. NO 3. YES(specify): 2. YES(specify): 3. NO 3. YES	. IS GENERATOR ON SITE?			-			
VI. CHARACTERIZATION OF SITE ACTIVITY Indicate the major site activity(rex) and details relating to each activity by marking 'X' in the appropriate boxes. A. TRANSPORTER X' B. STORER X' C. TREATER X' D. DISPOSER	1. NO 2. Y	ES(specify generator's fo	our digit SIC Code)	-			
1. NO 2. YES(epecity): VI. CHARACTERIZATION OF SITE ACTIVITY							
A. TRANSPORTER X A. TRANSPORTER X B. STORER X C. TREATER X D. DISPOSER 1. RAIL 1. PILE 1. FILTRATION 1. LANDFILL 2. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports you have filled out and attached to this for 1. STORAGE 2. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports you have filled out and attached to this for 1. STORAGE 2. INCINERATION 3. DEEP WELL 4. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports must be completed Indirectly. 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports must be completed. Indirectly. 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports must be completed. Indirectly. 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cure correct listed below, Supplemental Reports must be completed. Indirectly. 6. CHEM/BIO/ 7. LANDFARM 8. OPEN DUMP 9. TRANSPORTER 10. RECYCLOR/REC: AIM VII. WASTE RELATED INFORMATION 4. WASTE TYPE 1. LIQUID 2. SOLID 3. SLUDGE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE 9. OTHER (specify): 8. OTHER (specify): 9. OTHER (specify):	. AREA OF SITE (in ecres)						
A. TRANSPORTER X B. STORER X C. TREATER X D. DISPOSER I. PAIL J. PILE J. SHIP J. SHARCE IMPOUNDMENT J. SURFACE IMPOUNDMENT J. SHARCE J. DRUMS J. DRUMS J. OPUND		17 60	D. CT. D. Z. LT. C		OF SITE ACTIVITY	-	
A. TRANSPORTER X' B. STORER X' C. TREATER X D. DISPOSER 1. RAIL 2. SHIP 2. SHIP 2. SHIP 2. SURFACE IMPOUNDMENT 3. PILLTRATION 3. DEEN DUMP 4. TANK 4. TANK, ABOVE GROUND 5. PIPELINE 5. OTHER (specify): 6. OTHER (specify): 7. WASTE OIL REPROCESSING 9. OTHER (specify): 1. STORAGE 2. INCINERATION 3. LANDFALL 4. SURFACE 1. SUPPLEMENTAL REPORTS: If the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below. Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below. Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below. Supplemental Reports must be completed. Indirectly in the site falls within any of the ciregories listed below. Supplemental Reports must be completed. Indirectly in th	adicate the major site acti	vitudies) and details t	elating to each ac	ctiv	ity by marking 'X' in the appro	pri	ate boxes.
2. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 3. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 4. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 5. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 6. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 7. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 8. SUPPLEMENTAL REPORTS: If the site falls within any of the cregories listed below, Supplemental Reports must be completed. Indirectly: 9. OTHER(specify): 9. OTH		X'	TO THE T	X.	The second second	×	
2. SHIP 2. SURFACE IMPOUNDMENT 2. INCINERATION 3. OPEN DUMP 3. DARGE 3. DARGE 4. TRUCK 5. PIPELINE 5. TANK, BELOW GROUND 6. CHEM/PHY3./TREATMENT 7. WASTE OIL REPROCESSING 9. OTHER (specify): 5. OTHER (specify): 6. CHEM/BIO/ 6. CHEM/BIO/ 6. CHEM/BIO/ 7. LANDFARM 6. OPEN DUMP 9. TRANSPORTER 10. RECYCLOR/REC: AIM VII. WASTE RELATED INFORMATION WASTE TYPE 11. LIQUID 2. SOLID 3. SLUDGE 4. MIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE 9. OTHER (specify): 1. STORICS 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	LRAIL	1.PILE		1	1. FILTRATION	1	1 LANDFILL
S. PIPPLEMENTAL REPORTS: If the site falls within any of the ci-egories listed below, Supplemental Reports must be completed indirections and the supplemental Reports of the site falls within any of the ci-egories listed below, Supplemental Reports must be completed indirections and the supplemental Reports of the site falls within any of the ci-egories listed below, Supplemental Reports must be completed indirections and the supplemental Reports of the site falls within any of the ci-egories listed below, Supplemental Reports must be completed indirections and the supplemental Reports of the site falls within any of the ci-egories listed below, Supplemental Reports must be completed indirections and the supplemental Reports must be completed indirections. 1. STORAGE 2. INCINERATION 3. LANDFILL 4. SURFACE 5. DEEP WELL 6. CHEM/BIO/ 6. CHEM/BIO/ 7. LANDFARM 8. OPEN DUMP 9. TRANSPORTER 10. RECYCLOR/REC: AIM VII. WASTE RELATED INFORMATION VII. WASTE CHARACTERISTICS 1. CORROSIVE 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE 9. OTHER (appecify): VII. VESTE CHARACTERISTICS			MPOUNDMENT	1	2. INCINERATION	1	2. LANDFARM
#. TRUCK		3. DAUMS			S. VOLUME REDUCTION	1	3. OPEN DUMP
S. PIPELINE S. TANK, BELOW GROUND S. CHEM/PHYS./TREATMENT S. MICHIGHT DUMPING B. BIOLOGICAL TREATMENT T. WASTE DIL REPROCESSING T. UNDIL SPECIAL TIL S. SOLVENT RECOVERY S. OTHER (specify): S. MOUNGAT DUMP II. S. MOUNGAT DUMP III. S. MO		4. TANK, ABO	VE GROUND		4. RECYCLING/RECOVERY	1	4 SURFACE IMPOUNDMENT
8. OTHER (specify): C. OTHER (specify):		S. TANK, BEL	OW GROUND		S. CHEM./PHYS./THEATMENT	1	S. MIDNIGHT DUMPING
SUPPLEMENTAL REPORTS: If the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly: Supplemental Reports: If the site falls within any of the ciregories listed below, Supplemental Reports must be completed. Indirectly: Supplemental Reports: Moreover filled out and attached to this for 1. Storage		6. OTHER	city):	Т	8. BIOLOGICAL TREATMENT		C. INCINI.RATION
SUPPLEMENTAL REPORTS: If the site falls within any of the circoires listed below, Supplemental Reports must be completed. Indire which Supplemental Reports you have filled out and attached to this for 1. STORAGE 2. INCINERATION 3. LANDFILL 4. IMPOUNDMENT 5. DEEP WELL 6. CHEM/BIO/ 6. PHYS TREATMENT 7. LANDFARM 8. OPEN DUMP 9. TRANSPORTER 10. RECYCLOR/REC: AIM VII. WASTE TYPE 11. LIQUID 2. SOLID 3. SLUDGE 4. GAS 4. WASTE CHARACTERISTICS 11. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- Carrier		7. WASTE OIL REPROCESSING			7. UNDER PREMIER M. F. TH
SUPPLEMENTAL REPORTS: If the site falls within any of the circular delaw, Supplemental Reports must be completed. Indicated Supplemental Reports M		3	-		8.SOLVENT RECOVERY		S. OTHER: specify;
Which Supplemental Reports you have filled out and attached to this for 1. STORAGE 2. INCINERATION 3. LANDFILL 4. SURFACE IMPOUNDMENT 5. DEEP WELL 6. CHEM/BIO/ 6. PHYS TREATMENT 7. LANDFARM 8. OPEN DUMP 9. TRANSPORTER 10. RECYCLOR/REC. AIM VII. WASTE RELATED INFORMATION WASTE TYPE 1. LIQUID 2. SOLID 3. SLUDGE 4. GAS WASTE CHARACTERISTICS 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE					e.OTHER(specily):		
1. STORAGE 2. INCINERATION 3. LANDFILL 4. IMPOUNDMENT 5. DELP TICE 6. CHEM/BIO/	. SUPPLEMENTAL REPORT	TS: If the site fells with a you have filled out and	in any of the civego attached to this fo	orie		1710	must be completed. Indicate
VI. WASTE RELATED INFORMATION WASTE TYPE 1. LIQUID 2. SOLID 3. SLUDGE 4. GAS WASTE CHARACTERISTICS 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	1. STORAGE	2. INCINERATION	3. LANDFI	LL] 5	. DEEP WELL
VII. WASTE RELATED INFORMATION WASTE TYPE 1. LIQUID 2. SOLID 3. SLUDGE 4. GAS WASTE CHARACTERISTICS 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	6 CHEM/BIO/	7. LANDFARM	6. OPEN D	UM	P TRANSPORTER .] 1	O. RECYCLOR/RECLAIMER
1. LIQUID 2. SOLID 3. SLUDGE 4. GAS WASTE CHARACTERISTICS 1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 6. FLAMMABLE		VI	. WASTE RELAT	TEC	INFORMATION		
1. CORROSIVE		-	The state of		□ 4 645		
1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	1. LIQUID	2. SOLID	☐ 3' SENDGE		a. u.s		
1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE 5. TOXIC 6. REACTIVE 7. INERT 8. FLAMMABLE	. WASTE CHARACTERISTIC	S		_			
S. TOXIC S. REACTIVE 7. INERT S. FLAMMABLE	1. CORROSIVE 2. IGNITABLE 3. RADIOACTIVE 4. HIGHLY VOLATILE						
WASTE CATEGORIES							
1. Are records of wastes available? Specify Items such as manifests, inventories, etc. below.						-1	(K - 1)
	1. Are records of wastes ave	Hable? Specify Items su	ch as manifests, in	ven	tories, etc. below.		

79 -- 768

B&W W. JTE SCIENCE AND TECHNOLOGY CORP.

e Cyfris Center, Suite 705, 601 Walnut Street, Philadelphia, Pennsylvania 19106-3307, (215) 928-0700, Fax (215) 928-1780

11 11 5:28

79-768 See attached note believe

US EPA - Region 4 ARCS - Site Assessment

B&V Project 52012.169 B&V File 52012.169 January 11, 1994

U.S. Environmental Protection Agency Site Assessment Section 345 Courtland Street, NE Atlanta, Georgia 30365

Subject:

Duplicate Site

SES-31

EPA ID# TND 051386258

Attention: Robert Morris, SAM

Dear Robert:

During the background investigation of the SES-31 site (TND 051386258), we found similarities with another site, Extraction Area (TND 980728182), that we prepared SIP report for in September 1993. The review of the background information leads us to believe that these two sites are the same site.

This is based on the following information:

- The locations provided in the Site Inspection reports (SI) performed by Tom Runyon and George Harvell on August 19, 1980, are identical. We have enclosed a copy of both of the SI reports for your use.
- The site descriptions in the SI reports are similar. The USGS Quad map for Southeast Memphis also indicates that the area has overgrown gravel pits.
- The inspectors were at both sites at the same time (2:40 pm) on the same date (8/19/80).
- The inspectors information regarding site mapping (section IV, part D), calls the SES-31 site "EPIC site #31 red", and the Extraction Area site "EPIC site

79-768

000005

Site Assessment Section Robert Morris, SAM

B&V Project 52012.169 January 11, 1994

#31 red - extraction".

- The SI reports list the identical latitude and longitude for the SES-31 and Extraction Area sites.
- The inspectors interviewed the same Site Representative for the SES-31 and Extraction Area sites.

Therefore, we recommend that the SES-31 site (TND 051386258) be deleted and all references and information concerning this file should be combined with the file for the Extraction Area site (TND 980728182).

Very truly yours,

BLACK & VEATCH Waste Science, Inc.

Dane G. Pehrman Project Manager

pd/DGP Enclosures

cc: Hubert Wieland, BVWS-Atlanta Tim Travers, BVWS-Philadelphia

TNR 00 002 8761 MLGW-ASR WELL LOT DATA (02)

MEMP D∰owlen 615-532-0316

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

FORM HN - H

500			DIVISION OF	SOLID WASTE MANAGE	MENT				
SQG	P LIBER TO DECICETED AL			REGISTRATION AND NOTI		OTHER THE OTATE (E ALCO INCODE	TIONAL HOD	ATD
OF HAZARDOUS WAS	STE ACTIVITY THAT WE H	HAVE ON FILE. FOR	ANNUAL REPORT	R 10 ALLOW ANT EXISTING BUSING S, PREVIOUSLY SUBMITTED DAT HIS FORM WITH YOUR ANNUAL F	A WILL BE PR	E-PRINTED ON THE	S FORM. YERIF	Y THE SUPPL	
EPA ID NUMBER	TNR000028761		i me	NUMBER 327453 EMPHIS LIGHT, GAS AND WA VISION	TER	PREVIOUS E	PA ID NUMBER (I	F YOU MOVE) :
BUSINESS M	LGW - ASR WI	LL LOT		. ,	· <u>-</u>				
: <u>Par</u> t 1 • Physic <u>al</u>			NUMBERS)						
	RECTIONS TO YOUR SIT	E		CITY			STATE ZIP		, ,
2686 E. HOLME	S ROAD			MEMPHIS		; , :	TN 381	18	:
PHONE		FAX		E-MAIL	-		CONTRACTOR OF THE STATE OF THE	a de la composição de l	
(901) 528-4194							SHELBY	Nogopoji poraza zovc	
PART 2 - MAILING A		~ 0750 1100 SURMAY FO				- ·	TOTAL CONTRACTOR CONTROL		
17	TENTION OF	10	AIL ADDRESS						
Kerry F	Bu-1	<i>5</i> 3	.O. BOX 430						
CITY	55 (mm) a.1. (0.000 (0.	STATE 21P		FOREIGN PROVINCE	FO	REIGN MAIL CODE	COUNTRY		
MEMPHIS		TN 3811	8						
PART 3 - BUSINESS	OWNER ADDRESS				, <u> </u>	- FIX.			. <u> </u>
OWNER NAME AND TO			ADDRESS						
WLGW			PO BOX 4	30					
CITY		STATE ZIP		FÖREIGN PROVINCE	FD	REIGN MAIL CODE	COUNTRY		
MEMPHIS		TN	38118		İ		i		
PHONE	FA	X E-I	MAIL		DATE	OWNERSHIP BEG	AN	OWNER CODE	TIAND CODE
901-528-4194	901-529-7	764			i				М
<i>)</i>		* OWNE	R / LAND CODE C	HOICES: Federal (F); State (S): Private (P);	Indian (I); County	(C); Municipal (M); District (I	O); Other (O)
PART 4 - BILLING A SENDENVIKE TO TH	DDRESS EATTENTION OF THE P	M (***)	AIL AODRESS		-				
17			_						
Kerry Roy		Signature of a control of	Dame	as cabour					
CITY		STATE ZIP		FOREIGN PROVINCE	FO	REIGN MAIL CODE	COUNTRY		
							:		
PART 5 - BUSINESS	OR SITE MANAGER	The same		•			. —		
NAME AND TITLE KERRY ROY BL1	153 Env Engineer		ADDRESS PO BOX 43	0 MEMPHIS TN 38118	CITY, STATE,	ZIP			
PHONE	CCLL PHONE	FAX		EMAL	·				·
(901) 528-4194	901-491-0437	(901) 528-	7784	KROY@MLGW.	ORG				
PART 6 - SITE TECH	INICAL CONTACT		_,		,	·		<u>-</u>	
NAME AND TITLE			ADDRESS		CITY, ŞTATE,	ZIP			
	I53 Env Engineer		PO BOX 43	0 MEMPHIS TN 38118					
PIONE	CÉLL PHONE	FAX		EMAL					
(901) 528-4194	901-491-0437	(901) 528-	7764	KROY@MLGW.	ORG				
PART 7 - SITE EMER	RGENCY CONTACT	· .			·				
NAME AND TITLE KERRY ROY BL1	53 Env Engineer		ADDRESS PÓ BOX 43	0 MEMPHIS TN 38118	CITY, STATE,	ZIP			ı
PHONE	CELPHONE	FAX	_	EMAIL					· · · · · · · · · · · · · · · · · · ·

(901) 528-4194

901-491-0437

(901) 528-7764

KROY@MLGW.ORG

OTHER REF		WATER SUPPLY (CHECK AL	LTHAT APPLY)		SEWER (CHECK ALI	THAT APPLY)	
OTHER SITE	2700+	WELL SPRING	PUBLIC WATER SUPPL	y Other i	SEPTIC TANK	POTW	NPOES	` OTHER
L L	7	1		- !				ر
OTHER PERMITS WITH	(CHECK ALL THAT APPLY)]HAZ WASTE TRANS	PORTER		
TOEC	SOLID WASTE A	R WATER GROU	NDWATER HAZ	WASTE TSDF	HAZ WASTE TRANSI	ER FACILIT	PERM	T BY RULE
				`				
		ODE = NORTH AMERICAN IND CODES, CHECK ONE THAT					M Thus aurai	ur lere
		DED. ADDITIONAL INFORMAT						
811121 AUTOMOTIN	Æ 800Y, PAINT, AND INTER	HOR REPAIR AND MAINTENAN	DE 45431	2 LIQUEFIED PE	TROLEUM GAS (BOT	(LED GAS) DE	ALERS	
	AUTOMOTIVE REPAIR AND		62151	1 MEDICAL LAB	ORATORIES			
		MAINTERNIOL		14 :	GENERATOR MANUFA	Carronic .		
811711 AUTOMOTIV	ÆREPAIR (GENERAL)		33531	2: ::::::::::::::::::::::::::::::::::::	SEILENI ON IERIOPA	CIONING		
61131 COLLEGES.	UNIVERSITIES, AND PROFE	SSIONAL SCHOOLS	33671	1 MOTOR VEHIC	CLE BODY MANUFAC	TURING		
323111 COMMERCI	AL GRAVURE PRINTING		9281	NATIONAL SE	CURITY			
339914 COSTUME J	EWELRY AND HOVELTY MA	NUFACTURING	4411	NEW CAR DEA	NER8			
49211 COURIERS			22111	3. NUCLEAR FLE	CTRIC PÓWER GENE	RATION		
81232 DRYCLEANI	NG AND LAUNDRY SERVICE	S (NOT COIN OPERATED)	3255		DATING MANUFACTUR			
	•		_	11.				
1		G, ANODIZING, AND COLORIN	3 32541	7.2	IICAL PREPARATION			
] =====================================	II. ELECTRIC POWER GENE		32599	2 PHOTOGRAPI	HIC FILM, PAPERL PLA	TE, AND CHE	MICAL MANUE	ACTURING
82211 MEDICAL AS	ND SURGICAL HÓSPITALS (BENERAL)	4862	PIPELINE TRA	NSPORTATION OF NA	TURAL GAS		
49311WAREHQUS	NING AND STORAGE (GENE	RAL)	32521	1 PLASTICS HA	TERIAL AND RESIN III,	ANUFACTU RU /	4C	
332212 HAND AND 6	EDGE TOOL MANUFACTURE	1C	32311	4 PRINTING (QU	IICK PRINTING)			
582211 HAZARDOUS	S WASTE TREATMENT AND	DISPOSAL		. : : RESEARCH AJ	ND DEVELOPMENT IN	THE PHYSICA	NL.	
			5417	ENGINEERING	, AND LIFE SCIENCES	3	,	
F113	•	air furnaces) manufactur	32619	2 RESILIENT FL	OOR COVERING MAN	UFACTURING		
221111 HYDROELEC	TRIC POWER GENERATION	•	33721	5 SHOWCASE, I	PARTITION, SHELVING	AND LOCKE	R MANUFACTU	HING
32512 NOUSTRIAL	GAS MANUFACTURING		31194	2 SPICE AND EX	CTRACT MANUFACTU	RING		
337127 NSTITUTIO	NAL FURNITURE MANUFACT	URING						
OTHER NAICS CODE (II	NOT LISTED ABOVEKSEE	WEBSITE) DESCRIPTION OF	INDUSTRIAL ACTIVITY	RELATED TO NAK	8 CODE YOU ENTER!	D AT LEFT)		
221122		İ						
		•						
OTHER WASTE ACTIV	TY AT THIS INSTALLAT	ION OD SITE - JOHECK J	NY AND ALL THAT	MAY ADDI VI				
		UNIX			PEC	YOUNG		
		The state of the s	149-11/20-6 11/11	SACTAMENTS MEDITIONS OF THE	energen besteht in der der bereitere der		<u> </u>	
USED OIL TRANSF		GENERATE	MANAGE		[COMMERC	IAL RECYCLE	R	
USED OIL TRANSF	EBR FACILITY	L BATTERIES	BATTERI	es	_	MERCIAL REC		
USED OIL PROCE	SBOR	LAMPS	LAMPS				:	
USED OIL RE-REF	INER	PESTICIDES	PESTICE					
OFF SPECIFICATION	ON USED OIL BURNER	MERCURY CONTAI	NING MERCUR FOUIPME	Y CONTAINING INT				
WARKETER WHO	DIRECTS BHIPMENT							
OF OFF SPECIFIC	ATION USED OIL TO	WASTE DES	E IF THIS SITE IS A "U TINATION FACILITY"	MIVEIGAL			;	
OFF SPECIFICATI	ON USED OIL BURNER						j	
TO PROVIDE	DATA OD MAKE PODE	ECTIONS TO PREPRINTE	DATA AS NEEDED	NOTE: TUIS IS	a TWA SINCH CAR	u Ene Mai	DE INCODAS	TION
		AUDIT SECTION AT 1-800						
THE COOK		IR WEBŞITE AT: http://w					.,	
COMPLETED .		NVIRONMENT AND CONSI						
FORMS TO: WASTE A	CTIVITY AUDIT SECTIO	N 401 CHURCH STREET,	FIFTH FLOOR L & D	TOWER	NASHVI	LLE, TN 372	143-1535	
! <u></u>				· · ·		·		
CERTIFICATION I								
CERTIFY HNOER PENALTY OF	F LAW THAT THIS DOCUME	NT AND ALL ATTACHMENTS W	ERE PREPARED UNDER	R MY DIRECTION OF	R SUPERVISION ACCO	RDING TO A	SYSTEM DESIG	SNED TO
ASSURE THAT QUALIFIED PER REPORTING SYSTEM OR THOS	SONNEL PROPERLY GATH!	R AND EVALUATE THE INFOR	MATION SUBMITTED. E	iased on My Inqu	IRY OF THE PERSON	OR PERSONS	WHO MANAGE	E THIS
TRUE, ACCURATE AND COMPL	ETE. I AM AWARE THAT TH	IERE ARE SIGNIFICANT PENAL	TIES FOR SUBMITTING	FALSE INFORMATI	ON, INCLUDING THE	OSSIBILITY (F FINE AND	MIN DELIEF.
IMPRISONMENT OR BOTH FOR	KNOWING VIOLATIONS.							
1.7				17				
<u>Kerru</u>	R. Kay			<u>Kerri</u>	y R. Roy			
Ø	SIGNATURE OF AUTHORIZ	ED KELHERENTYLINE		•	y PRINTE®	MAME		
-	R. Roy SIGNATURED FAUTHORIZ NEWTAL ENGLISH				0 /0 /0			
Enveronm	nental Ena	mu.			2.10.10	-		
	TITY				DAT	•		

Page 1 of 1 12/21/2009 9:55:34			SULID TIME I E MANAGEMENT						WASTE STRE	
REPORT YEAR	20	09								1
US FPA ID NUMBER	ंदिंग्या द्राप्त श्रम		BUSINESS NAME		ndichta (bei eine dei	general de grad	translagan garan da in r>Tanàna dia panganananananananananananananananananan	Telencioses Cuitoria		
TNROOO	02876	ĺ	MLGW - AS	R WEL	L LOT					
ITEM 1- HAZARO	OUS WA	STE S	TREAM DESCRIPTION	AND PRO	OCESS	CALS COM	entre entre de la companya del companya del companya de la company			
1a- WASTE STREA	M NAME	CONTRACTOR OF THE PARTY OF THE	_ Mr. (40 - 2)				TE GENERATED?	<u></u>	<u> </u>	
HYDROGEN PER	OXIDE (4	10% - 1	60%)		OFF-SPEC P	RODUCI				
1(b)1- SOURCE CO							- n	1d- GE/	NERATION FRE	QUENCY
1	CHEC		USE SAME UNIT OF MEASURE		TACHMENTS.			ON	E TIME GENERA	TION
G11]] AM REPORTING IN KILO _				10 lbe/g	RE€	GULARLY GENER	ATED
		ibs 💆	☑I AM REPORTING IN POU	NDS			TO IDE 1	ואז 🗌 🖺 נאז	ERMITTENTLY (SENERATED
1e- WASTE STREAM	M STATUS	1f- HA	- <u></u> -	1	g-GENERATIO	N DATES	· 			
- VACTIVE			☐ IGNITABLE ☐ YCLP		DATE GEMERA	TION BEG	AN ;	DATE NO	ONGER GENER	ATED
MCLOSED	(SEE 1g)		✓ CORROSIVE		1	1/18/20	009		11/18/200	9
! KRQ			☐ REACTIVE ☐ LISTED		·		:			'
1h- EPA HAZARDOU	S WASTE	CODES	LIST CODES IN THIS	ORDER: P	, D, F, U, AND K		CRA RADIOACTIVE	.1] - MONT	HLY:MAXIMUM	GENERATED
D002					(YES OR NO)		:	499 KG		
D002			 				NO	. <u></u>		LBS *
1k- pH	11- FLASE	l POINT	1m-BTU PER POUND	In- REAC	CTIVE CODES	1	o- WASTE FORM CO	DDE	1p- NAICS CO	3DE - up \$5.2
2	> 20	00				W110	0		221122	
1q- U.S. DOT SHIPP	PING NÄMI	E	·			1r- U.S. DOT HAZARD CLA			1a- U.S.	DOT ID CODE
		WASTE	E HYDROGEN PEROXID)E		5.1			2014	
ITEM 2- WASTE	STREAM	CONS	TITUENTS	nak tahun 1	ing the second s	erigent.	angwillianson some	Armingo aprelimentes Originales	· · · · · · · · · · · · · · · · · · ·	ر څخو د او او او د ده و او او د و او او د و او او د و د و د و
: ! ?a	. HAZARD	OLIS WA	ASTE CONSTITUENT			į		PPM	- CONCENTRA %VOLUME	
1	·		1072 00101110211					<u> </u>		
2	HYDROGEN PEROXIDE				0		60	%VOL		
i !										
3						!				
4			···		1	:				
5										
						:				
ITEM 3- ANNUAL	GENER	ATION	AND HANDLING NO	TE:	3a + 3h - 3	ic = 3d	A TANKAT OF THE BETTER BEST OF THE BEST O	3.6	4a+5a+5b+	Section of the sectio
3a- AMOUNT GENER			3b-AMOUNT ONSITE JAN 1				SITE DEC 31st 2009		OUNT HANDLE	
1,010				0 1,010						

1,010

501, TO7

HYDROGEN PEROXIDE (40% - 60%) US EPA ID NUMBER BUSINESS NAME MLGW - ASR WELL LOT TNR000028761 FIEM 6- TSD PERMITTED STORAGE ONLY OR " FACILITY'S ONSITE HANDLING OF TREATMENT 5a- AMOUNT OF 3d HANDLED ONSITE STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING EPA MANAGEMENT METHOD 5b- AMOUNT OF 3d HANDLED ONSITE STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING EPA MANAGEMENT METHOD STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING 5c- AMOUNT OF 3d HANDLED ONSITE **EPA MANAGEMENT METHOD** н 5d- AMOUNT OF 3d HANDLED ONSITE STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING **EPA MANAGEMENT METHOD** H ____ STE / TANKS The second secon ITEM & HAZARDOUS WASTE REDUCTION 58- THIS YEAR RATIO 66-GOAL YEAR RATIO 66- GOAL YEAR 66- WASTE / TOXICITY REDUCTION 68- WASTE REDUCTION 6f- CHANGE IN TOXICITY EFFORT CODES IMPEDIMENT CODES INCREASE 2 OID DECREASE MNO CHANGE 6g- NARRATIVE: EXPLAIN REPORTED DATA (IF APPLICABLE) This imaterial was a product istored at a well that. The ASR program was discontinued, and the material was put on the TN Material Exchange that No was could be yound you this product, no it was disposed as a Hw. There will not be any futine generation activities at this site. The same of the sa ITEM ?- FACILITY COMMENTS CERTIFICATION NOT A DESCRIPTION OF THE PROPERTY OF THE PROPERT I CERTIFY UNDER PENALTY OF LAW THAT THIS DOCUMENT IS, TO THE BEST OF MY KNOWLEDGE AND BELIEF, ACCURATE AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES FOR SUBMITTING FALSE INFORMATION INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT OR BOTH FOR KNOWING VIOLATIONS. Kenny R. Roug SIGNATURE OF AUTHORIZED REPRESENTATIVE Kerry R. Roy Environmental Engineer <u> ၁. 10. ဆူပူးစ</u> the Bours and Course to Page 199 was stored and state of the second of the se TDEC USE ONLY STATUS FURTHER REPORTING REVIEWER REC'D DATE (NH) NOT HAZARDOUS (C) CORR ACTION (PE) PARTIAL EXEMPTION (W) WASTE WATER Rx TYE9 (RR) RES RECOVERY (V) VARIANCE GRANTED (R) MIXED RAD WASTE NO LONGER GEN NOTES (TR) TREATMENT RESIDUE (CF) COMPARABLE FUELS **UNIVERSAL WASTE** (H) HAZARDOUS

HAZARDOUS WASTE STREAM REPORT - FORM WSR

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION HAZARDOUS WASTE OFFSITE SHIPPING

FOR	M OS	SR ·
PAGE /	OF	
VE.D		<u> </u>

			PLI	EASE MAKE ENT	RIES LEGIBLE			FROM J	or <u></u>
US EPA 10 NUMBE TNR000028		BUSINESS NAME MLGW - ASR WE	LL LOT					YEAR	2009
COLLAGN 1	COLUMN 2	COMMAND COMMAND	COLUMN 7	COLUMN 5	COLM	NS & S	COLUMN #	COLUMN 8	COUJAN 9
WASTE STREAM NUMBER USE "FS" IF FROM PERMITTED STORAGE	WASTE STREAM NAME OF US DOT SHIPPING NAME	OR EDA SUACIE COIDES	AMOUNT SHIPPED UNITS YOU ARE USING (CHECK ONLY O () KG (*) LBS INDICATE UNITS AND USE SAME UNIT THROUGHOUT	NE) NUMBER OF SHIPMENTS			DESIGNATED FACILITY US EPA ID NUMBER (PER UNIFORM HAZARDOUS WASTE MANIFEST)	TSDR HANDLING CODES	EPA MANASEMENT METHOD CODI
a	Hydrogen Peroxide (4071	,0%) D002	1,010	f	INROD	123497	TND 000772186	501,T07	Ноно
b								<u>.</u>	
Ę									
d									
e	,								
f									
g					 				
h					<u> </u>				
		• • • • • • • • • • • • • • • • • • • •							
-	<u></u>		<u> </u>		<u>i</u>		TION I CERTIFY UNDER PENALTY OF LAW THA MY KNOWLEDGE AND SELLEY, ACCURAT INIFICANT PENALTIES FOR SUBMITTING FALSE IN	E AND COMPLETE. I AN	? AWARE THAT
	TOTAL AMOUNT SHIP	PED (TOTAL OF COLUMN 4)	1,010	1	TOTAL SHIPMENTS	POSSTRILITY OF	F FINE AND IMPRISONMENT OR BOTH FOR KNOW!	ING VIOLATIONS.	
					ı	Ker	w B. Roy	<i>2</i> .	11.10 DATE
	grand Tutal of All The Last Page Offsite	PAGES (II THIS PAGE IS) (TOTAL ANGUNT SHIPPED P FOR ENTIRE REPORT YEAR)	1,010			Kar	TY R. ROY PRINTED NAME		DATE

Instructions for FORM OSR

For wastes shipped offsite only.

Summarize your offsite shipments of hazardous wastes for the reporting year. This information must be obtained from, and accountable to, your hazardous waste manifest copies returned by the TSDR. You and your TSDR must recondle any manifest differences and report only the mutually corrected amounts or else file manifest discrepancy reports. Document the reasons for any corrections by using TSDR analyses, actual weights from scale receipts, manifest changes, etc.

Complete one line for each combination of initial transporter and TSDR who handled a waste. If the facility did not ship hazardous waste offsite for this report year, write "No Shipments" in the US DOT Shipping Name of "line a" and certify the report. If some wastes were shipped offsite, but others were not, omit those that were not shipped offsite.

COLUMN I WASTE STREAM NUMBER

Enter the source of the waste as the waste stream number from your Hazardous Waste Stream Report forms. For mixtures, enter as many numbers as appropriate. If you are a Treatment Storage and Disposal Recycling Facility and the waste is being shipped directly from your RCRA permitted storage, enter "FS" (From Permitted Storage).

COLUMN 2 WASTE STREAM NAME or US DOT SHIPPING NAME

Enter only one of either a descriptive waste name or the DOT shipping name. Enter each different waste or waste combination on a separate line. Enter various mixtures of the same constituent wastes on the same line unless the hazard characteristics of the resultant mixtures are different.

COLUMN 3 EPA WASTE CODES

Enter the applicable hazardous waste code(s) which identifies the waste or combination of wastes. See Rules 1200-1-11-02(3) and (4) for the EPA waste codes. (For example, F001, K001, D001.)

COLUMN 4 AMOUNT SHIPPED (in kilograms or bounds) YOU MUST DESIGNATE HOW YOU ARE REPORTING BY CHECKING. KG. OR LBS

Enter the amount of wastes in kilograms or pounds that you shipped during the reporting year to the specified TSDR facility by the specified transporter. Use the Total Quantity (Item 13) from the Manifest after converting it to kilograms or pounds. The weight reported should include the weight of the drum unless you know that the waste will be removed from the drum and the drum will not be handled as a hazardous waste. For generators, this amount should match the total of items 4a of the Waste Stream Reports that are included on this line. For TSDR's, it should match the lines on the Summary Report with the word "SHIPPED" in the bandsing column and the total of item 4a of the WS report.

COLUMN 5 NUMBER OF SHIPMENTS

Enter the number of separately manifested shipments during the reporting year for each line completed.

COLUMN 6 TRANSPORTER 1 US EPA TO NUMBER

Enter the US EPA ID NUMBER of the initial transporter (transporter 1 on the manifest) who picked up the waste. Enter only one number,

COLUMN 7 DESIGNATED FACILITY US EPA ID NUMBER

Enter the US EPA ID NUMBER of the designated facility to which the waste was shipped. Enter only one number.

COLUMN 8 TSDR HANDLING CODES

Enter the TSDR Handling Codes that most dosely represent the techniques you contracted to be used at the facility that received this waste. Enter all codes that are applicable in the order of handling of the waste. Use only the TSDR Handling Codes and not the Waste Management Codes.

COLUMN 9 EPA MANAGEMENT METHOD CODE

Enter the System Code that best represents the techniques you used to handle the waste through final disposition. Refer to the System Type Code Form.

STATE OF TENNESSEE DIVISION OF SOLID WASTE MANAGEMENT WASTE ACTIVITY AUDIT SECTION HAZARDOUS WASTE STREAM SUMMARY REPORT

TNR000028761 MLGW - ASR WELL LOT

MEMPHIS

DATE NOTHED 12/10/2009

WASTESTREAM WASTESTREAM

NUMBER NUMBER ACTUAL PRINTED WASTESTREAM DESCRIPTION

WASTESTREAM PROCESS

CLOSED

1

PRINT: 1

HYDROGEN PEROXIDE (40% - 60%)

OFF SPEC PRODUCT

1 CLOSED

WASTE STREAMS

THIS FACILITY HAS

WASTE STREAM(s)

HER ST YES TO

RECEIVED DIV SOLID WASTE MGT

MAR 0 2 2010

MEMPHIS LIGHT, GAS AND WATER DIVISION.

Group No	File RO
ID No	

February 26, 2010

Mr. Dave Dowlen TDEC-DSWM-WAAS 5th Floor L&C Tower 401 Church Street Nashville, TN 37243

RE: 2009 Annual Hazardous Waste Report Memphis Light, Gas and Water Division 220 South Main Street Memphis, TN 38103 #7005 0390 0006 1298 9414

Dear Mr. Dowlen,

Please find the enclosed 2009 Installation Registration and Notification Forms, the Waste Stream Reports and the Off-site Shipping Reports for the following Memphis Light, Gas and Water facilities:

- 1. Arlington LNG Plant TNR000024794, GIA 311521;
- 2. ASR Well Lot TNR000028761, GIA 327453;
- Capleville LNG Plant TNR000025007, GIA 311521;
- Central Shops TND980601835, GIA 13811;
- 5. Electric & System Operations TNR000006122, GIA 311521;
- 6. Heavy Equipment Building TNR000025999, GIA 324537;
- 7. Investment Recovery & Salvage TNR000012179, GIA 311521;
- 8. North Service Center TND987789062, GIA 15853;
- 9. Sheahan Pumping Station TNR000025015, GIA 311521; and
- 10. South Service Center TNR000006114, GIA 15856.

Please note that copies of the Generator Fee Determination Forms, along with MLGW Check 638809, has been sent via certified mail to the DSWM Fee Section. If you have any questions or require further information, please contact me at (901) 528-4194 or via email at kroy@mlgw.org.

Sincerely,
Korry Roy
Kerry Roy, P.E.
Environmental Engineer
MLGW Environmental Affairs

Enclosure

	• Hometown Energy Working for You •	
P.O. BOX 430	MEMPHIS, TENNESSEE 38101-0430 TELEPHONE (901) 528-4011	

GIA NUMBER

327453

State of Tennessee Department of Environment and Conservation Division of Solid Waste Management

FORM G-FDS

GENERATOR

REPORT YEAR 2009

ANNUAL HAZARDOUS WASTE GENERATION FEE DETERMINATION

U9 EPA ID NUMBER	SITE, BUSINESS, OR INST	SITE, BUSINESS, OR INSTALLATION NAME						
TNR000028761	MLGW ASR WELL LO	Т						
START HERE ▶▶	Check (*) the Unit of Me (Pounds = Kilograms multiplied)				POUNDS	⊴	KILOGRAMS	<u>-</u>
Change of Ownership or Location?	YES		NΩ	Ø				
Part 1 Generation:								
Lines 1 - 4 are designed to establish your : .08(5)(a). Refer to Rules 1200-1-11-02(1)(status as a Large Quantity Generator (LQG (CE9QG). For a list of wastes that are exclusing the wastes generated from the cleanup	(d)3(II) and 1200-1-1102(1)(e), Small Quantity Generator (St dec from generation fees, see I	e)3 and 4 fo QG) or Cond the instructi	r more ini litionally E on hando	forma Exem- out fo	tion on det pt Small Qu r this form.	ermining antity Ge	generator nerator	
CHECK (\checkmark) only one in each α	ategory for Lines 1 - 4	l (for th	e repoi	rt y	aar):			
		Ш	Zero ar	пюшп	ts, none ge	nerated.	\$0	1
Largest amount of hazardous waste g	enerated in any calendar	ū			1 zero but k 100 kg (220		\$0	
month in the report year.		☑			a 100 kg (2) a 1 000 k g (\$10 00	LINE 1
			1000 k	q (22	00 lbs) or n	nore.	\$1600	
Largest amount of Hazardous Waste Accumulated at anytime in the report year (prior to being shipped offsite).		11	Zero amounts, none accumu			cumulate	d. \$0	
		More than zero but less than equal to 1000 kg (2200 lbs).				\$0	LINE 2	
			Greater than 1,000 kg (2200 lbs).				\$1000	
Largest amount of acute Hazardous w calendar month of the report year.	aste generated in any	☑ 1 i			ts, none ge 2.2 lbs) ar i		\$0 \$1600	LINE 3
Largest amount of acute hazardous wi generated in any calendar month of th		⊌ ĭ			ts, none ge Hbs) or mo		\$0 \$1600	LINE 4
Hazardous Waste Generation Base Fer	e (From Lines 1 through 4)							
ENTER on Line 5 the largest	applicable fee amount not	the sum o	f each li	ne.			\$1,000.00	LTNE 5
Part 2 Shipping: (IF LINE 5 IS	\$0, SKIP TO PART 3))						
Enter the total amount of Hazardous V	- Waste Shipped during the repo	rt year.					1.010.00	LINE 6
Amount of Line 6 resulting from a TD8	EC of EPA remediation or carre	ctive action	activity.				0.00	LINE 7
Amount of Line 6 that was recycle/recovered through Ion Exchange (T30), Distillation (T54), Solvent Recovery (T63), Lead smelting, Precious Metals Recovery, and/or High Temperature Metal Recovery.					0.00	LINE 8		
Amount of Line 6 with a thermal heating value greater than 5000 BTU per pound that was legitimately recycle by burning it as a fuel in a boller or industrial furnace (T50 and T80 through T93 or blending it into such fuel.					0.00	LINE 9		
Amount of Line 6 that was wastewate suspended solids (TS5) .	rs [< 1% total organic carbon	(TOC) and	< 1% tota	i	··	-	0.00	LINE 10
Multiply Line 10 by \$0.004 (if in Pound	is) or \$0.0088184 (if in Kilogra	ms).					0,00	LINE 11
Add Lines 7, 8, 9, and 10.							0.00	LINE 12
Subtract Line 12 from Line 6.							1,010.00	LINE 13
Multiply Line 13 by \$0.0075 (if in Pour	nds) or \$0.0165345 (if in Kilogr	rams).		-			7.58	LINE 14
Multiply Line 9 by \$0.001 (if in Pounds	s) or \$0.002204 6 (if in Kilogran	ns).					0.00	LINE 15
Add Lines 11, 14, and 15.							7.58	LINE 16

	\$7.57	LINE 17
		RDA 220
1,000.00	E18	LINE 18
\$7.57	258	LINE 19
\$1,007.57		LINE 20
r there are Significant penalt	IES	
ERRY ROY		
PRINTED NAME		
2/10/2010		
DATE		
	\$7.57 \$1,007.57 #PLETE Form TSD-FDS. STATE OF TENNESSEE* Ind/or check stub. THE BEST OF MY KNOWLEDGE AND IT THERE ARE SIGNIFICAN1 PENALT ITY OF FINE AND IMPRISONMENT OF PRINTED NAME 2/10/2010	\$1,007.57 #PLETE Form TSD-FDS. STATE OF TENNESSEE* Ind/or check stub. THE BEST OF MY KNOWLEDGE AND IT THERE ARE SIGNIFICAN I PENALTIES ITY OF FINE AND IMPRISONMENT OR ERRY ROY PRINTED NAME

MEMPHIS LIGHT, GAS AND WATER DIVISION

P.O. BOX 430 MEMPHIS, TENNESSEE 38101-0430

void if not presented within 90 days

25,10 02

PAY

FIVE THOUSAND FORTY TWO AND 37/100

TO THE ORDER OF

COMMON ACCOUNT ર તીલીલીતીતીતીતીતીતી છે

TREASURER, STATE OF TENNESSEE ENVIRONMENT & CONSERVATION SOLID WASTE/FEE SECTION-HWM 401 CHURCH-14 FLOOR-L&C TOWER NASHVILLE TN 3724 37243

CHECK AMOUNT *****5,042.37

638809

R 4. Q.

.K.

BY ___

Ţŗ:DB40000261:_{//}, DD//0090239/

MEMPHIS LIGHT, GAS AND WATER DIVISION P.O. BOX 430 MEMPHIS, TENNESSEE 38101-0430 COMMON ACCOUNT

DATE ΥA 02: 25: 10

CHECK 638809

DATE	INVOICE NUMBER	P.O. NUMBER	GROSS AMOUNT	DEDUCTION	15	
- DAIC	, INVOICE NUMBER	F.O. NOMBER	GROSS AMODAT	DIBCOUNT	FREIGHT	NET AMOUNT
ANNUAL	0 987789062/2009 HAZARDOUS WASTE BER 15853	REPORT FOR	1,007.53 MIGW - NORTH SE	0.00 RVICE CENTE	0.00 R	1,007.53
2/15/1 ANNUAL	0 980601835/2009 HAZARDOUS WASTE BER 13811	REPORT FOR	MLGW - CENTRAL	0.00 sнорs	0.00	1,009.69
2/15/1 ANNUAL	0 000012179/2009 HAZARDOUS WASTE BER 311521	REPORT FOR	MLGW 1,006.75	0.00 NT RECOVERY	0.00 & SALVA	3E 1,006.75
2/15/1 ANNUAL	0 000024794/2009 HAZARDOUS WASTE BER 311521		1,010.82 MLGW - ARLINGTO	0.00 N LNG PLANT	0.00	1,010.82
2/15/1 ANNUAL CIA NUM	0 000028761/2009 HAZARDOUS WASTE BER 327453	REPORT FOR	1,007.58 MLGW - ASR WELL	0.00 LOT	0.00	1,007.58
i	i					

RECEIVED DIV SOLID WASTE MGT

MAR 0 2 2010

Group No.__ ID No

Customer Fee Report

Printed By : (BG35086) Dave Dowlen

Printed Date/Time: 7/10/2012 2:07:45PM

Customer Information

327453

MLGW - ASR WELL LOT

P.O. BOX 430

Memphis, TN 38118

Invoice Number INV00000000153193	8atch Number HWM_GEN-1268	Invoice Date 03/30/2010	<u>Due Date</u> 03/01/2010	<u>Invoice Amount</u> \$1,007.57
Itany No.	Description : 19	11 (12 17 19 19 19 19 19 19 19 19 19 19 19 19 19		p samount see
Items Billed	-			
TNR000028761	E18 - HAZ WASTE G E58 - HAZ WASTE S		03/30/201	* /
TNR000028761	ESS - HAZ WAS IE S	HIPPING FEE	03/30/201	\$1,007.57
Payment				
RH012036639B	INV00000000153193	(CHK#: 638809)	02/26/201	0 \$-1,007.57 \$-1,007.57
			Balance :	\$0.00
<u>(nyoice Number</u> INV00000000155160	Batch Number HWM_GEN-1339	<u>Invoice Date</u> 05/17/2010	<u>Due Date</u> 08/16/2010	Invoice Amoun \$201.32
Hen No	Description	majargan a sagargan and an ang ang ang ang ang ang ang ang ang	gasa, juga sala se anjagungah P	Managara State of the State of
Items Billed				
TNR000028761	HWM-E18-HAZ WAS FEE-INC PER REGS		05/17/201	0 \$200.00
TNR000028761	HWM-E58-HAZ WAS REGS CHANGE	TE SHIPPING FEE-INC	O.PER 05/17/201	0 \$1 32
	····			\$201.32
Payment				
RH012045117D	INV00000000155160) (CH K# : 644629)	05/28/201	0 \$ -201.32 \$-201.32
			Balance :	\$0.00
		Total Invoice	Raisnce-	\$0.00

Criteria :

Customer ID (starts with):

Customer Name (Like):

Permit Number/EPA ID (Like): TNR000028761

Invoice Date Range : 01/01/2010

~ 12/31/2010

Division: SVM

Env. Interest (Fee) Type:

State of Tennessee Department of Environment and Conservation Division of Solid Waste Management 401 Church Street, L & C Tower 5th Floor Nashville, TN 37243-1535

December 10, 2009 TNR000028761 MLGW - ASR WELL LOT P.O. BOX 430 MEMPHIS TN 38118

ATTENTION: KERRY ROY BL153

RE: NOTICE OF ISSUANCE OF NEW HAZARDOUS WASTE INSTALLATION IDENTIFICATION NUMBER

Your request for a new Installation Identification Number and your \$100.00 fee have been received and your application has been processed. Your new Installation Identification Number is:

TNR000028761

Reference Location: 2686 E. HOLMES ROAD MEMPHIS, TN 38118

For tracking purposes, please use this Installation Identification Number on all correspondence relating to hazardous waste management.

The following conditions apply:

1. Changes in Data

Any changes in installation data such as ownership, contact persons, waste generation, mailing addresses, etc must be reported to the State of Tennessee within 30 days.

2. Annual Reporting Requirements

Also by receipt of this number, you will be required to annually report your waste generation and shipping data and pay certain fees associated with the generation of hazardous wastes in Tennessee.

3. Number is Site-Specific

This number is site specific, that is, if your business moves to another location, the Installation Identification Number remains at the physical location to which it was assigned. If you move, you are required to make notification to the Division of your new physical location and request a new Installation Identification Number and pay a \$100.00 fee.

For further information about the Hazardous Waste Program in the State of Tennessee, please call D Dowlen at 615-532-0316

Sincerely,

Director

Division of Solid Waste Management

Maya.

Date

	SPG INSTALL	BION OF SOLID WASTE M ATION REGISTRATION A	ND NOTIFICATION	ON FORM HN - H
OF HAZARDOUS WASTE ACTIVIT		AL REPORTS, PREVIOUSLY SUBA	NITTED DATA WILL BE PRE-PRINTED	ON THIS FORM - VERIFY THE SUPPLIED DATA IS
	200 002 876	C'A NUMBER	PREVI	OUS EPA ID NUMBER (IF YOU MOVED)
BUSINESS > KITCH	PHIS LICHT, E	AS AND LC	ATER DIVISIO	
PART 1 - PHYSICAL LOCATE STREET, ROAD, OR DIRECTIONS	N (DO NOT USE PO BOX NUMBER TO YOUR SITE	(3)	TY	STATE ZP
JUSU E.	Holomes Rd.		mphis	TN 35118
None	None	None	<u></u>	Shelby
PART 2 - MAILING ADDRESS SEND MAIL TO THE ATTENTION (DE: MAIL ADD	RESS	·	·,
Kerry Roy		Box 430		
icay	STATE ZIP	FOREIGN PROVI	NOF FOREIGN MAIL	CODE COUNTRY
PART 3-BUSINESS OWNER		¥-0430		1
OWNER NAME AND TITLE		DRESS		
MLGIO	PC P	JA 430 Foreign provi	NOC CODEICN WAR	Cape Icountry
Memphis		- 0430 j	NAS FOREIGN MAIL	TATUM INT
PHONE	FAX E-MAIL	l	DATE OWNERSHI	P BEGAN TOWNER TLAND CODE CODE
PART 4 - BILLING ADDRESS SEND INVOICE TO THE ATTENTION			State (S): Private (P): Indian (i); G	County (C): Municipal (M); District (D): Other (C
Kerny Rid B	£ 153 P.	Bex 430		
Menophis	STATE ZIP	FOREIGN PROVI	NCE FOREIGN MAIL	CODE COUNTRY
PART 5 - BUSINESS OR SITE			<u>_</u>	
NAME AND TITLE KEITY ROLL	Inviental En	HESS Broker P.O. D	COY, STAYE, ZIP SEX 4136 DIR DY	ms The 35101-0430
(901)528-419	CELL PHONE	ix (401)528-7	пьч Ктоубыл	nlgw.org
PART 6 - SITE TECHNICAL C		RESS	CITY, STATE, ZIP	·
S PIT	CELL PHONE	FAX	EMAIL	
PART 7 - SITE EMERGENCY		RC 98	CITY, STATE, ZIP	

SILA

CELL PHONE LAX

EMAIL

CN-0909

- CONTINUED ON REVERSE -

RDA 2203

OTHER SITE	WATER SUPPLY (CHECK ALL THAT	APPLY	SEWER (CHECK ALL THAT APPLY)
INFORMATION ► 2700 +	X WELL SPRING PUBLI	C WATER SUPPLY TO OTHER	
141 01/11/10/11		·· ·' · ·	L'
OTHER CHECK ALL THAT APPLY) TOEC OTHER CHECK ALL THAT APPLY) SOLID WASTE	NR WATER GROUNOWA	TER HAZ WASTE TSDF	HAZ WASTE TRANSPORTOR PERMIT BY RULE
INDUSTRIAL CLASSIFICATION INAIGS	CODE - NORTH AMERICAN INDUSTRI	AL OLASSIFICATION SYSTEM (RED)	AGES THE SIC CODE SYSTEMS
FOLLOWING IS A LIST OF COMMONLY FOUND NAIG	OS CODES, CHECK ONE THAT BEST	IDENTIFIES THE INDUSTRIAL CLASS	SIFICATION OF YOUR SITE IF NOT ON THIS CHECKLIST, THIS WEBSITE HID (WWW.census.gov/opcd/www/naics.hom)
811121, AUTOMOTIVE GODY, PAINT, AND INTE	RIOR REPAIR AND MAINTENANCE	454312 LIQUEFIED P	ETROLEUM GAS (BOTTLED GAS) DEALERS
\$1198 ALL OTHER AUTOMOTIVE REPAIR AND	D MAINTENANCE	621511 MEDICAL LAB	BORATORIES
811111 AUTOMOTIVE REPAIR (GENERAL)		335312 MOTOR AND	GENERATOR MANUFACTURING
81 131 COLLEGES, UNIVERSITIES, AND PROF	AJOOHD LANCISSE	306211 MOTOR VEHI	CLE BODY MANUFACTURING
323111 COMMERCIAL GRAVURE PRINTING		928°1 NATIONAL SE	CURITY
339914 COSTUME JEWELRY AND NOVELTY M	MNUFACTURING	44111 NEW CAR DE	ALERS
49211 COURIERS		221113 NUCLEAR EL	ECIRIC FOWER GENERATION
31232 DRYCLEANING AND LAUNDRY SERVICE	CES (NOT COIN OPERATED)	225G1 PAINT AND C	OATING MANUFACTURING
332919 ELECTROPLATING, PLATING, POLISHI	NG, ANDDIZING, AND COLORING	3254 12 PRARMACEU	TICAL PREPARATION MANUFACTURING
22 11 12 FOSSIL FUEL ELECTRIC POWER GEN	ERATION	TOTOGRAP	HIC HEM, PAPER, PLATE, AND CHÉMICAL MANUFACTURIN
82211 MEDRIAL AND SURGICIAL HOSPITALS	(GENERAL)	48621 P PELINE TR	ansportation of natural Gas
49311 WAREHOUSING AND STORAGE (GEN	ERAL)	326211 PLASTICS MA	RTERIAL AND RESIN MANUFACTURING
332212 HAND AND EDGE TOOL MANUFACTUR	RING	323: 14 PRINTING (Q	UICK PRINTING)
952211 HAZARDQUŞ WAŞTE TREATMENT ANI	DIDI\$20\$AI		ND DEVELOPMENT IN THE PHYSICAL, G. AND LIFE SCIENCES
3334-14 HEATING FOLIPMENT (EXCEPT WARN	AIR FURNACES) MANUFACTURING	326192 RESILIENT FE	LOOR COVERING MANUFACTURING
221114 HYDROELECTR'C POWER GENERATIO	DN	337215 SHCWCASE,	PARTITION, SHELVING AND LOCKER MANUFACTURING
325:2 INDUSTRIAL GAS MANUFACTURING		311942 SPICE AND E	EXTRACT MANUFACTURING
337727 INSTITUTIONAL FURNITURE MANUFAC	JIUNING		
OTHER NAICS COUL (IF NOT LISTED ABOVE)(SEE	WEBSITE) DESCRIPTION OFINDUS	TRIAL ACTIVITY (RELATED TO NAIC	S CODE YOU ENTERED AT LEFT!
221122	Utility		
		-	
OTHER WASTE ACTIVITY AT THIS INSTALLA	1 TION OR SITE CHECK ANY A	AND ALL THAT MAY APPLY)	
OTHER WASTE ACTIVITY AT THIS INSTALLA USEO OIL	TION OR SITE (CHECK ANY A UNIVERSA	AND ALL THAT MAY APPLY) L WASTE	RECYCLING
			RECYCLING TOOMMERCIAL RECYCLER
USED OIL	UNIVERSA	L WASTE	
USED OIL USED OIL TRANSPORTER	UNIVERSA GENERATE	L WASTE MANAGE	COMMERCIAL RECYCLER
USED OIL USED OIL TRANSFER FACILITY	UNIVERSA GENERATE DATTENES	L WASTE MANAGE BATTLELS	COMMERCIAL RECYCLER
USED OIL USED OIL TRANSPORTER USED OIL TRANSFER FACILITY URED OIL PROCESSOR	UNIVERSA GENERATE DATTENES LAMPS	MANAGE BATTLELS LAMPS	COMMERCIAL RECYCLER
USEO OIL USED OIL TRANSPORTER USED OIL TRANSFER FACILITY URED OIL PROCESSOR USED OIL RE-REAINER	GENERATE GENERATE DATTEINES LAMPS PESTICIDES MURGURY CONTAINING	MANAGE BALLICKUS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SITE IS A TURIVERSAL	COMMERCIAL RECYCLER
USED OIL USED OIL TRANSPORTER USED OIL TRANSPER FACILITY URED OIL PROCESSOR USED OIL RE-REFINER OFF SPECIFICATION USED OIL BURNER MARKETER WHO DIRECTS SHEMMENT OF OFF SPECIFICATION USED OIL TO OFF SPECIFICATION USED OIL BURNER TO PROVIDE DATA OR MAKE COR	UNIVERSA GENERATE BATTERICS LAMPS PESTICIDES MERCURY CONTAINING COUPMENT CHECK HERE IS 11 WASTE DESTINAT RECTIONS TO PREPRINTED DAT Y AUDIT SECTION AT 1-800-237-	L WASTE MANAGE BATTLE LS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SITE IS A TUNIVERSAL HON FACILITY A AS NEEDED. NOTE: THIS IS	COMMERCIAL RECYCLER
USEO OIL USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL RE-REPINER USED OIL RE-REPINER OFF SPECIFICATION USEO OIL BURNER THANKETER WHO DIRECTS SHEMMENT OF OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OCOMPLETE THIS FORM INSERUIL INFORMATION, VIEW OFF OMERCE OFF OME	UNIVERSA GENERATE DATTERICS LAMPS PESTICIDES MERCURY CONTAINING COUPMENT TOHECK HERE IS 11 WASTE DESTINAT AUDIT SECTION AT 1-800-237 UR WERSITE AT: http://www.s	MANAGE BATTLE LS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED, NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late thrus/environment/symm/	COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCL
USED OIL USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL RE-REPINER USED OIL RE-REPINER OFF SPECIFICATION USED OIL BURNER USEFUL INFORMATION, VIEW OIL BURNESSEE DEBARTMENT OFF	UNIVERSA GENERATE DATTERICS LAMPS PESTICIDES MERCURY CONTAINING COUPMENT TOHECK HERE IS 11 WASTE DESTINAT AUDIT SECTION AT 1-800-237 UR WERSITE AT: http://www.s	MANAGE BATTLE LS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED, NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late thrus/environment/symm/	COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER A TWO SIDED FORM, FOR MORE INFORMATION 866. TO PAY ANNUAL FEES AND VIEW OTHER
USEO OIL USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL RE-REPINER USED OIL RE-REPINER OFF SPECIFICATION USEO OIL BURNER THANKETER WHO DIRECTS SHEMMENT OF OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICATION USEO OIL BURNER OCOMPLETE THIS FORM INSERUIL INFORMATION, VIEW OFF OMEROMENT OF ILENNESSEE DEPARTMENT OF ILENTEST DEPARTMENT OF ILENNESSEE DEPARTMENT OF ILENNESSEE DEPARTMEN	UNIVERSA GENERATE DATTERICS LAMPS PESTICIDES MERCURY CONTAINING COUPMENT TOHECK HERE IS 11 WASTE DESTINAT AUDIT SECTION AT 1-800-237 UR WERSITE AT: http://www.s	MANAGE BATTLE LS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED, NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late thrus/environment/symm/	COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCL
USED OIL USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL RE-REPINER USED OIL PROCESSOR USED OIL RE-REPINER OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURN	UNIVERSA GENERATE BATTERES LAMPS PESTICIDES MERCURY CONTAINING COUPMENT CHECK HERE IS 11 WASTE DESTINAT RECTIONS TO PREPRINTED DAT Y AUDIT SECTION AT 1-800-237- UR WERSITE AT: http://www.s	MANAGE LAMPS LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TURIVERSAL ION FACILITY A AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-06 late thrus/environment/symm/ TKON DIVISION OF SOLID WAS H FLOOR L & C TOWER REPARED UNDER MY DIRECTION OF REPARED UND	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER A TWO SIDED FORM, FOR MORE INFORMATION 1966. TO PAY ANNUAL FEES AND VIEW OTHER TE MANAGEMENT NASITVILLE, TN 37243-1536
USED OIL USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL RE-REFINER OFF SPECIFICATION USED OIL BURNER MARKETER WHO DIRECTS SUPPLIANT TO OPH SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURNER OFF SPECIFICATION USED OIL BURNER ON DEFOND USED OIL BURNER USEFUL INFORMATION, VIEW OIL BURNESSEE DEPARTMENT OF INVESTED OFF ACTIVITY AUDIT SECTION CERTIFICATION CERTIFICATION LECURITY UNDER PENALTY OF LAW THAT THE DOCUME ASSURE THAT QUALIFIED PERSONNEL PROPERTY GATH	UNIVERSA GENERATE DATTONES LAMPS PESTICIDES MERCURY CONTAINING COUPMENT CHECK HERE JE TO WASTE DESTINAT RECITIONS TO PREPRINTED DAT Y AUDIT SECTION AT 1-60C-237- UR WERSITE AT: http://www.s ENVIRONMENT AND CONSERVA NO 491 CHURCH STREET, FIFT.	MANAGE MANAGE LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SITE IS A TUNIVERSAL ION FACILITY AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-06 late tin us/environment/swm/ IKON DIVISION OF SOLID WAS HELOOR L & C TOWER REPARED UNDER MY DIRECTION ON SUBMITTED. BASED ON METION OF SOMMITTED. BASED ON MEMORATION SOMMITTED. BASED ON MEMORATION SOMMITTED. THE INFORMATION SOMMITTED. BASED ON MEMORATION SOMMITTED. BASED ON	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER SA TWO SIDED FORM, FOR MORE INFORMATION OF PAY ANNUAL FEES AND VIEW OTHER TE MANAGEMENT NASHVIELE, TN. 97243-1536 RESUPERVISION ACCORDING TO A SYSTEM DESIGNED TO THE PERSON OF PERSONS WHO MANAGE THIS DESTOR MY SHOWLD DESIGNED TO SHERRONS WHO MANAGE THIS DESTOR MY SHOWLD DESIGNED AND BE
USED OIL USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL RE-REFINER USED OIL RE-REFINER OFF SPECIFICATION USED OIL BURNER TO OFF SPECIFICATION USED OIL BURNER OFF SPECIFICA	GENERATE BATTONES LAMPS PESTICIDES MURCURY CONTAINING EQUIPMENT CHECK HERE IS 1: WASTE DESTINAT RECTIONS TO PREPRINTED DAY AUDIT SECTION AT 1-80C-237- UR WERSITE AT: INTURNMENT AND CONSERVA XN 401 CHURCH STREET, FIFT ENT AND ALL ATTACHMENTS WERE PER AND EVALUATE THE INFORMATIO ESPONS RIF FOR CATHERING THIS IN HERE ARE SIGNIFICANT PENALTIES IN	MANAGE MANAGE LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late in us/environment/symm/ IKON DIVISION OF SOLID WAS HELOOR L & C TOWER REPARED UNDER MY DIRECTION ON SUBMITTED BASED ON MY INCX FORMATION. THE INFORMATION FOR SUBMITTING FALSE INFORMAT	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER A TWO SIDED FORM, FOR MORE INFORMATION 1866. TO PAY ANNUAL FEES AND VIEW OTHER THE MANAGEMENT NASHVIELE, TN 37243-1536 TR SUPERVIS ON ACCORDING TO A SYSTEM DESIGNED TO, JURY OF THE PERSON OR PERSONS WHO MANAGETHS 18, SUPERVIS ON THE DEST OF MY KNOWLEDGE AND BELLION, INCLUDING THE POSSIBILITY OF FINE AND
USED OIL USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL RE-REFINER USED OIL RE-REFINER OFF SPECIFICATION USED OIL BURNER TO OFF SPECIFICATION USED OIL BURNER OFF SPECIFICA	GENERATE BATTONES LAMPS PESTICIDES MURCURY CONTAINING EQUIPMENT CHECK HERE IS 1: WASTE DESTINAT RECTIONS TO PREPRINTED DAY AUDIT SECTION AT 1-80C-237- UR WERSITE AT: INTURNMENT AND CONSERVA XN 401 CHURCH STREET, FIFT ENT AND ALL ATTACHMENTS WERE PER AND EVALUATE THE INFORMATIO ESPONS RIF FOR CATHERING THIS IN HERE ARE SIGNIFICANT PENALTIES IN	MANAGE MANAGE LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late in us/environment/symm/ IKON DIVISION OF SOLID WAS HELOOR L & C TOWER REPARED UNDER MY DIRECTION ON SUBMITTED BASED ON MY INCX FORMATION. THE INFORMATION FOR SUBMITTING FALSE INFORMAT	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER A TWO SIDED FORM, FOR MORE INFORMATION 1866. TO PAY ANNUAL FEES AND VIEW OTHER THE MANAGEMENT NASHVIELE, TN 37243-1536 TR SUPERVIS ON ACCORDING TO A SYSTEM DESIGNED TO, JURY OF THE PERSON OR PERSONS WHO MANAGETHS 18, SUPERVIS ON THE DEST OF MY KNOWLEDGE AND BELLION, INCLUDING THE POSSIBILITY OF FINE AND
USED OIL USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL TRANSPERTER USED OIL RE-REFINER USED OIL RE-REFINER OFF SPECIFICATION USED OIL BURNER TO OFF SPECIFICATION USED OIL BURNER OFF SPECIFICA	GENERATE BATTONES LAMPS PESTICIDES MURCURY CONTAINING EQUIPMENT CHECK HERE IS 1: WASTE DESTINAT RECTIONS TO PREPRINTED DAY AUDIT SECTION AT 1-80C-237- UR WERSITE AT: INTURNMENT AND CONSERVA XN 401 CHURCH STREET, FIFT ENT AND ALL ATTACHMENTS WERE PER AND EVALUATE THE INFORMATIO ESPONS RIF FOR CATHERING THIS IN HERE ARE SIGNIFICANT PENALTIES IN	MANAGE MANAGE LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late in us/environment/symm/ IKON DIVISION OF SOLID WAS HELOOR L & C TOWER REPARED UNDER MY DIRECTION ON SUBMITTED BASED ON MY INCX FORMATION. THE INFORMATION FOR SUBMITTING FALSE INFORMAT	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER SA TWO SIDED FORM, FOR MORE INFORMATION OF PAY ANNUAL FEES AND VIEW OTHER TE MANAGEMENT NASHVIELE, TN. 97243-1536 RESUPERVISION ACCORDING TO A SYSTEM DESIGNED TO THE PERSON OF PERSONS WHO MANAGE THIS DESTOR MY SHOWLD DESIGNED TO SHERRONS WHO MANAGE THIS DESTOR MY SHOWLD DESIGNED AND BE
USEO OIL USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL TRANSPORTER USED OIL PROCESSOR USED OIL RE-REPINER OFF SPECIFICATION USEO OIL BURNER TO OFF SPECIFICATION USEO OIL BURNER OFF SPECIFICAT	GENERATE BATTONES LAMPS PESTICIDES MURCURY CONTAINING EQUIPMENT CHECK HERE IS 1: WASTE DESTINAT RECTIONS TO PREPRINTED DAY AUDIT SECTION AT 1-80C-237- UR WERSITE AT: INTURNMENT AND CONSERVA XN 401 CHURCH STREET, FIFT ENT AND ALL ATTACHMENTS WERE PER AND EVALUATE THE INFORMATIO ESPONS RIF FOR CATHERING THIS IN HERE ARE SIGNIFICANT PENALTIES IN	MANAGE MANAGE LAMPS PESTICIDES MERICLAY CONTAINING EQUIPMENT HIS SHE IS A TUNIVERSAL TON FACILITY A AS NEEDED. NOTE: THIS IS 7018 OR FAX TO: 615-532-08 late in us/environment/symm/ IKON DIVISION OF SOLID WAS HELOOR L & C TOWER REPARED UNDER MY DIRECTION ON SUBMITTED BASED ON MY INCX FORMATION. THE INFORMATION FOR SUBMITTING FALSE INFORMAT	I COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER NON-COMMERCIAL RECYCLER A TWO SIDED FORM, FOR MORE INFORMATION 1866. TO PAY ANNUAL FEES AND VIEW OTHER THE MANAGEMENT NASHVIELE, TN 37243-1536 TR SUPERVIS ON ACCORDING TO A SYSTEM DESIGNED TO, JURY OF THE PERSON OR PERSONS WHO MANAGETHS 18, SUPERVIS ON THE DEST OF MY KNOWLEDGE AND BELLION, INCLUDING THE POSSIBILITY OF FINE AND

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION SOUR WASTE MANAGEMENT SOUR WASTE MANAGEMENT SOUR WASTE MANAGEMENT

10/23/2008 8:26:56 AM		HAZAF		WASTE MA		M REPORT		WASTE STRE	AM NUMBER
REPORT YEAR 30	09		T []INI	FORMATION	—. UPDATE	X NEW WASTES	STREAM	<u>.</u> 1	
US EPA ID NUMBER	<u> </u>	BUSINESS NAME							
#NR 00 0	02.874	Memphi	s Liai	nt, Go	s ar	id Water	Dive	sion - As	R Well Lot
ITEM 1- HAZARDOUS WA						_			· · ·
10- WASTE STREAM NAME	/ :					WASTE GENERATED			·· · · · · · · · · · · · · · · · ·
Hydrogen Peroxi	de (4	0%-6070)		Of	^೯ Տբ	ree produc	t		
1(b)1- SOURCE CODE 1n- U		SURF AME UNIT OF MEASURE O	N ALL ATT.	ACHMENTS.			┑	ENERATION FRE	
G \ \	Kg∏ IAM	REPORTING IN KILOG	RAMS				11 7	ONE TIME GENER	
3 1	lbs 🔀 I AM	REPORTING IN POUN	DŞ	∵≈	10	lbs / ga	al; <u> </u>	REGULARLY GEN NTERMITTENTLY	
1c- WASTE STREAM STATUS	1f-HAZARD	CRITER.A	1g-	GENERATIO	N DATES	j	l		··
XACTIVE	_	JIGNITABLE	;	DATÉ GENERA	T.QN BEG	 AN	DATEN	D LONGER CENERA	TED :
CLOSED (SEE 1g)	<u>></u>	∬CORROSIVE REACTIVE		11.18	09		11	.18.09	:
RE-ACTIVATED		TCLP LISTED				;	1		
1h- EPA HAZARDOUS WASTE	LICODES LIST	É FOODES IN THIS ORDER I	 P. D. f. U, A	NOR INTN	ROSAR	ADIOACTIVE 1j-	MONTHLY	MAXIMUM GENEI	RATED
D002				ļ	MIXED W (YES O		1 10	۱ <u>۲</u>	() Kg
2000					N	0	1,10) <u> </u>	b⊘ lbas
1k- pH 1l-FLASI	H POINT 1r	11-BTU PER POUND	1n REAC	TIVE CODES		Io-WASTE FORM CO		1p- NAICS CO	DDE - up to 2
≈ <i>2</i> >⊋	DO	ÑΑ	N	one	1 1	<u>o</u>	- w	221122	
1q- U.S. DOT SHIPPING NAMI	E				1r- U.S.	DOT HAZARD CLAS	S	1ε- U.S. [DOTID CODE
Waste Hydr	ogen Per	roxide				5 . 1		2 .0	i H
ITEM 2- WASTE STREAM	CONSTITUE	ENTS							<u> </u>
0.1107000	O. 10			o o.u.s				d- CONCENTRAT	
1		CONSTITUENT		26 LOWER	VALJE	20- UPPER VALUE	LalsW	%VOLUME	%WEIGHT
Hydrogen F	eroxid	€.				60		X	.
2									:
3								 	
4									
5									
									<u></u>
ITEM 3- ANNUAL GENER	ATION AND	HANDLING NOT	TE:	3a + 3b - 3	ic = 3d		3d	= 4e + 5a + 5b + 5	c + 5d
3a-AMOUNT GENERATED	3b-AM	OUNT ONSITE JAN 1st		3c- AMC	UNT ONS	SITE DEC 31st	3d- A	MOUNT HANDLE	D
ITEM 4- OFFSITE SHIPP	<u>:</u> <u>-</u> ING		·—	- '					
4a-TOTAL AMOUNT SHIPPE	DOPESILE	, 45-STATE DO	IDES: \$10	ÓRAĞE AND	ENAL DIS	SPOSAL / TREATMEN	41 40	- EPA MANAGEM	שבואלוט ME ואלוט
								H H	· · ·
}								H	
) - CN-0773			(CON	ITINUED ON I	REVERSE	≣}	i		RDA 2203

HAZARDOUS WASTE STREAM REPORT - FORM WSR -BUSINESS NAME ASR WELL LIT

WASTE STREAM #

TN8 GO CO 2876)	Memphis Light, Gas and Water Divis	10n-
TEM 5- TSD PERMITTED STORAGE ONL	Y - OR - FACILITY'S ONSITE HANDLING or TREATMENT	
5a- AMOUNT OF 3d HANDLED ONSITE	STATE CODES TREATMENT, STORAGE, DISPOSAL, HANDLING	EPA MANAGEMENT METHOD
5g- AMCONT OF 3GTIANDEED ONSITE	STATE GODES TREATMENT, STORAGE, DISPOSAL, HANDLING	CPA WANAGEMENT WETHOL
	· ·	H
	STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING	 EPA MANAGEMENT METHOU
55- AMOUNT OF 3d HANDLED ONSITE	STATE CODES: TREATMENT, STURAGE, DISPOSAL, HANDLING	EPA MANAGEMENT METHOU
		Н
56- AMOUNT OF 3d HANDLED ONSITE	STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING	EPA MANAGEMENT METHOD
		H
5d- AMOUNT OF 3d HANDLED ONSITE	STATE CODES: TREATMENT, STORAGE, DISPOSAL, HANDLING	EPA MANAGEMENT METHOX
		Н
	· · · · · · · · · · · · · · · · · · ·	
TEM 6- HAZARDOUS WASTE REDUCTION	1	
	GOAL YEAR 6d- WASTE / TOXICITY REDUCTION 6e- WASTE REDUCTION	6f- CHANGE IN TOXICITY
	EFFORT CODES IMPEDIMENT CODES	
		INCREASE
		DECREASE
		NO CHANGE
		NO CHANGE
ig-NARRATIVE: EXPLAIN REPORTED DATA (IF A	PPLKABLE	
THE NARRATIVE: IF NO NUMERIC GOAL EXPLAIN		
ITEM 7- FACILITY COMMENTS		
		······
CERTIFICATION		
CERTIFY UNDER PENALTY OF LAW THAT THIS DOCUME SKSNIFICANS PENALTIES FOR SUBMITTING FACSE INFOR	NT IS, TO THE BEST OF MY KNOWLEDGE AND BELREF, ACCURATE AND COMPLETE. I AM MATION INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT OR BOTH FOR KNOW	AWARE THAT THERE ARE WING VICLATIONS
1.2	\ 2	
KONTUR ROUL	Lerry R. Rox	1
Kerry R. Roy.	CPRCSCNTATIVE APPRINTED NAME	1
0 0	J	'
Environmental E	ngineer 11.18.09	
IIILE	DATE	
DEC USE ONLY		
	STATUS FURTHER REPORTING REVIEWER REC'D DATE	
NH) NOT HAZARDOUS (C) CORR ACTION		
PC) PARTIAL EXEMPTION (W) WASTE WATE		
(V) VARIANCE GRANTED (RR) RES RECOVE	RY	
(R) MIXED RAD WASTE (N) NO LONGER (
TR) TREATMENT RESIDUE (CF) COMPARABIT		
H) HAZARDOUS (U) UNIVERSAL V	/ASTE	

US EPA ID NUMBER

FOR INFORMATION CONTACT:
WASTE ACTIVITY ALDIT
Phone: 1-800-237-7018
FAX: 615-532-0886

WASTE AUDIT USL ONLY

STATE OF TENNESSEE

DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF SOLID WASTE MANAGEMENT

401 Church Street, L & C Tower 5th Floor Nashville, TN 37243-1535

FORM - NF
OFFICE USE ONLY
CHECK #
-WOUNT .
DATE

HAZARDOUS WASTE GENERATOR NOTIFICATION FEE.

	1.TO APPLY FOR AN EPA ID NUMBER	_ 1d.n	IEW USED OIL GENERATOR
REASON FOR ► FILING	16. CHANGE IN LOCATION (PROVIDE INFORMATION ON PREVI	_	TIFY OF CHANGE IN OWNERSHIP
(IF YOU CHECKED ► 1c)	PREVIOUS EPA ID NUMBER PREVIOUS LOCATION OF	YOUR BUSINESS	DATE YOU MOVED TO THIS LOCATION
CURRENT BUSINFSS ▶	Memphis Light, Gas and Water	_	BUSINESS AS (CURRENTLY) ASR Well Lot
WHERE	PHYSICAL LOCATION - STREET ADDRESS OR DIRECTIONS TO YOUR SIT	E CITY	STATE 7IP
YOU?	2686 E. Holmes Road BRIFFLY DESCRIBE THE TYPE OF BUSINESS AT THIS LOCATION AND IDE	Memphis	TV 38118
TAHW UOY OD	Utility Company - Offspru prod		
OWNER >	OWNER NAME ADDRESS Memphis Light, Gas and Worke P.O. Box	orv (430 Memphis	STATE ZIP TN 39101-0430
SITE MAILING > ADDRESS	STREET OR ADDRESS P.O. Box 430	oity Mémphis	TN 38161-0430
BILLING ADDRESS	P.O. Box 430 NIEVOPhis	CITY	STATE ZIP 710 38101-0430
ADDRESS CONTACT	NAME PHONE(S)	CITY	STATE ZIP
PERSON	Kerry Roy (401) 528-4194	Memphis	TN 38103
PAY .	FOR NEW EPA ID NUMBER \$ 100.00 E38		NCE TO: Services - Fee Section - (HWM) ect of Environment and Conservation
YOUR ► FEE	FOR OWNER CHANGE \$ 100.00 F38	401 Church	Street, 14th Floor L&C Tower e, TN 37243-0438
	AMOUNT YOU ARE PAYING ► \$ \[\begin{align*} \OC. \frac{\OC}{\OC} \end{align*}	-	payable to "Treasurer, State of Tennessee". Not Send Cash***
OFFICE USE DONLY	LOGIO CODE STAFF INITIAL DATE	1 1	200 003 8761
NOTE ►	THE TERMS. "EPA ID NUMBER" and "INSTALLATION ID NUMBER" ARE USED INTO INMANDMENTAL PROTECTION AGENCY (EPA) AND IS LITEZED AS THE MAIN REFERRED TO AS THE INSTALLATION IDENTIFICATION NUMBER OR INSTALLATION ECULAGO FOR ALL WASTE RELATED DOCUMENTS. INCLUDING MANIFESTS FOR SIMOVED YOUR OPERATION TO A DIFFERENT LOCATION. THE INSTALLATION ID NUMBER WALL REMAIN SPECIFIC TO THE PHYSICAL LOCATION OF YOUR HAZARDO MELDICATION CAN RESULT IN ENFORCEMENT ACTION BY THE DEPARTMENT.	RCHANGEABLY THE NUMBER - TRACKING NUMBER FOR ALL HA NO ID NUMBER OR ID NUMBER B SHIPMENT, YOU ARE REQUIRED TO JUBBER IS SITE SPECIFIC AND CANN	IS ASSIGNED BY THE UNITED STATES ZARDOUS WASTE ACTIVITIES IT IS PREQUENTLY Y THE STATE OF TENNESSEE. THE ID NUMBER IS APPLY FOR AN ID NUMBER IF YOU ARE NEW OR HAVE IDT BE USED IF YOU AVV. CNCE ASSIGNED, "HE
CERTIFI- CATION	I CERTIFY UNDER PENALTY OF LAW THAT THE INFORMATION SUBMITTED IS, TO THE THAT THERE ARE SIGN FICANT PENALTIES FOR SUBMITTING FALSE INFORMATION, VIOLATIONS	E BEST OF MY KNOVALEDGE AND B INCLUDING THE POSSIBILITY OF	BLIFF, TRUE, ACQUIRATE AND COMPLETE LAM AWARE FINE AND IMPRISONMENT OR BOTH FOR KNOWING
	Keury R. Roy SIGNATURE OF AUTHORIZED REPRESENTATIVE Environmental Engineer	Ker	ry R. Roy
	Enviconmental Engineer	11.	18,09 DATE

DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF FISCAL SERVICES - FEE SECTION CHECKS RECEIVED WITHOUT DOCUMENTATION

DRECTIONS: Divisions must complete this form and attach it to checks received without documentation before transferring checks to the Division of Fiscal Services - Consolidated Fee Section for deposit.

Date/Time Check Received <u>/2-7-69</u> Divis	sion/4WM
Company Name Memphis Light,	Gas, + Water Dix
Company D NumberCheck NumberC	heck Amount \$100
Type of Fee PA TD#	
Received by Fellamy Transferred To	Date/films Fee Effordinator Date/films RDA 5/700

Towns K D	11/30/09
was been	633317
Alexand Amount	100,00
1 CD 7/10-12	3 <u>3698 </u>

From:

Dave Dowlen

To:

int:kroy@mlgw.org

Date:

12/10/2009 12:41 PM

Subject:

Fwd: MLGW - ASR WELL LOT

Attachments: MLGW - ASR WELL LOT

Kerry,

Payment was not received. Since the Fee Office will be sending an invoice for the \$100.00, the ID Number is TNR000028761.

Bill this company for \$100 for Id number application.

Memphis Light, Gas And Water Division -ASR Well Lot P.O. Box 430 Memphis, Tu 38101 Kerry Roy

GIA #327453

FACILITY# 791182

RDA # 2298

TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT

Bureau of Environment Room 1101, State Office Building 170 North Mid America Mall Mamphis, Tennessee 38103

November 5, 1990

Mr. George Dudley City of Memphis General Services, Room 568 125 N. Mid-America Mall Memphis, Tennessee 38103

Re: Closure of Underground Storage Tank system at McKellar Nursery, 2684 Holmes, Memphis, TN UST Facility J.D. # 9-791182

Dear Mr. Dudley:

The Division of Underground Storage Tanks has received the results of the chemical analyses of the soil samples taken during the closure of your underground storage tank system located at the above referenced site. Upon review, it appears that all appropriate measures have been taken to remediate the release and to prevent future releases. At this time, the Division does not see the necessity for further investigation or enforcement but will reserve the right to require additional effort if evidence of contamination arises in the future.

In order to record the system as closed, an amended Notification Form must be completed, signed, and submitted to the Division's Central Office. Please number each tank the same as it was originally registered, making sure to note the date the site assessment was completed.

Please feel free to contact me at (901) 543-6695 with any questions or comments regarding this correspondence.

Sincerely,

James D. Minchey, R.P.E. Environmental Specialist

Division of Underground Storage Tanks

cc: UST Nashville "

enclosure

			U. S. I. FILE	5 INDEX 9-7911	12
41	VDEX NO.	DATE	TYPE DOCUMENT	SUBJECT MATTER	COPY TO CENTRAL OFFICE
	D-1	5-10-90	Closureapp	app and site	
90)-2	6-22-90	analytical kab	Analytical Las Report	
9	0-3	6-22-90	Soil sampling analysis		
C	0.4	8-10-90	Chain of Custody		
5	05	8-2-90	Sample 7054 1+5		
9	0-6	8-2-90	Sample Results		
9	0-7	8-10-90	Analytica(LAB Report		
9	0-8	8-15-90	Letton to George budge from CET	Referencing Ung. 2, 1991 Site visit to Resample	
9	-9	10-24-90	Env. Testing and Consulting, Inc.	SAMPLE RESULTS	`
90	-10	10-26-90	Letter from ETC. 10 George Budiey Coth If Memoris		
	D-11	10-29-90	City of Memphis ETC analysis organic analysis report	Sample Results	
9	0-12	10-24-90	analysis report	sample results	
9	6-17	10-29-90	ETC organic analysis Report	sample results	
9	5-14	•	Latter Comerce	,	
à	0-15	11-5-90	to george budly Letter thom Tames hinchey to	Clean	
			T was to was to war	Cicori	
<u></u>					
			<u> </u>		
	-				
	'''		-		
· <u> </u>					
- <u>-</u>					

DEPARTMENT OF ENVIRONMENT AND CONSERVATION

FILE REQUEST

	DEPART	MENT USE ONLY	Parallia (Philippia)	Sour Gorb
DIVISION(S):	NOT)	<u>57</u>		·
DATE:	/4	APPOINTMENT TIM	<i></i>	(A.M./P.H.
COMPLETE THE FOLLOWING (OR A	ATTACH YOUR BUSI	NESS CARD):	SCORE PLAN 6 (1985) OF 1921	100 (000, Not 100, 100
2 - 1	//			
NAME/COMPANY	scheck		<u></u>	· .
4180 P. lot D.	ince			
Mondais	Tas	38/18 zip	1901 36.3	0600
CITY	STATE	ZIP	TELEPHONE	
 Briefcases and other accessories file area. Do not mark on the file(s) or chan. Unless otherwise informed, all concect only. Tags will be provided to mark any Staff will make copies as their wolupon request. 	ge the order of docum pies are charged at the pages for staff to cop rk schedule permits. I	ents within the file(s), he rate of 50 cents per p y, It may be necessary to r	ozge, payable in advance b	y exact cash o
. FACILITY NAME		FACILITY 1.D. #	COUNTY	# OF PAGES COPIED
ON15 415	1079	0983	Shallos	
Puk Cam plekollar.	Nuray 4 79		Shellow	
Jackson Ports	1/7	9-604	Sheller	
• .				
1			TOTAL Pages Cop	ied
N-1077 (Rev. 8-95)	//-	(A)	_	

DEPARTMENT OF ENVIRONMENT AND CONSERVATION

FILE REQUEST

DIVISION(S): (15	<u> California de la companiona de la companio</u>	NT USE ONLY	F
DATE 6-3-	96	APPOINTMENT TIME	// ord (AM-JPM
COMPLETE THE FOLLOWING (C	DR ATTACH YOUR BUSIN		
	1 to	.oo CARDJ.	
Krist Toon NAME COMPANY 445 Willow)	ake Blvd.		
Menuphis	STATE	38/18 ZIF	901 305 - 9255 TELEPHONE

- Public records are available for review during the normal business hours from 8:00 a.m. until 4:30 p.m., Monday through Friday, except holidays. For your convenience and to assure prompt service and adequate time for file review, it is recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m.
- The number of files reviewed at one time may be limited without authorization from the Division Manager or Field Office Administrative Manager.
- 3. Briefcases and other accessories (with the exception of writing materials -- notepads, pencils, etc.) are not allowed in the file area.
- 4. Do not mark on the file(s) or change the order of documents within the file(s).
- 5. Unless otherwise informed, all copies are charged at the rate of 50 cents per page, payable in advance by exact cash or check only.
- Tags will be provided to mark any pages for staff to copy.
- 7. Staff will make copies as their work schedule permits. It may be necessary to return for the copies, or they may be mailed upon request.

FACILITY NAME	FACILITY I.D. #	COUNTY	# OF PAGES COPIED
64-40 inc.	9-79-0637	Shellow	
OM5#15	9-79-0983	Shelly	
Park Com. Nursen	y 9-79-1182 D	Shelby	
Jackson Pits	79-604	Shelby	
Sycamore Cleaners	98-211-1247	Shelloy	

TOTAL Pages Copied ____

ENVIRONMENTAL TESTING & CONSULTING INC.

2924 WALNUT GROVE RD. · MEMPHIS, TN 38111 · FHONE (901) 327-2750 FAX (901) 327-6334

October 31, 1990

Mr. George Dudley City of Memphis General Service, Rm 568 125 N. Mid-America Mall Memphis, TN 38103

REF: ANALYTICAL TESTING

SAMPLE DATE: 10/29/90

SAMPLE ID: 2684 HOLMES ROAD (SOIL)

CONTRACT #D6885

Dear Mr. Dudley:

The above referenced sample has been analyzed per your instructions. The tests were performed in our laboratory (#02027) in accordance with Standard Methods, 16th Edition and SW-846 (8020 & 5030) BTX; (503E & 3550) TPH. The results are shown on the attached Organic Analysis Data Sheet.

If you have any questions please contact our office.

Very truly yours,

And H. Horn Michael J. Cimbalo President

MJC/jew

Attachment

10310003.doc

ENVIRONMENTAL TESTING AND CONSULTING, INC.

ORGANIC ANALYSIS DATA SHEET

	_2684 HOLMES RD.	ANALYST	_LS/TW
SAMPLE DATE : DATE ARRIVED :			: _1029-002.DOC_ : _1029-002
METHOD (SW-846):	_10/29/90 10/29/90 _BTX TPH 8020 503E 5030 3550	: :	
,		*	
COMPOUND	SAMPLE RESULTS UNITS: (mg/kg)		METHOD DETECTION LIMIT: (mg/kg)
ETC #	#1 PILE COMP STOCKPILE		·
Benzene	BDL		1.00
Toluene	BDL	,	1.00
Xylenes (Total)	BDL	<u> </u>	1.00
Total BTX Total Petroleum	BDL_		1.00
Hydrocarbons	23.9		10.0

BDL - BELOW DETECTION LIMIT

Nitt of his

90-17

ENVIRONMENTAL TESTING AND CONSULT . INC.

ORGANIC ANALYSIS DATA SHEET

CLIENT NAME	: _CITY OF MEMPHIS	ANALYST	LS/TW_
SITE ID	: _2684 HOLMES MCKELLAR NURSERY		
SAMPLE DATE DATE ARRIVED MATRIX	: _10/24/90_ : _10/24/90_ : _SOIL	file náme Sample #	: _1024-003.DOC_ : _1024-003
DATE ANALYZED METHOD (SW-846) (SM 16)			
	,		WORKED DEMOCRATON

COMPOUND	SAMPLE RESULTS UNITS: (mg/kg)	METHOD DETECTION LIMIT: (mg/kg)
ETC #	#3 East side of Hole	,
Benzene	BDL.	0.02
Toluene	BDL	0.02
Xylenes (Total)	BDI.	0.03
Total BTX	BDL	0.02
Total Petroleum	BDL	10.0

BDL - BELOW DETECTION LIMIT

Rendle Rows

ENVIRONMENTAL TESTING AND CONSULT. INC.

ORGANIC ANALYSIS DATA SHEET

CLIENT NAME	: _CITY OF MEMPHIS	Project # Analyst	: _L5/TW
SAMPLE DATE	: _2684 HOLMES RD : _10/29/90_ : _10/29/90_ : _SOIL	file Name Sample #	: _1029-002.DOC_ : _1029-002
DATE ANALYZED METHOD (SW-846) (SW 16)			

COMPOUND	SAMPLE RESULTS UNITS: (mg/kg)	METHOD DETECTION LIMIT: (mg/kg)
ETC #	#1 PILE COMP STOCKPILE	
Benzene	BDL BDL BDL BDL	1.00 1.00 1.00 1.00
Total Petroleum	23.9	10.0

BDL - BELOW DETECTION LIMIT

osine itaa

90-11

ENVIRONMENTAL TESTING & CONSULTING INC.

2924 WALNUT GROVE RD. - MEMPHIS, TN 38111 - PHONE (901) 327-2750 FAX (901) 327-6334

October 26, 1990

Mr. George Dudley City of Memphis General Services, Room 568 125 N. Mid-America Mall Memphis, Tenn. 38103

REF: ANALYTICAL TESTING

SAMPLE DATE: 10/24/90

SAMPLE ID: McKELLAR NURSERY

2684 HOLMES (SOIL)

Dear Mr. Dudley:

The above referenced sample has been analyzed per your instructions. The tests were performed in our laboratory (#02027) in accordance with Standard Methods, 16th Edition, and SW-846, Method 503E & 3550 (TPH); 8020 & 5030 (BTX). The results are shown on the attached Organic Analysis Data Sheet.

If you have any questions please feel free to contact our office.

Very truly yours,

Michael J. Cimbalo

President

MJC/mg

Attachment

ENVIRONMENTAL TESTING AND CONSULTING, INC.

ORGANIC ANALYSIS DATA SHEET

CLIENT NAME	: _CITY OF MEMPHIS	PROJECT # ANALYST	: _LS/TW
SITE ID	: _2684 HOLMES MCKELLAR NURSERY		
SAMPLE DATE DATE ARRIVED MATRIX	: _10/24/90_	FILE NAME SAMPLE #	: _1024-003.DOC_ : _1024-003
METHOD (SW-846	; _10/25/90 10/24/90); _BTX		
COMPOUND	SAMPLE RESULTS UNITS: (mg/kg)		METHOD DETECTION LIMIT: (mg/kg)
ETC #	#3 EAST SIDE OF HOLE		
 Benzene Toluene Xylenes (Total Total BTX			0.02 0.02 0.03 0.03
rotal Petroleu Hydrocarbons			10.0

BDL - BELOW DETECTION LIMIT

Randle Bass

Certified Engineering & Testing Company

Boston • Providence • New York • Memphis • Dallas • San Francisco • Los Angeles

August 15, 1990

Mr. George Dudley City of Memphis/General Services Division 125 North Mid-America Mall Memphis, Tennessee 38103

RE: CERTIFIED Project No. M00165 McKellar Nursery 2684 Holmes Road Memphis, Tennessee

Dear Mr. Dudley:

In accordance with the recommendations of the Soil Sampling/Analysis reports issued for the above referenced site by CERTIFIED on June 22, 1990 and July 17, 1990, a representative of CERTIFIED revisited the site on August 2, 1990, in order to resample the tank pit after additional excavation was accomplished at its east end.

One (1) soil sample was collected from the east end of the UST pit. The sample was collected using a bucket auger which was manually advanced. No visual or elfactory evidence of contamination was observed. The sample was placed in a four (4) ounce glass jar with a heavy-duty aluminum foil seal and screw-on type lid. The sample was stored in a chain-of-custody cooler with bagged ice while in the field and was promptly returned to CERTIFIED's Memphis office and placed in a shipping cooler with an ice pack.

The soil sample was shipped overnight via Federal Express courier service on August 2, 1990, to CERTIFIED's corporate laboratory in Weymouth, Massachusetts. The cooler was secured with security seal 3844 which was not broken until the cooler arrived at the laboratory.

The enclosed Analytical Laboratory Report outlines analytical methods used and the results obtained. The results of all soil sample analyses performed to date at the site are summarized below (Table 1) for each of the current Tennessee regulated compounds.

Certified Engineering & Testing Company of Tennessee, Inc. 5175 Elmore Road, Suite 1, Memphis, TN 38134 (901) 582-6282 TeleFAX (901) 572-5735.

Mr. George Dudley August 15, 1990 Page Two

TABLE 1

Sample	Location	Total BTX Result *	TPH <u>Rosult</u>
Date: June	13, 1990		
1	Gasoline UST Pit East End	8.1	355
2	Gasoline UST Pit West End	0.67	Ó
3	Gasoline UST Pit Aerating Excavated Soils	0.19	190
Date: July	09, 1990		
1	Gasoline UST Pit East End	10.4	500
2	Gasoline UST Pit Aerating Excavated Soils	5,3	575
Date: Augus	t 02, 1990		
1	Gasoline UST Pit East End	HMDL	250
	Cleanup Standard	10	100

^{*} Total BTX = sum of the concentrations of benzene, toluene and total xylenes in parts per million (ppm)

BMDL = Below Minimum Detection Limit
NOTE - all results presented in ppm

^{** -} excerpted from Tennessee Department of Health and Environment, Division of Groundwater Protection, Policy on Cleanup levels for Casoline and other Petroleum Hydrodarbone, Groundwater, March 18, 1987.

Mr. George Dudley August 15, 1990 Page Three

As can be seen in Table 1, Total Petroleum Hydrocarbon (TPH) concentrations at the east end of the tank pit on August 2, 1990, after the third excavation, were still found to be two and one-half (2.5) times the applicable standard. The Total BTX level in this sample was below the minimum detection limit of part per billion.

If you have any questions or comments regarding the results, please contact me or \mbox{Tim} McCaffery.

Bingerely,

John Sorrels

Environmental Scientist

JS:cms

Enclosure

Certified Engineering & Testing Company

Boston • Providence • New York • Chicago • Memphis • Dallas • San Francisco • Los Angeles

ANALYTICAL LABORATORY REPORT

August 10, 1990

Project No.: M00165 CERTIFIED Lab ID: 90-08-019

Attached are the results of analyses performed on the samples received by this laboratory on August 2, 1990.

REFERENCES

- "Test Methods for Evaluating Solid Waste, SW846, Third Edition," USEPA, November 1986.
- "Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition," American Public Health Association, 1985.
- 3 40 CFR Part 136, July 1, 1987.
- 4 "Annual Book of ASTM Standards," Vol. 11.02, 1989.
- 5 "Method for Chemical Analysis of Water and Wastes EPA-600 4-79-020, Revised March, 1983.

If you have any questions concerning these results, please do not hesitate to contact me.

Very truly yours,

John J. Sulkowski

Laboratory Manager

JJS/smd

Enclosures

Certified Engineering & Testing Company, Inc. 25 Mathewson Drive, Weymouth, MA 03189 (617) 337-7887 : TeleFAX (617) 337-8237

Client: CERTIFIED/Memphis

Sample Series: 90-08-019.1

Matrix: Soil

Date Sampled: 08/02/90

Sample Location: Gasoline UST Pit

Sample Description: One glass container of soil

Chemical Analysis	Result	Date <u>Analyzed</u>	Detection <u>Limit</u>	Method
Petroleum Hydrocarbon mg/Kq	250	08/09/90	1	418.1 ⁵

Analyst: Noel Reid

BMDL denotes Below Method Detection Limit.

Client: CERTIFIED/Memphis Sample Series:90-08-019.1 Matrix: Soil Date Sampled: 08/02/90 Sample Location: Gasoline UST Pit Date Analyzed: 08/07/90

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	D ete ction Limit <u>uq/Kq</u>
Methyl-tert-Butylether Benzene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Ethylbanzene Toluene Xylenes, Total	BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	5 1 1 1 1 1 1

Surrogate Standard Percent Recovery

a,a,a-Trifluorotoluene 100%

Method Referene: 8020¹
BMDL denotes Below Method Detection Limit.

		<u> </u>		_			CUST				1		2H	i			SR		DUE	OFT	re: S	<u> </u>	0 '	70
ECTIFICITY: City of Memphis General Services Div : 125 N. Mid-America Mall Room 576 : Memphis, TN 38103 PHONE: (901) 576-6857 FAXEC) P.O.4: CLIENT CONTACT: George Didley /John Sorrels PROJECT 4: M.00165									SAMPL 1. #/ 2. SC 3. SC 4. DI 5. Ti OTHER	ATER DIL LUDGE IL ISSUE	P E E U	ተየድ -ድር	E ASTI ASS A	L						HALV	YSES			7
ANPLE	SAMPLE		OATHFLE	CON	TAIHE		SRAP	LING_	PRE IGIS	INTE UNI	To see	%	//	//		/,	/,	//	//	//	//,			
	IDENTIFICAT		TYPE	_		*	DATE	TIME			<u> </u>	Z	<u>_</u>		4	\angle	_	_						
4-1 6	assine, UST 1	ra T	2.	402	G	1	g-z-90	11:25	-	_ <u> </u> X	X				_ _	<u>}</u>		-			<i>N</i> .	2 00	br	·
										=		<u> </u>				<u> </u>								
			 -		<u>}</u>				- <u>:</u>	: 		<u> </u>			1	1.	ļ	\sqcup		_ _				
	<u> </u>									<u> </u>	Ľ.				<u> </u>	[]	<u> </u>				<u> </u>	 	•	
	<u></u>		·				-							\bot			<u> </u>				_			
			_ 							· 				_		<u> </u>	<u> </u>				<u> </u>			 -
	· · · · · · · · · · · · · · · · · · ·								·	<u> -</u> ,	<u> </u>					<u> </u>								
	<u> </u>									-					 	<u> </u>	ļ		_					
										. .		ļ. ————	_	<u> </u>		<u> </u>	<u> </u>		.					
91-	 ,									1			_		-	ļ						 -		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·								.	1_					↓	<u> </u>				_ _	_ _			
						ļ				<u> </u>					_	<u> </u>						. <u> </u>		
<u> </u>	·· ······		L						,		اپ	لِ			<u>l</u> _				\perp					
ELINQUISI Classica	, i [DATE:				_ (4)		187 M) DR					_										
MA C. S		TIME:					in /		,	ME: 4		7	_					UCTI -						
Min Happy Time: 5:25 pm			R1	Fed Ex TIME: 5:25 py				_	RUSH . 5. DAY TURN AROUND AS PER CONTRACT WYCITY															
ELINQUISHED BY: DATE:			RE	DEIVEO								RFO	GШ	មួន					Ş	NO TO	•			
THOO OF		TINE:	م م		. 44		2562	(10)	ru												Surve En 1	:(5 UCH#	15	

Certified Engineering & Testing Company®

Boston • Providence • New York • Memphis • Dallas • San Francisco • Los Angeles

SOIL SAMPLING/ANALYSIS
UNDERGROUND STORAGE TANK CLOSURE
CITY OF MEMPHIS/MCKELLAR NURSERY
2684 HOLMES ROAD
MEMPHIS, TENNESSEE 38118

CERTIFIED PROJECT NO: M00165 JUNE 22, 1990

PREPARED FOR:

MR. GEORGE DUDLEY
CITY OF MEMPHIS/GENERAL SERVICES DIVISION
125 N. MID-AMERICA MALL
MEMPHIS, TENNESSEE 38103

PREPARED BY:

MARK E. BOWERS
ENVIRONMENTAL SCIENTIST

ENVIRONMENTAL SERVICES DIVISION

REVIEWED BY:

AMY MCCAFFERY OPERATIONS MANAGER MID-SOUTH OPERATIONS

Certified Engineering & Testing Company of Tennessee, Inc. 5175 Elmore Road, Suite 1, Memphis, TN 36134 (901) 382-6282 TeleFAX (901) 372-5735

90-3

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	SITE DESCRIPTION	7
3.0	FIELD ACTIVITIES	7
4.0	OBSERVATIONS	2
	SOIL ANALYSIS RESULTS	
	CONCLUSIONS AND RECOMMENDATIONS	
	TABLE 1	3
APPEI APPEI	NDIX A FIGURES NDIX B LABORATORY DATA SHEETS AND FIELD CHAIN-OF-CUSTODY SAMPLING LOG	

1.0 INTRODUCTION

Certified Engineering and Testing Company, Inc. (CERTIFIED) was retained by the City of Memphis, General Services Division (the City) to obtain appropriate soil samples following the removal of an underground storage tank (UST) from the McKellar Nursery property (the Site). The physical removal of the UST was handled by the City prior to CERTIFIED's arrival at the Site. Soil sampling was performed in accordance with guidelines issued by the UST Program of the Tennessee Department of Health and Environment, Division of Superfund.

2.0 SITE DESCRIPTION

Soil sampling was performed at the City of Memphis McKellar Nursery property located at 2684 Holmes Road, Memphis, Tennessee. The UST pit is located in the central section of the Site just south of a vacant building. Appendix A, Figures 1 through 3 provide a Site Locus, Site Plan and Area Topographic Map, respectively.

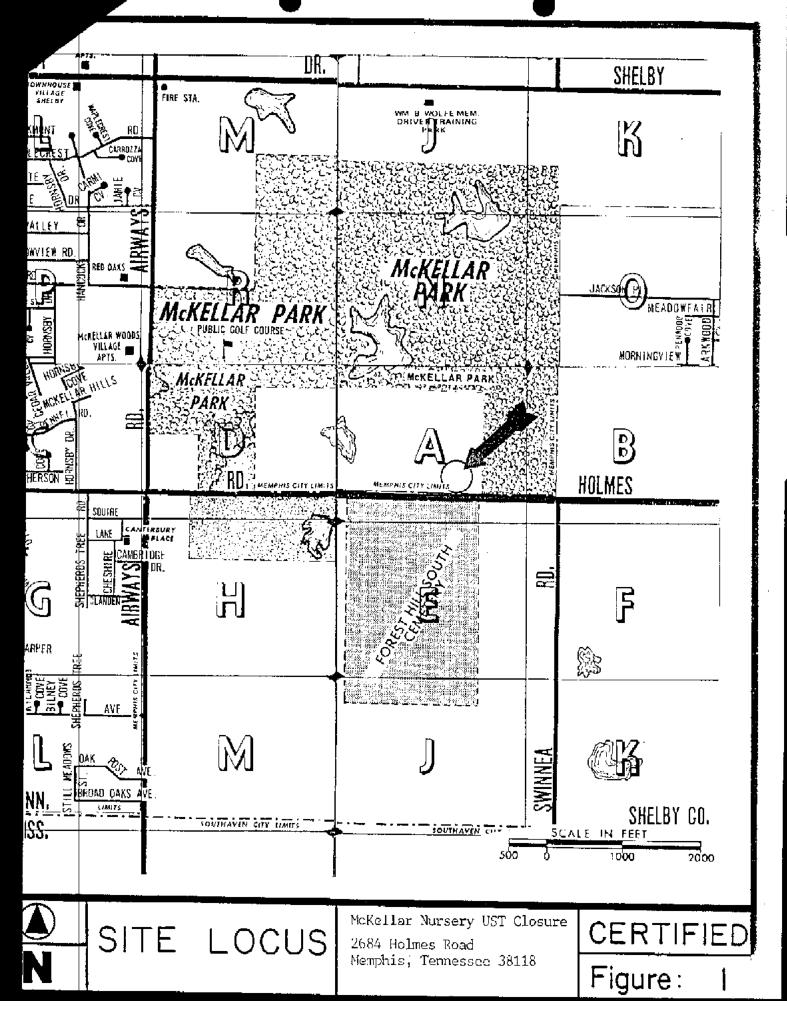
3.0 FIELD ACTIVITIES

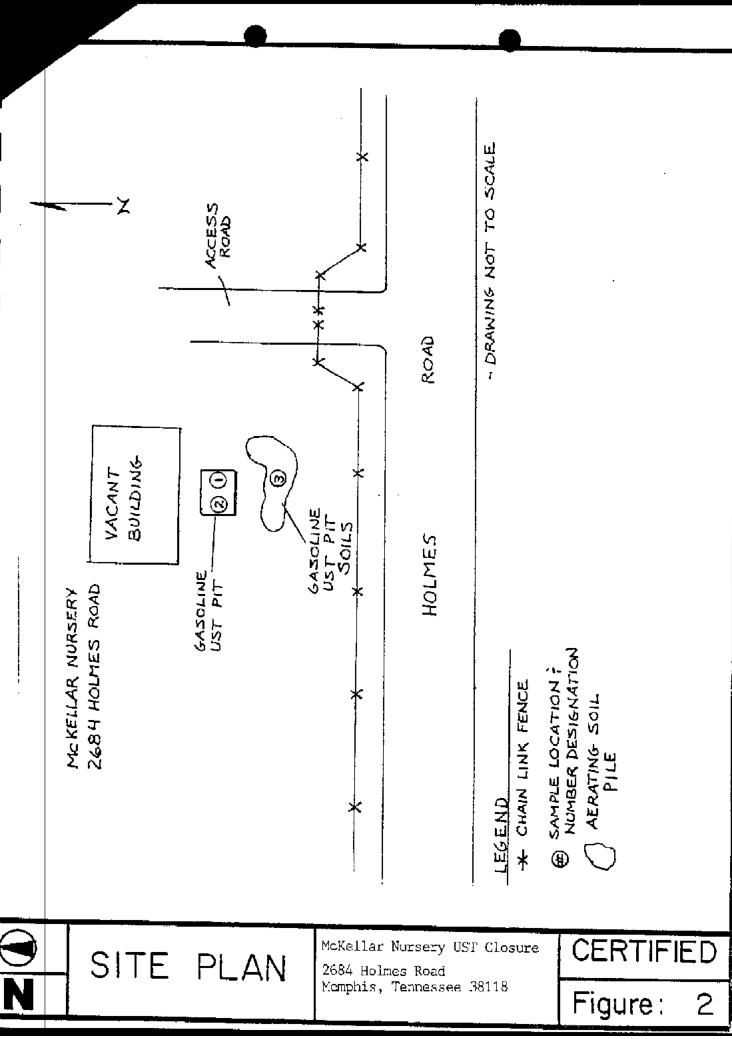
On June 13, 1990, CERTIFIED arrived at the Site to sample UST pit soils and soils removed during UST excavation.

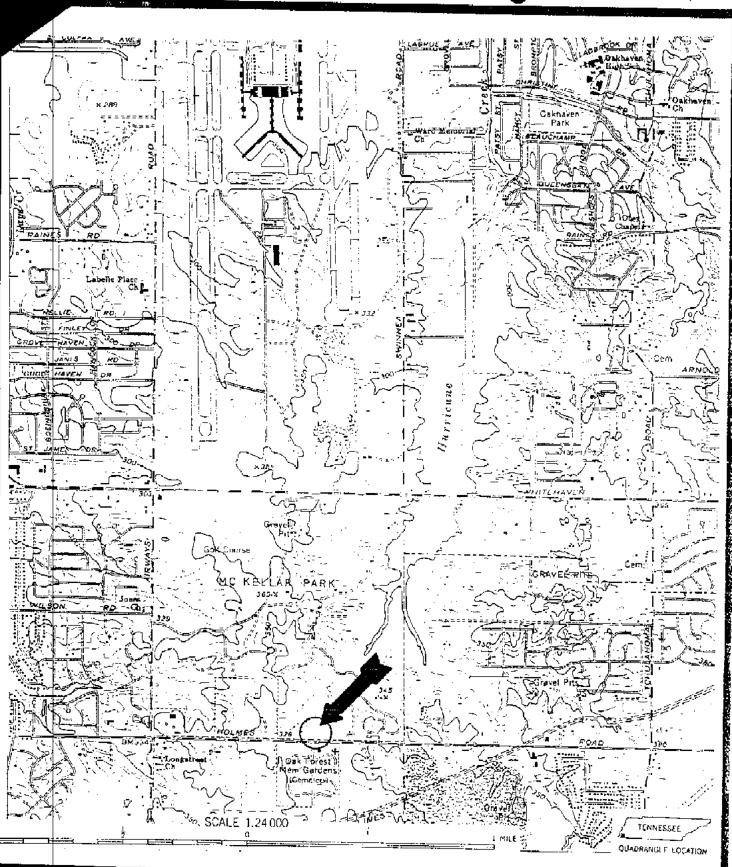
The UST pit was formerly occupied by a gasoline UST with a capacity of approximately 1,000 gallons. Mr. George Dudley with the City of Memphis informed CERTIFIED that this UST had been out of service for some time prior to removal.

Two (2) soil samples were collected from the UST pit ends. A sample (composite) was also collected from the acrating gasoline UST pit soils (three (3) individual samples). Appendix A, Figure 2 shows sampling locations and general site layout.

All soil samples were collected using a bucket auger which was manually advanced. All soil samples were placed in four (4) ounce glass jars with heavy-duty aluminum foil seals and screw-on type lids. The soil samples were stored in a chain-of-custody cooler with bagged icc while in the field. The samples were promptly returned to CERTIFIED's Memphis office and placed in a shipping cooler with an ice pack. The soil samples were shipped overnight via Federal Express courier service on June 13, 1990 to CERTIFIED's corporate laboratory in Weymouth, Massachusetts. The cooler was secured with security seal #3813 which was not broken unit the cooler arrived at the laboratory.


TABLE 1


Sample	Location	Total BTX Result *	TPH Result
1	Gasoline UST Pit East End	8.1	355
2	Gasoline UST Pit West End	0.67	0
3	Gasoline UST Pit Aerating Excavated Soils	0.19	190
	Cleanup Standard**	10	100


^{*} Total BTX = sum of the concentrations of benzene, toluene and total xylenes in parts per million (ppm)

NOTE - all results presented in ppm.

^{** -} excerpted from Tennessee Department of Health and Environment, Division of Groundwater Protection, Policy on Cleanup Levels for Gasoline and Other Petroleum Hydrocarbons, Groundwater, March 18, 1987.

TOPOGRAPHIC MAP McKellar Nursery UST Closure

2684 Holmes Poad Memphis, Temmessee 38118 CERTIFIED

Figure: 3

48 1 20 E40

ANALYTICAL LABORATORY REPORT

June 22, 1990

Project No.: M00165

CERTIFIED Lab ID: 90-06-068

Attached are the results of analyses performed on the samples received by this laboratory on June 14, 1990.

REFERENCES

- A "Test Methods for Evaluating Solid Waste, SW846, Third Edition," USEPA, November 1986.
- "Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition," American Public Health Association, 1985.
- 3 40 CFR Part 136, July 1, 1987.
- * "Annual Dook of ASTM Standards," Vol. 11.02, 1989.

If you have any questions concerning these results, please do not hesitate to contact me.

Very truly yours,

John J. Sulkowski Laboratory Manager

JJS/9md

Enclosures

Client: City of Memphis, Gen Ser Div Samples Series: 9006068.1 Hatrix: Soil Date Sampled: 06/13/90 Sample Location: Gasoline UST Pit Date Analyzed: 06/19/90

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	Detection Limit US/Kg
Methyl-tert-Butylether	BMDL	2,500
Benzene	BMDL	500
Chlorobenzene	BMDL	500
1,3-Dichlorobenzene	BMDL	500
1,2-Dichlorobenzene	BMDL	500
1,4-Dichlorobenzene	DMDL	500
Ethylbenzene	020.U	500
Toluene	3,300.0	500
Xylenes, Total	4,600.0	500

Method Reference: 80201

Carriage Group

BMDL denotes Below Method Detection Limit

Client: City of Memphis, Gen Ser Dlv Samples Series: 90-06-068.2 Matrix: Soil Date Sampled: 06/13/90 Sample Location: Gasoline UST Plt Date Analyzed: 06/19/90

Sample Description: One 4 ounce glass container of soil

Eurgeable Aromatics	Result ug/Kg	Detection Limit <u>ua/Ka</u>
Methyl-text-Butylether Benzene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes, Total	BMDL 129.0 BMDL BMDL BMDL BMDL 28.0 370.0 168.0	25 5 5 5 5 5 5 5 5 5

Method Reference: 80202

BMDL denotes Below Method Detection Limit

Client: City of Memphis, Gen Ser Dlv Sample Series: 90-06-068.3 Matrix: Soil Pate Sampled: 06/13/90

Matrix: Soil Date Sampled: 06/13/90 Sample Location: Gasoline Ust Pit Date Analyzed: 06/19/90

Aerating Solls

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	Detection Limit ug/Kg
Methyl-tert-Butylether Benzene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes, Total	BMDL BMDL SMDL BMDL BMDL 115 120 70	5 1 1 1 1 1 1

Method Referenc: 80202

BMDL denotes Below Method Detection Limit.

Client: City of Memphis, Gen Ser Div Matrix: Water

Sample Series: 90-06-068,1

Date Sampled: 06/13/90

Sample Location: Campline UST Pit

Sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date <u>Analyzed</u>	Detection Limit	Method
Petroleum Hydrocarbon	355	06/22/90	5	503D ²

Client: City of Memphis, Gen Ser Div

Sample Series: 90-06-068.2

Matrix: Water

Date Sampled: 06/13/90

Sample Location: Gasoline usy Pit

Sample Description: One 4 ounce glass container of soil unpreserved

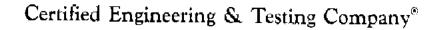
Chemical Analysis	<u>Result</u>	Date <u>Analyzed</u>	Detection <u>Limit</u>	<u> Method</u>
Petroleum Hydrocarbon	вмоц	06/22/90	5	503D2

Client: City of Memphis, Gen Ser Div

Sample Scries: 90-06-068.3

Matrix: Water Date Sampled: 06/13/90 Sample Location: Gasoline UST Pit Aerating Soils

Sample Description: One 4 ounce glass container of soil unpreserved


Chemical Analysis	Result,	Date <u>Analyzed</u>	Detection <u>Llmit</u>	<u> Method</u>
Petroleum Hydrocarbon	190	06/22/90	5	503D2

Analyst: John J. Sulkovski

BMDL denotes Below Method Detection Limit.

. 985

141811432

Boston • Providence • New York • Memphis • Dallas • San Francisco • Los Angeles

July 17, 1990

Mr. George Dudley City of Memphis/General Services Division 125 North Mid America Mall Memphis, Tennessee 38103

RE: McKellar Nursery UST Closure Soil Sampling CERTIFIED Project No: M00165

Dear Mr. Dudley:

Please find enclosed two (2) copies of the followup report outlining the findings of the above referenced project. Also find enclosed, an additional copy of the laboratory data sheets for the second sampling phase.

If you have any questions, please feel free to call me.

Sincerely,

Mark E. Sowers

Mark E. Bowers Environmental Scientist

Enclosure

Certified Engineering & Testing Company

Boston • Providence • New York • Memphis • Dailas • San Francisco • Los Angeles

SOIL SAMPLING/ANALYSIS FOLLOWUP UNDERGROUND STORAGE TANK CLOSURE CITY OF MEMPHIS/MCKELLAR NURSERY 2684 HOLMES ROAD MEMPHIS, TENNESSEE 38118

CERTIFIED PROJECT NO: M00165 JULY 17, 1990

PREPARED FOR:
MR. GEORGE DUDLEY
CITY OF MEMPHIS/GENERAL SERVICES DIVISION
125 N. MID-AMERICA MALL
MEMPHIS, TENNESSEE 38103

PREPARED BY:

MARK E. BOWERS ENVIRONMENTAL SCIENTIST

REVIEWED BY:

AMY B. MCCAFFURY OPERATIONS MANAGER

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD ACTIVITIES	1
	OBSERVATIONS	
	SOIL ANALYSIS RESULTS	
	CONCLUSIONS AND RECOMMENDATIONS	
	TABLE 1	
APPEI APPEI	NDIX A FIGURES NDIX B LABORATORY DATA SHEETS AND FIELD CHAIN-OF-CUSTODY SAMPLING LOG	

1.0 INTRODUCTION

Certified Engineering and Testing Company, Inc. (CERTIFIED) collected and analyzed soil samples in conjunction with an underground storage tank (UST) closure at the City of Memphis/General Services Division (the City) McKellar Nursery site, 2684 Holmes Road, Memphis, Tennessee. Two (2) of the soils samples collected on June 13, 1990 were found to exceed the Tennessee Department of Health and Environment, Division of Ground Water Protection (the State) soil cleanup standards for total petroleum hydrocarbons (TPH). The TPH contaminated soils were found in the east end of the UST pit and the aerating soil pile.

As a result, the City overexcavated the UST pit. The east end of the pit was expanded by approximately 200 square feet (surface area). The depth of the pit (east half) was increased by approximately 4.5 feet.

The City contacted CERTIFIED on July 9, 1990 to request sample collection in the areas previously found to have soil contamination.

A site locus, site plan and area topographic map are provided as Appendix A, Figures 1, 2, and 3, respectively.

2.0 FIELD ACTIVITIES

On July 9, 1990, CERTIFIED arrived at the Site to sample UST pit soils (east end) and soils removed during UST excavation and overexcavation.

One (1) soil sample was collected from the east end of the UST pit. A sample (composite) was also collected from the aerating soil pile (four (4) individual samples). Appendix A, Figure 2 shows sampling locations and general site layout.

All soil samples were collected using a bucket auger which was manually advanced. All soil samples were placed in four (4) ounce glass jars with heavy-duty aluminum foil seals and screw-on type lids. The soil samples were stored in a chain-of-custody cooler with bagged ice while in the field. The samples

were promptly returned to CERTIFIED's Memphis office and placed in a shipping cooler with an ice pack. The soil samples were shipped overnight via Federal Express courier service on July 9, 1990 to CERTIFIED's corporate laboratory in Weymouth, Massachusetts. The cooler was secured with security seal 4249 which was not broken until the cooler arrived at the laboratory. The bucket auger used for sampling was cleaned, rinsed with methanol and rinsed with distilled water between samples to avoid cross contamination.

Soil samples collected in association with the former gasoline UST were analyzed for TPH and Gasoline Hydrocarbons (BTX).

3.0 OBSERVATIONS

The slight gasoline odor which was present in the UST pit vicinity (on June 13, 1990) had dissipated.

The soil sample collected from the UST pit east end was dry and had no noticeable odor. No stained soils were observed in the area.

The soil sample collected from the aerating soil pile had a slight gasoline odor.

4.0 SOIL ANALYSIS RESULTS

The Analytical Laboratory Report provided in Appendix B outlines the analytical methods used and the results obtained for all soil sample analyses. The results are also summarized below (Table 1) for each of the current Tennessee regulated compounds.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analytical results presented, CERTIFIED concludes that significant tank pit soil contamination (above cleanup standards) still exists in the east end of the pit. Total petroleum hydrocarbon (TPH) concentrations in this area were found to be five (5) times the applicable standard. The Total BTX levels in this sample were also slightly above the corresponding cleanup standard.

The TPH concentrations found in the aerating soil pile sample were nearly six (6) times the cleanup standard. Total BTX concentrations in the aerating soils were below cleanup standards.

As a result of these findings, CERTIFIED recommends the following. It did not appear in CERTIFIED's opinion, that the area had been overexcavated to the fullest extent allowed (ten (10) feet in all directions). CERTIFIED would therefore recommend additional overexcavation in the east end of the tank pit (increase surface area). The depth of the pit (east end) should also be increased. This should remove the contaminated soils found during the second sampling phase. In addition, aerating soils should be left in place to allow for further votalilization of the lighter TPH fractions.

TABLE 1

Sample	Location	Total BTX Result *	TPH Result
1	Gasoline UST Pit East End	10.4	500
2	Gasoline UST Pit Aerating Excavated Soils	5.3	5 7 5
	Cleanup Standard **	10	100

- * Total BTX = sum of the concentrations of benzene, tolucne and total xylenes in parts per million (ppm)
- ** excerpted from Tennessee Department of Health and Environment, Division of Groundwater Protection, Policy on Cleanup Levels for Gasoline and other Petroleum Hydrocarbons, Groundwater, March 18, 1987.

NOTE - all results presented in ppm.

Client: City of Memphis Samples Series: 90-07-029.1

Sample Location: East End of UST Pit Date Analyzed: 07/09/90

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	Detection Limit <u>Ug/K</u> g
Methyl-tert-Butylether Benzene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes, Total	8MDL 6400 BMDL BMDL BMDL BMDL 2000 1000 3000	5000 1000 1000 1000 1000 1000 1000

Surrogate Standard Percent Recovery

a,a,a-Trifluorotoluene

17.0

Method Reference: 80201

BMDL denotes Below Method Detection Limit

Client: City of Memphis Samples Series: 90-07-029.2 Matrix: Soil Date Sampled: 07/09/90

Sample Location: Aerating Soil Piles Date Analyzed: 07/10/90

Sample Description: One 4 ounce glass container of soil

Purgsable Aromatics	Result ug/Kg	Detection Limit Ng/Kg
Methyl-tort-Butylether	BMDL	5000
Benzene	5300	1000
Chlorobenzene	BMDL	1000
1,3-Dichlorobenzene	BMDL	1000
1,2-Dichlorobenzene 1,4-Dichlorobenzene	BMDL	1000
Ethylbenzene	BMDL	1000
Toluene	BMDL	1000
Xylanes, Total	enct Buct	1000 1000

Surrogate Standard Percent Recovery

a,a,a-Trifluorotoluene

17.0

Method Reference: 80201

BMDL denotes Below Method Detection Limit

Client: City of Memphis Matrix: Soil

Sample Series: 90-07-029.1

Date Sampled: 07/09/90

Sample Location: East End of UST Pit

Sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date Analyzed	Detection <u>Limit</u>	Method
Petroleum Hydrocarbon mg/kg	500	07/12/90	1	418.1 ⁵

Client: City of Memphis

Sample Series: 90-07-029.2

Matrix: Soil

Date Sampled: 07/09/90

Sample Location: Aerating Soil Piles

Sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date <u>Analyzed</u>	Detection <u>Limit</u>	Method
Petroleum Hydrocarbon mg/Kg	575	07/12/90	5	418.1 ⁵

Amalyst: Wayne Emanuello

BMDL denotes Below Method Detection Limit.

DRAWING REVISED NE KELLER PARK NURTERY 6-14-90 2684 HOLMES RD UST ID 9-79/182 THE ORIGINAL INFO INDICATED & USTS \$2-1000 GAS T THERE WAS ONLY ONE UST AND IT HAS LODG GASOLINE AND EMPTY - NO SAND FILLING 1-1,000 GAL GASGINE UST. AT MAINTENANCE THIS LOCATION BLDG. J-SAMPLES TAKEN-I AT EXCH PARK COMM ISON END OF THE PIT UST REMOVED + SAMPLE TAKEN ON 6-13-90 SAMPLE X 1,000 GAS X FENCE GATE

2684 HOLMES

HOLMES

RD

HOLMES

ANALYTICAL LABORATORY REPORT

June 22, 1990

Project No.: M00165 CERTIFIED Lab ID: 90-06-068

Attached are the results of analyses performed on the samples received by this laboratory on June 14, 1990.

REFERENCES

- "Test Methods for Evaluating Solid Waste, SW846, Third Edition," USEPA, November 1986.
- "Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition," American Public Health Association, 1985.
- 3 40 CFR Part 136, July 1, 1987.
- 4 "Annual Book of ASTM Standards," Vol. 11.02, 1989.

If you have any questions concerning these results, please do not hesitate to contact me.

Very truly yours,

John J. Sulkowski Laboratory Manager

JJS/smd

Enclosures

Client: City of Hemphis, Gen Ser Div Samples Series: 9006068.1 Matrix: Soil Date Sampled: 06/13/90 Sample Location: Gasoline UST Pit Date Analyzed: 06/19/90

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	Detection Limit <u>ug/Kg</u>
Methyl-tert-Butylether	BMDL	2,500
Benzene	BMDL	500
Chlorobenzene	BMDL	500
1,3-Dichlorobenzene	BMDL	500
1,2-Dichiorobenzene	9MD <i>L</i>	SÕÕ
1,4-Dichlorobenzene	BMDL	500
Ethylbenzene	820.0	500
Toluene	3,300.0	500
Xylenes, Total	4,800.0	500

Mathod Reference: 80201

BMDL denotes Below Method Detection Limit

Client: City of Memphis, Gen Ser Div Samples Series: 90-06-068.2 Matrix: Soil Date Sampled: 06/13/95

Matrix: Soil Date Sampled: 06/13/90 Sample Location: Gasoline UST Pit Date Analyzed: 06/19/90

Sample Description: One 4 ounce glass container of soil

Eurgeable Aromatics	Result ug/Kg	Detection Limit ug/Kg
Methyl-tert-Butylather Benzene	ВМДL 129.0	25
Chlorobenzene	BMDL	5 5
1,3-Dichlorobenzene 1,2-Dichlorobenzene	BMDL BMDL	5 5
1,4-Dichlorobenzene	BMDL	5 5
Ethylbenzene Toluene	28.0 370.0	5 5
Xylenes, Total	168.0	5

Method Reference: 80201

BMDL denotes Below Method Detection Limit

Client: City of Memphis, Gen Ser Div Sample Series: 90-06-068.3 Matrix: Soil Date Sampled: 06/13/90

Sample Location: Gasoline Ust Pit Date Analyzed: 06/19/90

Aerating Soils

Sample Description: One 4 ounce glass container of soil

Purgeable Aromatics	Result ug/Kg	Detection Limit <u>ug/kg</u>
Hethyl-tert-Butylether Aenzene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene Xylenes, Total	8MDL BMDL BMDL BMDL BMDL 115 120	5 1 1 1 1 1 1

Method Referene: 80201

BMDL denotes Below Method Detection Limit.

Client: City of Memphis, Gen Ser Div

Sample Serles: 90-06-068.1 Date Sampled: 06/13/90

Matrix: Water

Sample Location: Gasoline UST Pit

Sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date <u>Analyzed</u>	Detection Limit	Method
Petroleum Hydrocarbon	355	06/22/90	5	503D2

Client: City of Memphis, Gen Ser Div Sample Series: 90-06-068.2

Date Sampled: 06/13/90

Matrix: Water Sample Location: Gasoline UST Pit

Sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date <u>Analyzed</u>	Detection Limit	<u>Method</u>
Petroleum Hydrocarbon	BMOL	06/22/90	5	503D2

Client: City of Memphis, Gen Ser Div Matrix; Water

Sample Series: 90-06-068.3

Date Sampled: 06/13/90

Sample Location: Gasoline UST Pit Aerating Soils

sample Description: One 4 ounce glass container of soil unpreserved

Chemical Analysis	Result	Date <u>Analyzed</u>	Detaction <u>Limit</u>	Mathod
Petroleum Hydrocarbon	190	06/22/90	5	\$03D2

Analyst: John J. Sulkowsk!

HMDL denotes Below Method Detection Limit.

oka catatiaac

800 4 3

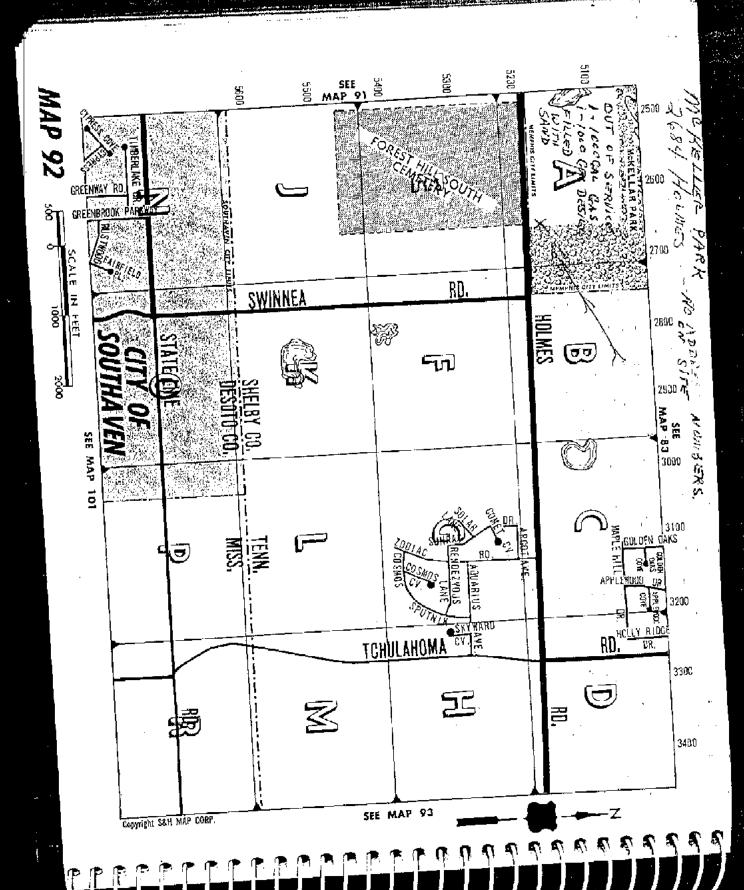
٠,

52:51

STATE OF TENNESSEE UNDERGROUND STORAGE TANK PROGRAM

APPLICATION FOR PERMANENT CLOSURE OF UNDERGROUND STORAGE TANK SYSTEMS

Submit the following application for approval to your local UST Field Office, 30 days in advance of closure of your UST system. Refer to the attached map for the address of the field office nearest your facility. In order to ensure prompt processing, ATTACH A SELF ADDRESSED, STAMPED ENVELOPE WITH THIS APPLICATION. An approved copy of this application must be kept on site during tank abandonment.


	1.	Facility I.D. Number: 9-791182
	2.	Name of Facility: McKellar Nursery Address: 2684 Holmes Memphis, TN
	٠	Phone: (901) 528-2932 County: Shelby
	з.	Name of Tank Owner/Operator: City of Memphis Address: 125 N. Mid-America Mall Memphis, TN 38103 Phone: (901) 528-2932 Number of tanks registered at this site: 2 Number of tanks to be closed: 2 Date the tanks were last used:
		Phone: (901) 528-2932
	4.	Number of tanks registered at this site: 2
	5.	Number of tanks to be closed: 2
	6.	Date the tanks were last used:
	7.	Tank #, size and substance(s) stored in each wank to be closed:
e. Dela December	,	Tank #, size and substance(s) stored in each cank to be closed: Tank 1 Gasoline Tank 4 Tank 2 Diese! Tank 5 Tank 6
*	8.	Will tanks be reinstalled at this location? YesNOX
	9.	Attach a site sketch showing the location of the tanks, associated lines, sampling points and any nearby underground utilities.
	10.	Closure Type: Removal x Closure in place Change in service
		If tanks are closed in place, removed, modified, upgraded or a change in service occurs, an amended notification form must be submitted showing the current configuration and status of tanks at this facility.
	11.	If the tank(s) are to be closed in place, describe the method to be used to clean the tank(s) and the type of solid, inert fill material that will be used to fill the tank(s).
		NA .
•		

	12. Soil and/or ground water samples must be collected to determine if leakage or spillage has occurred. Analytical analysis for the following parameters should be performed based on the type of product stored. Mark the type of analysis that will be performed.
	FOR TANKS STORING GASOLINE: Benzene, Toluene, Xylene (BTX) AND Total Petroleum Hydrocarbons (TPH)
	FOR TANKS THAT HAVE ONLY STORED OTHER HYDROCARBONS: (i.e. diesel, kerosene, waste oil) Total Petroleum Hydrocarbons(TPH):X
	CHEMICALS TANKS: Contact the Environmental Protection Agency in Atlanta at (404) 347-3866, David Ariail.
13.	The Federal UST Regulations require that samples be collected where contamination is most likely to occur. The Tennessee UST Program requires that at a minimum, sample collection should follow the protocol on the attached page. (There should be no deviation from this protocol unless a person with experience in environmental sampling prepares and submits a site specific sampling plan for approval.)
	If you should decide to collect the samples yourself, the sampling protocol on the attached page shall be followed.
14.	Describe how any contaminated soil that is encountered will be handled, stockpiled, and treated or disposed of based on site conditions. If contaminated, it will be stockpiled.
15.	List the name of the laboratory where samples will be sent. (This lab must be approved by the Tennessee Underground Storage Tank Program. See attached list. Certified Engineering and Testing Co., Inc. TN Approval #02901
16.	Name of Company/Person performing the closure and date scheduled: Cruzen Equipment Company - 6/18/90 (by contract for the City of Memphis)
	(PLEASE SIGN) The person signing this application should be the tank owner or his/her designated representative. Further, once this application has been approved, it or a copy must be kept at the tank closure site for review by the Division's inspectors.
	I, (Print), agree to report the results of the analytical samples collected in regard to this closure within 30 days of receipt from the laboratory and resolve any environmental contamination that exceeds UST policy. Signature

1-1000 GAS TANK SAND FILLED 1-1000 DIESEL TANK SAND FILLED 2684 HOLMES MEMPHIS PARK COMM BUT OF SERVICE BLAG ABANDONED. HOLMES SCIL SAMERS TO BE TAKEN DIT STOCKOLE

SCIL SAMERS OF TAKE DIT STOCKOLE

SCIL BE STOM SON TAKE DIT STOCKOLE McKerras PARK

FACILITY # 790983

RDA # 2298

DEPARTMENT OF ENVIRONMENT AND CONSERVATION

FILE REQUEST

COMPLETE THE FOLLOWING (OR ATTACH YOUR BUSINESS CARD): NAMEROMPARY ADDRESS Public records are available for review during the normal business hours from 8:0 Friday, except hofidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m The number of files reviewed at one time may be limited without authorization for Administrative Manager. Briferases and other accessories (with the exception of writing materials – notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to return upon request. have read and understand the above file review procedures. Pacillity NAME FACILITY NAME FACILITY I.D. # ONG 973 Pack Come Methods Number 1971 1971 1872	TELEPHONE Delian, until 4:30 p.m., not adequate time for managed the Division Managed ds, pencils, etc.) are not payable in advance to the payable	file review, er or Field (not allowed in by exact ca
AMECOMPARY THE DORRESS Morphus TY STATE STATE TOP STATE TO	TELEPHONE Delian, until 4:30 p.m., and adequate time for managed the Division Managed to pencils, etc.) are not payable in advance to for the copies, or the	Monday the file review, er or Field (not allowed in by exact callowed in the file of the f
STATE STATE ZIP Review Procedures Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m., and 3:00 p.m. The number of files reviewed at one time may be limited without authorization fro Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to return upon request. ave read and understand the above file review procedures. FACILITY NAME FACILITY I.D. # M.5 41.5	TELEPHONE Delian, until 4:30 p.m., and adequate time for managed the Division Managed to pencils, etc.) are not payable in advance to for the copies, or the	Monday the file review, er or Field (not allowed in by exact callowed in the file of the f
Review Procedures Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m. The number of files reviewed at one time may be limited without authorization from Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to return upon request. Averead and understand the above file review procedures. FACILITY NAME FACILITY NAME FACILITY I.D. #	TELEPHONE Delian, until 4:30 p.m., and adequate time for managed the Division Managed to pencils, etc.) are not payable in advance to for the copies, or the	Monday the file review, er or Field (not allowed in by exact callowed in the file of the f
Review Procedures Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m. The number of files reviewed at one time may be limited without authorization from Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to return upon request. Acceptable of the provided to mark above file review procedures. FACILITY NAME FACILITY NAME FACILITY I.D. #	TELEPHONE Delian, until 4:30 p.m., and adequate time for managed the Division Managed to pencils, etc.) are not payable in advance to for the copies, or the	Monday the file review, er or Field (not allowed in by exact callowed in the file of the f
Review Procedures Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m. The number of files reviewed at one time may be limited without authorization fro Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Staff will make copies as their work schedule permits. It may be necessary to return upon request. ave read and understand the above file review procedures. FACILITY NAME FACILITY I.D. #	TELEPHONE Delian, until 4:30 p.m., and adequate time for managed the Division Managed to pencils, etc.) are not payable in advance to for the copies, or the	Monday the file review, er or Field (not allowed in by exact callowed in the file of the f
Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m., and 3:00 p.m. The number of files reviewed at one time may be limited without authorization fro Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to retur upon request. ave read and understand the above file review procedures. FACILITY NAME FACILITY NAME FACILITY I.D. #	nd adequate time for in the Division Manageds, pencils, etc.) are not payable in advance in for the coales, or the	file review, er or Field (not allowed in by exact ca
Public records are available for review during the normal business hours from 8:0 Friday, except holidays. For your convenience and to assure prompt service a recommended appointments be made during the hours of 8:30 a.m. and 3:00 p.m. The number of files reviewed at one time may be limited without authorization fro Administrative Manager. Briefcases and other accessories (with the exception of writing materials — notepa file area. Do not mark on the file(s) or change the order of documents within the file(s). Unless otherwise informed, all copies are charged at the rate of 50 cents per page check only. Tags will be provided to mark any pages for staff to copy. Staff will make copies as their work schedule permits. It may be necessary to retur upon request. The read and understand the above file review procedures. FACILITY NAME FACILITY NAME FACILITY I.D. #	nd adequate time for in the Division Manageds, pencils, etc.) are not payable in advance in for the coales, or the	file review, er or Field (not allowed in by exact ca
M5 415 40190983	Date	
	COUNTY	# O PAG COPI
Park Com McKellar Nursey 19 791182	Shelly	1
	Shelled	
lackson Pits 179-604	Sheller	ंक

RDA 5836-2

ENVIRONMENTAL ASSISTANCE CENTER TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

SUITE E-645, PERIMETER PARK 2510 MT. MORIAH ROAD MEMPHIS, TENNESSEE 38115-1520 PHONE (901) 368-7939 STATEWIDE 1-888-891-8332 FAX (901) 368-7979

May 6, 1999

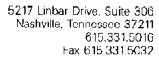
Mr. Steve Westerman Tennessee Department of Finance and Administration Capital Projects Management 312 Eighth Avenue, North Suite 2200 Nashville, Tennessee 37243-0300

RE: Case Closure
National Guard Armory OMS # 15
2610 E. Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

Dear Mr. Westerman:

The Division of Underground Storage Tanks has reviewed the Well Abandonment/Site Closure letter dated April 15, 1999 for the above referenced facility. Based on the information available, this case is considered closed. However, the Division reserves the right to require additional action if necessary.

If you have questions concerning this correspondence, call me at (901) 368-7971.


Sincerely,

Cynthia J. Patton

Division of Underground Storage Tanks

Cynthia J. Patton

c: John Hargraves - ATC Associates Inc. - Nashville
UST Memphis Environmental Assistance Center (a)
Debbic Mann - UST Nashville Central Office - Technical Review Section

APR 2 0 1999

April 15, 1999

Ms. Cindy Patton
TDEC Division of Underground Storage Tanks
Memphis Environmental Field Office
Suite E-645, Perimeter Park
2510 Mt. Moriah
Memphis, TN 38115-1520

RE: Well Abandonment/Site Closure National Guard Armory OMS #15 Memphis, Shelby County, Tennessee Facility ID No. 0-790983 ATC Project No. 01995.0043

Dear Ms. Patton:

On behalf of the Tennessee Department of Finance and Administration (F&A), ATC Associates Inc. (ATC) is pleased to submit this letter report summarizing the abandonment of the on-site wells at the above referenced facility.

On March 17, 1999, a driller and a geologist from ATC arrived at the site. The five monitoring wells were located and prepared for closure. The manhole covers were removed and the 2-inch PVC pipe was cut until it was below land surface.

A grout mixture consisting of Portland Cement and bentonite was pumped into the well casing with tremie pipe. The top of each well was capped with concrete. Approximately 5 to 6 gallons of cement were used in each well.

If you have any questions or comments, please contact us at your convenience.

Sincerely,

ATC ASSOCIATES INC.

Ken Johnson Ken Johnson Project Geologist

Joan W. Hargraves, P.G.

Project Manager

ce: Mr. Steven L. Westerman, TN Department of Finance and Administration

ENVIRONMENTAL ASSISTANCE CENTER TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

SUITE E-645, PERIMETER PARK
2510 MT. MORIAH ROAD
MEMPHIS, TENNESSEE 38115-1520
PHONE (901) 368-7939 STATEWIDE 1-868-891-8332 FAX (901) 368-7979

January 26, 1999

Mr. Steve Westerman Tennessee Department of Finance and Administration Capital Projects Management 312 Eighth Avenue, North Suite 2200 Nashville, Tennessee 37243-0300

RE: Monitoring Well Abandonment
National Guard Armory OMS # 15
2610 E. Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

Dear Mr. Westerman:

The Division of Underground Storage Tanks has reviewed the file for the referenced facility. Based upon the submitted data, additional monitoring and corrective action are not required.

The Tennessee Department of Finance and Administration, Capital Projects Management is required to properly abandon all of the monitoring wells in accordance with Section II.N. of the Environmental Assessment Guidelines. Before this case can be considered closed, a report documenting the well abandonment procedures shall be submitted to this office by March 26, 1999.

If the wells have already been properly abandoned, a report documenting the procedure shall be submitted to the Division by February 26, 1999. A clean closure letter will then be issued to the Department of Finance and Administration.

If site conditions change and petroleum vapors, free product or other public health and/or environmental problems arise, then corrective action shall be immediately initiated and the Division notified within 72 hours. If you have questions concerning this correspondence, call me at (901) 368-7974.

Sincerely, Cynthia Patton

Cylithia J. Patton

Division of Underground Storage Tanks

e: UST Memphis Environmental Assistance Center (a)
Debbie Mann - UST Nashville Central Office - Technical Review Section

ENVIRONMENTAL ASSISTANCE CENTER TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

SUITE E-646, PERIMETER PARK 2510 MT. MORIAH ROAD MEMPHIS, TENNESSEE 38115-1520 PHONE (901) 368-7939 STATEWIDE 1-888-891-8332 FAX (901) 368-7979

January 26, 1999

Mr. Steve Westerman Tennessee Department of Finance and Administration Capital Projects Management 312 Eighth Avenue, North Suite 2200 Nashville, Tennessee 37243-0300

RE: Monitoring Well Abandonment
National Guard Armory OMS # 15
2610 E. Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

Dear Mr. Westerman:

The Division of Underground Storage Tanks has reviewed the file for the referenced facility. Based upon the submitted data, additional monitoring and corrective action are not required.

The Tennessee Department of Finance and Administration, Capital Projects Management is required to properly abandon all of the monitoring wells in accordance with Section II.N. of the Environmental Assessment Guidelines. Before this case can be considered closed, a report documenting the well abandonment procedures shall be submitted to this office by March 26, 1999.

If the wells have already been properly abandoned, a report documenting the procedure shall be submitted to the Division by February 26, 1999. A clean closure letter will then be issued to the Department of Finance and Administration.

If site conditions change and petroleum vapors, free product or other public health and/or environmental problems arise, then corrective action shall be immediately initiated and the Division notified within 72 hours. If you have questions concerning this correspondence, call me at (901) 368-7974.

Sincerely, Cunthia Patton

Cylifhia J. Patton

Division of Underground Storage Tanks

UST Memphis Environmental Assistance Center (a)
 Debbie Mann - UST Nashville Central Office - Technical Review Section

Division of Capital Projects Management / Real Property Management

Capital Projects Management

Tennessee Tower, Suite 1300

312 Eighth Avenue, North

Nashville, TN 37243-0300

Real Property Management Tennessee Tower, Suite 1500 312 Eighth Avenue, North Nashville, TN 37243-0299 615-741-1563 Facsimile 615-741-2335

Telephone

December 23, 1997

Mr. John Hargraves ATC Associates, Inc. 5217 Linbar Drive, Suite 306 Nashville, TN 37211

RE:

REQUEST FOR SERVICES

OMS #15 - Memphis Fac. I.D. #0-790983

John:

As a result of the removal of the UST at the above facility, the analytical results provided readings which exceed the most stringent clean-up levels. Consequently, the DUST Memphis Field Office directs that an Initial Site Characterization Report (ISCR) be submitted per DUST guidelines. I request your firm proceed with this work as defined in your UST Regional Consultant Contract (including providing to me the customary task/budget letter.)

Please find enclosed a copy of the Permanent Closure Report filed for the site, which includes site maps and a summary report of analyses; and, a copy of the letter (N.O.V.) from Cynthia Patton with the Memphis Field Office, dated December 12, 1997; which states in part that the ISCR is due by February 27, 1998. If you require anything further, please do not hesitate to contact me.

Sincerely

Steven'L. Westerman

Environmental Program Administrator

pc: Ralph Harder, Tenn. Dept. of Military

Curtis Hopper, DUST Central Office, Nashville Cynthia Patton, DUST, Memphis Field Office

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE 5-645, PERIMETER PARK

2510 MT. MORIAH MEMPHIS, TENNESSEE 38115-1520

June 3, 1997

CERTIFIED MAIL P 182 143 780

Mr. Ralph S. Harder C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41052 Nashville, Tennessee 37204-1502

RE Release Response
OMS # 15 - Memphis
2610 East Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

Dear Mr. Harder:

The Division of Underground Storage Tanks (the Division) has reviewed the Permanent Closure Report dated May 15, 1997 for the referenced facility. According to the report water in the tank pit recharged within 24 hours. The water was sampled on February 12, 1997. The level of total petroleum hydrocarbons (TPH), diesel range organics (DRO) was 595 parts per million (ppm). This level is above the 1.0 ppm clean up level for non-drinking water.

Rule 1200-1-15-.06 of the Tennessee Petroleum Underground Storage Tank Regulations requires that Tennessee Army National Guard take immediate action to prevent any further release of petroleum into the environment and to identify and mitigate fire, explosion, and vapor hazards.

Rule 1200-1-15-.06 requires that the Responsible Party, in response to a confirmed release from an underground storage tank system, perform initial abatement measures.

Since the underground storage tanks have been removed at this site, it will not be necessary to submit an Initial Abatement Report (IAR).

The Tennessee Army National Guard shall submit an Initial Site Characterization Report (ISCR) to this office by September 8, 1997 following the ISCR Guidelines. This report must contain all data gathered during the field activities and identify the applicable cleanup levels. One well closest to the release shall be installed, instead of four wells as stated in the ISCR Guidelines.

Environmental assessment activities and evaluation of the subsurface investigation shall be directed by a registered professional geologist under the Tennessee Geologist Act (T.C.A. 62-36-101 et seq.) or a registered professional engineer under the Tennessee Architects, Engineers, Landscape Architects, and Interior Designers Law and Rules (T.C.A. 62-2-101 et seq.). All assessment activities shall be conducted in accordance with the 1996 UST Reference Handbook.

Mr. Ralph Harder June 3, 1997 Page 2

All fund cligible work must be conducted and/or overseen by an UST Approved Corrective Action Contractor to be eligible for reimbursement from the Tennessee Petroleum Underground Storage Tank Fund. The current list of approved contractors is enclosed. To determine if a site is Fund eligible, the enclosed Authorization for Fund Eligibility Form must be completed and submitted to the Nashville Central office.

T.C.A. 68-215-121(a)(1) states:

Any person who violates or fails to comply with any provision of this chapter, any order of the commissioner or board, any rule, regulation, or standard pursuant to this chapter shall be subject to a civil penalty not to exceed ten thousand dollars (\$10,000) per day for each day of violation. This civil penalty may be assessed by the commissioner, the board or the court. Each day such violation continues shall constitute a separate punishable offense, and such person shall also be liable for any damages to the state resulting therefrom.

Rule 1200-1-15-09(11) states that a fund eligible owner or operator conducting UST corrective action is entitled to fund coverage for reasonable costs; subject to certain provisions. The owner or operator must comply with the requirements in rule 1200-1-15-06 as outlined in this letter. If this facility is Fund eligible, failure to comply with these requirements may result in the loss of fund coverage of the release investigation and/or corrective action costs associated with this release.

This office must be notified at least one working day in advance of any major field activities.

Send one copy of all correspondence, including reports, to this office and one copy to:

Division of Underground Storage Tanks
4th Floor, L & C Tower
401 Church Street
Tennessee Department of Environment and Conservation
Nashville, Tennessee 37243-1541

If you have any questions concerning this correspondence, call me at (901)368-7974.

Sincerely,

Cvithia J. Patton

Division of Underground Storage Tanks

ynthial Patton

Enclosures:

UST Approved CAC List

Authorization For Fund Eligibility

Memphis UST Field Office (active file)

Curtis Hopper - Nashville UST Central Office - Technical Review Section

fo-004h

C:

P 182 143 760

	US Postal Service	
	Receipt for Cert	tified Mail
	No Insurance Coverage	
	Do not use for Internation	
ď		IBI IVIALI See /evelse/
- 1	Sent to	History
l	Kally Si	119141
- 1	Street & Number	
- }	Post Office, State, & ZIF Cod	25,7
	Post Office, State, & ZIF Cod	θ /3.73
	Musholle,	TW 37204-1563
	Postage	\$ 27
	· conty	5 32
	Certified Fee	1.10
ı		1.75
1	Special Delivery Fee	ļ
	Restricted Delivery Fee -	
s)		
88	Return Receipt Showing to	1. 162
April 1995	Whom & Date Delivered	1010
퓝	Return Receipt Showing to Whom,	l .
⋖.	Date, & Addressee's Address	
욧	TATAL Portons & France	\$ 263
ᄧ	TOTAL Postage & Fees	* 2.52
ტ	Postmark or Date	
Εi	1045	1
윤	TOTAL Postage & Fees Postmark or Date CF/V7 0 - 790983	ĺ
တ	11 - 70,1643	3
п.	$U = I_{I} \cup $	

PS Corm 3831, December 1884	6. Sinaithe (Addhessee or Agent)	Stages by Print Name)	Wisholle TN 3724-152	1 6 B 14 W 18 3	Low to Box of	TO Army Wational Gara	Ruph S. Hurder	3. Article Addressed to:	 Wittig: Tegritor Analogy in Analogous on the mailbread below the principle of the factor of the date delivered and the date delivered. 	Action to the front of the malipieus, or on the back if space does not permit.	SENDER: «Complete thems 1 and/or 2 for additional services. $O - V_1O_1O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$
2595-97-8-0175 Don		B. Addrassee's Ad and fee is paid)	JUN 1	Return Receipt to	☐ Express Mail	☐ Registared	# 172 143 772	4a. Article Number	0		
ന്തുട്ടോകവര Domestic Return Receipt		8. Addrēšsee's Address (Only if requested and fee is paid)	111N 1 1 1997	Return Receipt for Merchandise		ï Certified	3720	17	Consult postmaster for fee.	1. Actireasse's Actiress	I also wish to receive the following services (for an extra fee):

is your <u>RETURN ADDRESS</u> completed on the reverse side?

Thank you for using Return Receipt Service.

es.

CN-1077 (Rev. 8-96)

DEPARTMENT OF ENVIRONMENT AND CONSERVATION

FILE REQUEST

er i bel sakiliki orek	DEPARTMENT USE	DNLY	ondiini	
DIVISION[S]:	51 57			
		tinikilike e v sinamaninina.	ra Mad alakan kan tahutan	danlar (Kari Buangan) om so
DATE:	APPOI	YTMENT YIME: 🔝	# 1K//	(A.M. / P.M.)
				A (2) 33 4 (2011) 21
COMPLETE THE FOLLOWING (OR ATTACH Y	OUR BUSINESS CAR	RD):		
- /		,		
Guy Schouschie	2		-	
NAME/COMPANY	,	·		1.0
ADDRESS				·
M ol z	1. F	38/18	4.7	-0600
CITY STA	TE S	ZIP	(707) 560 TELEPHONE	30600
				•
File Review Procedures			_	
Public records are available for review during Friday, except belidays. For your person	ng the normal busines	s hours from 8:00 a	.m. until 4:30 p.m.	, Monday through
Friday, except holidays. For your conven recommended appointments be made during	ience and to assure githe hours of 8:30 a.c	prompt service and n. and 3:00 n m	adequate time fo	r file review, It is
The number of files reviewed at one time n	nay be limited without	authorization from t	the Division Manag	ger or Field Office
Administrative Manager, Briefcases and other accessories (with the	evention of uniting m	mendala assault		
ille area.	exception of withing th	ateriais — notepaos,	pencus, etc.) are	not allowed in the
 Do not mark on the file(s) or change the ord. 	er of documents within	the file(s).		
Unless otherwise informed, all copies are cleak only.	harged at the rate of	50 cents per page, p	syable in advance	by exact cash o
Tags will be provided to mark any pages for	staff to copy.			
 Staff will make copies as their work schedu! upon request. 	e permits. It may be a	recessary to return f	or the copies, or th	ey may be mailed
apon request.		Ŋ		11
I have read and understand the above file re	view procedures.	- Janes	Silventra	<u> </u>
			Signature	
			4/99	
		,	-Date	
FACILITY NAME	FACILIT	Y I.D.#	COUNTY	# OF PAGES
·				COPIED
OMS 8+15	040800-	_	S/ //	
UMJ 75	0119098	3	Shellop	
Pul Com McKellas Nurses	16 20 1100	•	01 11	
Traf (some for 4-61) as 10 week	1 19118.6	, 	In elfout	
Jackson Pits	179-60	94	Shelly	
•				
				<u></u>

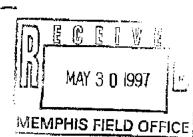
TOTAL Pages Copied _____

RDA 5836-2

STATE OF TENNESSEE DIVISION OF UNDERGROUND STORAGE TANKS

PERMANENT CLOSURE REPORT

submit the or closure assess	ble Party (RP) of the underground storage tank (UST) system shall complete and iginal of this report within 45 days of collecting samples during the UST system ment. Tennessee Code Annotated (T.C.A.) \$68-215-103(16) defines Responsible Party and/or operator of a petroleum site or any person who at the time of the release which stammation was an owner and/or operator of a petroleum underground storage tank.
Include the fol	llowing appendices in the report. Attach extra sheets if necessary.
Appendix A:	A table containing the field screening and analytical results. All results shall be reported in parts per million (ppm). The results shall be properly identified and correlated with the sampling locations on the site map. If water was encountered during closure-in-place, include the monitoring well information required in the


Appendix B: The original or carbon copy of the laboratory analysis sheets. Photocopies are not acceptable. All laboratory analysis sheets shall include the information specified in the UST System Closure Assessment Guidelines.

Environmental Assessment Guidelines.

- Appendix C: Documentation for treatment and/or disposal of soil, sludge, liquid, tanks and piping (i.e. Application to Treat Petroleum Contaminated Soil, Solid Waste Permits, Landfill Disposal Manifests, etc.).
- Appendix D: A copy of the Amended Notification form shall be submitted with this report.

 Send the original Amended Notification form to the UST Nashvilla Central Office.

UST Facility				
Facility Name	OMS #15 Memphis		<u></u>	
Division pers	and with the ap	ropriate field offic	e were notified at le a closure assessment.	ast one workin. Yes No
			I Closure may surroun	• • • • • • • • • • • • • • • • • • • •
			Closuic assessment	
yes: Person contac Field office	ed Cindy F		I Closuic assessment	
yes: Person contac Field office Date 7-1	ed Cindy F MEMPHIS 2-97 BILL HELTE	אסתי א	I Closuic assistant	

Permanent Closure Report Date 5-15-41 Page 2 of 6 Facility ID Number 6-790983

5.	Method of purging tank atmosphere: Carbon dioxide gas Nitrogen Eductor-type air movers Diffused air blower Dry ice (1.5 lb/100 gal.) Other
6 .	Product piping was drained into the tank. Yes No
7.	Product piping was: Capped Removed
8.	All liquid/sludge was removed from the UST system. Yes No. No.
9.	Mothod of liquid/sludge storage: 55 GAL DRUM 3
10.	Method of liquid/studge disposal: Pecycle
	Manifests included in Appendix C. Yes No
11.	Tank was labeled in accordance with the UST Regulations Appendix 6(4)(f). Yes No Not applicable
12.	Method of UST system storage/disposal: Cut up for disposal Stored on site Stored off site Other
٠.	UST systems stored on site or off site are subject to Rules 1200-1-1507(2)(*), (f) and (g) and Appendix 7.
13.	Location of UST system storage disposal KENNAN CONTRACTING
	Certificate of disposal included in Appendix C. Yes No
14.	Amount of material excavated during UST system closure.

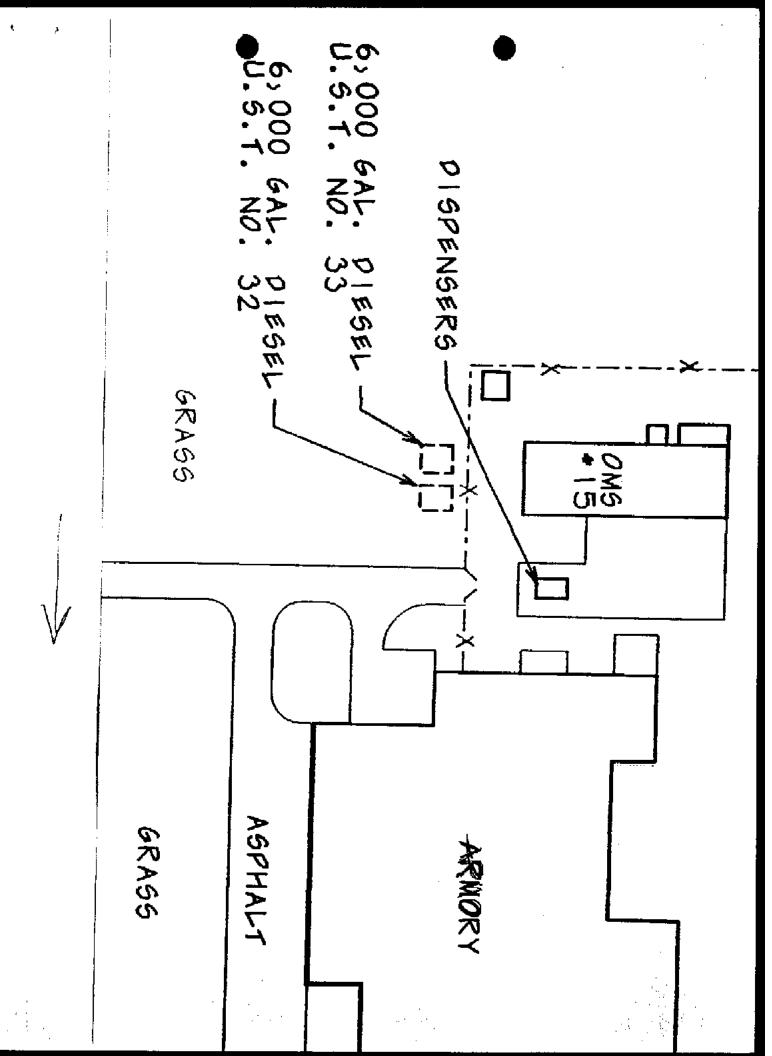
Date 5-15-91 Page 3 of 6 Total amount of contaminated material overexcavated after removal of the UST system: 15. 72 cubic yards. If more than 100 cubic yards of material was overexcavated, Division personnel in the appropriate field office should have been contacted. Division personnel in the appropriate field office were contacted. Yes____ No___ Not applicable If yes: Person conjected Field Office Reported by_____ All excavated material remaining on the site of generation or on a site owned by the responsible party or subsidiary of the responsible party shall be placed on and covered with plastic and bermed. Sampling the excavated material in accordance with Technical Guidance Document - 005, must be completed prior to proper disposal. If petroleum contaminated material is managed in accordance with Technical Guidance Document-009, the appropriate Application to Treat Petroleum Contaminated Soil shall be completed and submitted to the local field office for approval. If the contaminated material is to be treated on a site owned by a Third Party, contact the Tennessee Division of Solid Waste Management. All excavations shall be backfilled with material containing levels at or below 5 ppm benzene and/or 100 ppm TPH. Stockpiled on site___ Thermal treatment on site___ Thermal treatment off site____ Landfilled Other 6. Landfilled Other Documentation is included in Appendix C. Yes___No___ If no, explain why_ Explain why the method in #16 was chosen for management of the excavated material_ 17. All samples were placed directly into the appropriate containers, immediately after 18. collection. Yes___ No ___ Immediately after collection all samples were placed on ice and maintained at 4°C until 19. No____ delivered to a Division approved laboratory. Yes

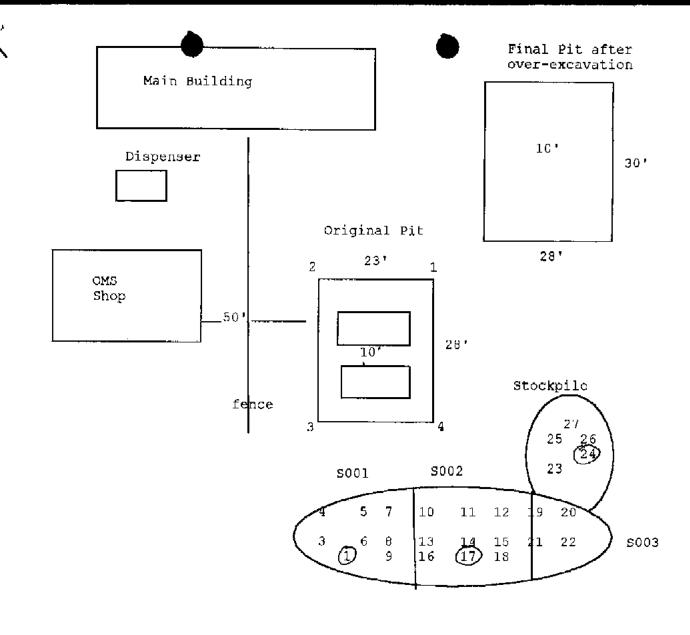
Permanent Closure Report

Facility ID Number 0-790983

Nad -	anent Closure Report Facility ID Number 0-79098
_	4 of 6
20.	Laboratory confirmation of petroleum contamination or discovery of free product
	reported to the Division within 72 hours. YesNoNot applicable 1
	If yes:
	Person contacted
	1-16/d Office
	Date
	Reported by
1.	Water was encountered in the soil borings during closure-in-place.
	Ycs No Not applicable
	If encountered, was water sampled. Yes No
	Monitoring well information is in Appendix A. Yes No
	Analytical results are in Appendix B. Yes No
<u>}</u> ,	Water was encountered during excavation of the UST system. Yes No
	Amount of water removed: 6000 gals.
	Water recharged within 24 hours. Yes No
	Recharge water was sampled. Yes No
	Analytical results are in Appendix B. Yes Wes No
	Method of water disposal: REZYCLED
	Manifests Included in Appendix C. Yes Vo.
.	If more than 500 gallons of water were removed, Division personnel in the appropriate fle
	office should have been contacted.
	Division personnel in the appropriate field office were contacted. Yes No
	Not applicable
	If yes:
	Person contacted Cindy Patton
	Field Office MEMPHS
	Date 2-12-97
	Reported by
•	Bedrock was encountered during UST system removal/closure-in-place.
	Yes No
	All contaminated material above the applicable cleanup level was excavated.
	Yes No Not applicable
	Soil was sampled from floor of excavation. Yes No
	and the control of th
	Analytical results are in Appendix B. Yes No

Permanent Closure Report Date <u>5-(5</u>今)
Page 5 of 6


Facility ID Number 0-790983


 Failure to submit a Notification Form may result in the assessment of additional tank fees.

THIS PERMANENT CLOSURE REPORT WILL NOT BE PROCESSED WITHOUT THE COMPLETION AND SUBMITTAL OF THE APPROPRIATE APPENDICES IN THEIR ENTIRETY.

27. An updated site map shall be provided in this space showing buildings, utilities, areas of overexcavation, borings, and sample points. The map shall also include soil stockpiles, their dimensions in feet, and properly labeled screening and sampling points. A measurement shall be included from one comer of the tank excavation to a permanent structure (i.e. building, power pole, fire hydrant, etc.). The site map shall include a north arrow.

SEE ATTACHED

Facility ID Number 0 - 790983

This signature page shall be signed by the RP (or authorized representative within the organization). If more than 100 cubic yards of material was overexcavated, the signature page shall also be signed by a registered professional geologist under the Tennessee Geologist Act (T.C.A. § 62-36-101 et seq.), a registered professional engineer under the Tennessee Architects, Engineers, and Landscape Architects, and Interior Designers Law and Rule (T.C.A. § 62-2-101 et seq.), or an Approved Corrective Action Contractor (Rule 1200-1-15-.09(15)).

I certify under penalty of law, including but not limited to penalties for perjury, that the information contained in this form and on any attachments is true, accurate and complete to the best of my knowledge, information and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for intentional violations.

UST system RP or RP's authorizzed representative (Print name)	Signature	Date
Title (Print)	PARE	
P.E., P.G., or CAC (Print name)	<u>MMORELT</u> Signature	5-/5-97 Date
TN Registration #	First Response In C CAC Company (Print)	•
Note: Each of the above signatures shall I	be notarized separately with the follo	wing statement.
STATE OF Kentucicy Sworm to and subscribed before me by	COUNTY OF A	LARge
Sworn to and subscribed before me by	William O Helfon	on this date
5/16/97 . My commission	expires May 10, 2001	'
DEBBIE WOTKINS Totary Public (Print name)	Mulber Water	5-16/97
(otary Public (Print name)	Signature	Date /
rump/Seal		

Permanent Closure Report	Facility ID Num	ber
Page 6 of 6	•	
This signature page shall be signed by more than 100 cubic yards of material registered professional geologist under registered professional engineer under the Interior Designers Law and Rule (T. Contractor (Rule 1200-1-1509(15)).	was overexcavated, the signature page the Tennessee Geologist Act (T.C.A e Tennessee Architects, Engineers, and	shall also be signed by a . § 62-36-101 et seq.), a Landscape Architects and
I certify under penalty of law, including contained in this form and on any attachr information and belief. I am aware that including the possibility of fine and impri	ments is true, accurate and complete to t there are significant penalties for sub	the best of my knowledge.
ROBERT DEVLET ROM UST system RP or RP's authorized representative (Print name)	Signature	19 May 97 Date
E.PS. Title (Print)		
P.E., P.G., or CAC (Print name)	Signature	Date
TN Registration #	CAC Company (Print)	_
Note: Bach of the above signatures shall b	e notarized separately with the followin	g statement.
STATE OF Sexuessee	COUNTY OF Naud	son
STATE OF <i>Sexuessee</i> Sworn to and subscribed before me by Z	abeet D. Julkerson	on this date
5-27-97 . My commission e		
Harriet F. Hogar	Speriet I. Hans	5/21/91
Votary Public (Print name)	Signature	Date

Stamp/Seal

Permanent Closure Report

APPENDIX A

Date: Feb 12 1997 Readings performed by: Bill Helton

Soil Stockpile Screening Results

* 1	75 ppm
2	36

*17

20 [0]

21 <10

22 <10

23 <10

*24

25 <10

*Sampled

Soil Sample Screening Results

1 TP01-S001- 29

2 TP01-S002-16

3 TP01-S003-28

4 TP01-S004-19

5 SP01-S001-75

6 SP01-S002-72

7 SP01-S003- 85

Water Sample

3:00 2/12/97

APPENDIX B

SPECIALIZED ASSAYS **ENVIRONMENTAL**

REFERRING CLIENT

Account: 6119

First Response, Inc.

Bill Helton

1052 Searcy Way

2960 Foster Creighton Drive Nashville, TN 37204 615-726-0177 FAX 615/726-3404

Bowling Green, KY 42103 Ph: 502-793-0906 Fax: 502-793-0908 Specialized Assays: (800) 765-0980 02283 96137 LERS (Signature-Please Print) PROJECT NAME Me-phis BILL HELTO OR LAB USE ONLY ANALYSIS REQUESTED SAMPLE DESCRIPTION DATE TIME *7-A011761 TPH - DRO +GRO 9:00 ME-TADI-5001 BTEY 7-A01|1762 9:16 ME-TPOI - 5002 9:20 `7-A011**763**. ME-TPO1-5003 9:30 ?**7~**A011**764** ME-TOOI - SOOY 9:45 7-A011765 ME-SP01-5001 ^{97-A011766} 10:00 (V ME-SPO 1 - 5002 7-A011767 10:15 7-A01|1768 ME-TPOI-WSOI 4:00 3 quished by: (Signature) Date / Time Date / Time 11491 1425 A PRINCE OF THE juished by: (Signature) Date / Time Received by: (Signature)

For further assistance in completing the chain of custody form please refer to the instructions found on the opposite side

ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME TP01 S001

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification: 90038

Site I.D.:

Lab Number: 97-A011761

Date Collected: 2/13/97

Time Callected: 9:00

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Analyte	Result	Units	Report Limit	Quan Limit	Dil Factor	Date	Time	Analyst	Method	Batch
Benzene	ND	ag/kg	0.005	0.001	1	2/15/97	21:34	Holingerth	8020	9070
Taluene	MD	ag/kg	0.005	0.001	1	2/15/97	21:34	Holingwrth	8020	9070
Ethylbenzena	MD	ng/kg	0.005	100.0	1	2/15/97	21:34	Holingwrth	8020	9070
Tylenes, total	ND	mg/kg	0.005	100.0	1	2/15/97	21:34	Holingwith	8020	9070
TPH (Gasoline Range)	ND	mg/kg	5.00	4.00	1	2/17/97	21:20	Holingwrth	8015M/5030	9404
TPH (Diesel Range)	ND	eg/kg	10.0	4.00	1	2/18/97	2:59	K.Walkup	8015M/3550	

ND = Not detected at the report limit.

Sample Extraction Data

DRO Extracted

2/17/97

Wit extracted:

25.0 ge

Extract Volume:

1.0 ml

** SURROBATE RECOVERIES **

Surrogate	% Recovery	Target Range	
BTEX/SRO Surrogate	98.	50	150.
DRO Surrogate,s	77.0	50	150.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

ANALYTICAL REPORT

Laboratory Number: 97-A011761 Sample ID: ME TP01 S001

Page 2

** SURROGATE RECOVERIES **

Surrogate

% Recovery

Target Range

Report Approved By: My Laul 14. Pommer Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119

ATTN BILL HELTON

1052 SEARCY WAY

BOWLING GREEN, KY 42103

Sample ID: ME TP01 S002

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011762

Date Collected: 2/13/97

Time Collected: 9:10

Date Received: 2/14/97

Time Received: 14:25

Sample Type: Soil

Ana	lyte	Result	Units	Report Limit	Quan Limit	Bil Factor	Date	Time	Analyst	Nethod	Batch
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			HIMELE					**********		
Ber	Izene	ND	∎g/kg	0.10	0.100	1	2/17/97	21:56	Holingwrth	8050	9404
To:	uene	ND	eg/kg	0.10	0.100	1	2/17/97	21:56	Holingerth	8020	9404
Eth	ylbenzene	ND	mg/kg	0.10	0.100	!	2/17/97	21:56	Helingwrth	8020	9404
	enes, total	ND	eg/kg	0.10	0.100	1	2/17/97	21:56	Holingerth	8020	9404
HT	E	ND	mg/kg	0.100	0.100	1	2/17/97	21:56	Holingerth	8020	9404
Gas	oline Range Organics	ND	ng/kg	5.00	5.00	i	2/17/97	21:56	Holingarth	TOHE	9404
	sel Range Organics	83.6	ng/kg	5.0	5.00	1	2/18/97	4:34	K.Walkup	TOHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRG Extracted 2/17/97

Wt extracted:

25.0 gs Extract Volume: 1.0 sl

** SURROGATE RECOVERIES **

Surrogate	% Recovery	Target Range	
		4	
BTEX/6RD Surrogate	117.	50	150.
DRO Surrogate,s	78.0	50	150.



2960 Foster Creighton Dr. Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011768 Sample ID: ME TF01 WS01

Page 2

** SURROGATE RECOVERIES **

Surregate

% Recovery

Target Range

Report Approved By: ____

muhaul H. hum Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.



2960 Foster Creighton Dr. P.O. Box 40566 Nashvalle, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME TP01 S003

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011763

Date Collected: 2/13/97

Time Collected: 9:20

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Analyte	Result	Units	Report Limit	Buan Limit	Dil Factor	Date	Time	Analyst	Nethod	Batch
Benzene	NÐ	mq/kg	0.10	0,100	i	2/17/97	22:32	Holingwrth	8020	9404
Toluene	ДK	ag/kg	0.10	0.100	1	2/17/97	22:32	Holingurth	8020	9404
Ethylbenzene	NÖ	ng/kg	0.10	0.100	i	2/17/97	22:32	Holingwrth	8020	9404
Xylenes, total	ND	ag/kg	0.10	0.100	1	2/17/97	22:32	Holingwrth	8020	9404
NTBE	ND	ag/kg	0.100	0.100	1	2/17/97	22:32	Holingwrth	8020	9404
Sasoline Range Organics	NB	æg/kg	5.00	5.00	1	2/17/97	22:32	Halingwrth	TOHE	9404
Dieset Range Organics	ND	mg/kg	5.0	5.00	1	2/18/97	5:21	K.Walkup	TDHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRD Extracted 2/17/97 Wt extracted: 25.0 gm Extract Volume: 1.0 ml

** SURROGATE RECOVERIES **

 Surrogate
 % Recovery
 Target Range

 ETEX/GRU Surrogate
 101,
 50. 150.

 DRO Surrogate,s
 81.0
 50. 150.

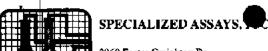
2960 Foster Creighton Dr. P.Q. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011763 Sample ID: ME TF01 S003

Page 2

** SURROSATE RECOVERIES **


Surrogate

* Recovery

Target Range

Report Approved By: Mutal W. Museum Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1 615 726 0177

#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME TP01 S004

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011764

Date Collected: 2/13/97

Time Collected: 9:30

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Ana	lyte	Result	Units	Report Limit	Quan Limit	Dil Factor	Date	Time	:07 Holingwrth :07 Holingwrth	Method	Batch
Bes	zene	₩Ð	mg/kg	0.10	0.100	i	2/17/97	23:07	Holingwrth	8020	9404
Tol	Teus	ND	mg/kg	0.10	0.100	1	2/17/97	23:07	Holingwrth	8020	9404
Eth	ylbenzene	ND	ng/kg	0.10	0.100	1	2/17/97	23:07	Halingerth	8020	9404
χyl	enes, total	ND	ng/kg	0.10	0.100	1	2/17/97	23:07	Holingurth	8020	9404
MTE	E	ND	ng/kg	0.100	0.100	1	2/17/97	23:07	Halingwrth	8020	7404
Ga:	oline Range Organics	ND	eg/kg	5.00	5.00	1	2/17/97	23:07	Holingerth	TOME	7404
Die	sel Range Organics	ND	ng/kg	5.0	5.00	1	2/18/97	6:09	K.Walkup	TOHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRG Extracted 2/17/97 Wt extracted: 25.0 gm Extract Volume:

1.0 m]

#### ** SURROBATE RECOVERIES **

Surrogate	% Recovery	Target Range	
		F	
BTEX/GRO Surrogate	101.	50	150.
DRO Surrogate,s	78.0	50	150.

#### SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011764 Sample ID: ME TP01 S004

Page 2

** SURROSATE RECOVERIES **

Surrogate

X Recovery

Target Range

Report Approved By:

Mutacl the Auna Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.





2960 Foster Creighton Dr. P. O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME SP01 S001

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011765

Date Collected: 2/13/97

Time Collected: 9:45

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Analyte	Result	Units	Report Limit	Quan Limit	Dil Factor	Date	Tier	Analyst	Method	Batch
							****			
Benzene	ND	og/kg	0.10	0.100	1	2/17/97	23:43	Halingwrth	8020	9404
Toluene	ND	ag/kg	0.10	0.100	1	2/17/97	23:43	Holingwith	6020	9404
Ethylbenzene	ND	mg/kg	0.10	0.100	1	2/17/97	23:43	Holingarth	8020	7404
Xylenes, total	ND	eg/kg	0.10	0.100	1	2/17/97	23:43	Holingwrth	8020	9404
MTBE	MÜ	eg/kg	0.100	0.100	1	2/17/97	23:43	Kolingerth	8020	9404
Gasoline Range Organics	MD	mg/kg	5.00	5.00	1	2/17/97	23:43	Holingwrth	TDHE	7404
Diesel Range Organics	4.51	eg/kg	5.0	5.00	i	2/18/97	6:56	K.Walkup	TOHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRD Extracted 2/17/97 Wt extracted: 25.0 gm Extract Volume: 1.0 ml

** SURROBATE RECOVERIES **

 Surrogate
 % Recovery
 Target Range

 BTEX/SRO Surrogate
 117.
 50. 150.

 DRO Surrogate,s
 77.0
 50. 150.



#### SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone I-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011765

Sample ID: ME SP01 S001

Page 2

** SURROGATE RECOVERIES **

Surrogate

% Recovery

Target Range

Report Approved By:

Mulail H. Aum Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME SP01 S002

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011766

Date Collected: 2/13/97

Time Collected: 10:00

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Ana	lyte	Result	Units	Report Limit	Quan Limit	Dil Factor	Date	Time	Analyst	Method	Betch
Ben	zene	ND	ng/kg	0.10	0,100	1	2/18/97	0:19	Holingwrth	8020	9404
To:	neu6	54	ag/kg	0.10	0.100	1	2/18/97	0:19	Holingerth	8020	7404
Eth	ylbenzene	ND	eg/kg	0,10	0.100	l	2/18/97	0:19	Holingwrth	8020	9404
Ĭγ	enes, total	ND	eg/kg	0.10	0.100	1	2/18/97	0:19	Holingerth	8020	9404
MTE	E	ND	eq/kg	0.100	0.100	1	2/18/97	0:19	Holingerth	8020	9404
Gas	oline Range Organics	ND	eg/kg	5.00	5.00	1	2/18/97	0:19	Holingerth	TDHE	9404
	sel Range Organics	41.6	ng/kg	5.0	5.00	1	2/18/97	7:44	K.Waikup	TDHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRO Extracted 2/17/97 Wt extracted: 25.0 gm Extract Volume: 1.0 ml

#### ** SURROBATE RECOVERIES **

Surrogate	% Recovery	Target Range	
BTEX/GRD Surrogate	119.	50	150.
DRD Surrogate,s	79.0	50, -	150.



#### SPECIALIZED ASSAYS, INC.

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011766

Sample ID: ME SP01 S002

Page 2

** SURROGATE RECOVERIES **

Surrogate

% Recovery

Target Range

Report Approved By: Mutual M. Rumy Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.



2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119

ATTN BILL HELTON

1058 SEARCY WAY

BOWLING GREEN, KY 42103

Sample ID: ME SP01 S003

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011767

Date Collected: 2/13/97

Time Collected: 10:15

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Soil

Ana	lyte	Result	Units	Report Limit	Quan Limit	Dil Factor	Date	Time	Analyst	Kethod	Batch
Ber	128NB	ND	∎q/kq	0.10	0.100	1	2/18/97	0:54	Helingwrth	B020	9404
Τσ	uene	ND	ng/kg	0.10	0.100	1	2/18/97	0:54	Holingurth	8020	9404
Eth	ylbenzene	MD	eg/kg	0.10	0.100	1	2/18/97	0:54	Holingwrth	8050	7404
Ĭγ.	enes, total	ND	ng/kg	0.10	0.100	1	2/18/97	0:54	Holingerth	8020	9404
MTE	E	ND	ag/kg	0.100	0.100	1	2/18/97	0:54	Halingwrth	8020	9404
Gas	oline Range Organics	ND	ag/kg	5.00	5.00	1	2/18/97	0:54	Holingerth	TDHE	9404
Die	sel Range Organics	16.9	∎g/kg	5.0	5.00	i	2/18/97	7:19	K.Nalkup	TOHE	9372

ND = Not detected at the report limit.

Sample Extraction Data

DRQ Extracted 2/17/97

Wt extracted: 25.0 gm Extract Volume: 1.0 ml

** SURROGATE RECOVERIES **

Surrogate % Recovery Target Range -----BTEX/GRO Surrogate 106. 50. -150. DRC Surrogate,s 77.0 50. -150.



P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

#### ANALYTICAL REPORT

Laboratory Number: 97-A011767 Sample ID: ME SP01 S003

Page 2

** SURROSATE RECOVERIES **

Surrogate

% Recovery

Target Range

Report Approved By: Multical M. Vumma Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.





#### ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME TF01 WS01

Project: 96137

Project Name: MEMPHIS

Sampler: BILL HELTON

State Certification:

Site I.D.:

Lab Number: 97-A011768

Date Collected: 2/12/97

Time Collected: 16:00

Date Received: 2/14/97

Time Received: 16:25

Sample Type: Water

Analyte	Result	Units	Report Limit	Quan Lieit	Dil Factor	Date	Time	Analyst	Method	Batch
						~~~~~~				
Benzene	0.040	eg/1	0.005	0.001	5	2/18/97	14:30	Duncan, J.	8020	9390
Toluene	0.020	eg/ 1	0.005	0.001	5	2/18/97	14:30	Duncan, J.	8020	9390
Ethylbenzene	0.010	ng/l	0.005	0.001	5	2/18/97	14:30	Dencan. J.	8020	9390
Kylenes, total	0.160	ng/l	0.005	0.001	5	2/18/97	14:30	Duncan, J.	8050	9390
Methyl-t-butylether	ND	mg/t	0.005	0.001	5	2/18/97	14:30	Duncan, J.	8020	9390
Basoline Range Organics	3.10	mg/1	0.50	0.10	5	2/18/97	14:30	Duncan, J.	TDHE	9390
Diesel Range Organics	595.	∎g/l	12.5	0.10	100	2/18/97	10:40	K.Walkup	TDHE	9369

NO = Not detected at the report limit.

Sample Extraction Data

DRG Extracted

2/17/97

Vol extracted:

800. al Extract Volume:

1.00 ml

** SURROGATE RECOVERIES **

Surregate	% Recovery	Target Range	
DRO Surrogate,w	90.0	50	150.
BTEX/GRO Surrogate	98.	50	150.

SPECIALIZED ASSAYS,

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204 0566 Phone 1-615-726-0177

ANALYTICAL REPORT

Laboratory Number: 97-A011762

Sample ID: ME TP01 S002

Page 2

** SURROGATE RECOVERIES **

Surrogate

X Recovery

Target Range

Report Approved By:

milacl to Runn

Report Date: 2/20/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.

* * * SPECIALIZED ASSAY ENVIRONMENTAL

REFERRING CLIENT

2960 Foster Creighton Drive Nashville, TN 37204 615-726-0177 FAX 615/726-3404

	<u> </u>													
BILLING CON	TROL NUMBER	(FOR LAB USE C	ONLY)	- ,		PROJEC	T #			P.O. #				
SAMPLERS (S	gnature-Please P	rint)			<u> </u>	PROJEC	T NA	ME						
	USE ONLY C#		DESCRI		DATE	TIME	COMP	GRAB	• OF COURT	ANALYSIS REQU				
	 .	ME TF	01-	W502	3/21/11	1. 01			6	THEY THE LED THE TONG - JOHNS E CALL HORSELDS	tome in			
			<u></u>											
		w												
										· ·				
	Š.			-										
.** 														
						•								
								1						
			•	· •		-					· · · · · · · · · · · · · ·			
Relinquished by	44	Date / T	ime 2	Received by 7(Sign	(nature)			Receiv	ed for	Laboratory by:	Date / Time			
Relinquished by:	(Signature)	Date / T	ime	Received by (Sig	nscure)		ĺ	Remar	ks / 2	Green Correction				
Relinquished by	(Signature)	Date / T	ime	Received by (Sig	nature)			,	2	The	A Part of Property of the			
Relinquished by	(Signature)	Date / T	ime	Received by: (Sig	natur e)			17	 	1 10 1111 1 1111				

SPECIALIZED ASSAYS **ENVIRONMENTAL**

REFERRING CLIENT

Doe & Doe, Inc. 1010 Maryland Way Suite 100 Nashville, TN 37012

2960 Foster Caughton Drive Nashville, TN 37204 615 726 0177 FAX 615/726-3404

Attn: Jay Doe 615-555-5555 Fax 615-555-0001											
ESLLING CONTROL N	UMBER (FO	R CAB USE	DNLYI	· · ·		PROPE	PROFECT # A-3007 PO.# 1505				
SAMPLERS (Signature)	Pictoria Prinia					PROJE	CT N	AML	Ma	yfield Oil Refinery	
FOR LAB USE ONLY	SAM	ME DESC	RIPTION		DATE	TIME	8	\$ CRVB	0	ANALYSIS REQL	ÆSTED
	Oil Tar	ik NE							1	TRPH	
	Oil Tar	ık SW	-						1	TRPH - BTEX	
	Excava	Med Wi	iste pil	е					1	TCLP: VOA Metala PC8 Reactivity Fit	Extractable ash point
-	Oil Tar	ik Cont	enta						5	Total Violatiles Meta PCB Ignit	els ability
					•	'					
										· · · · · · · · · · · · · · · · · · ·	
						 	<u> </u>				
							\vdash				
-	· 					<u> </u>	╁	-	H		
						-		-			
Relinquished by: (5)gr	viture)	Date :	Time	Recei	wed by: (Sig	gnature)		Res	LE WE	d for Laboratory by:	Deta / Tin
Relaiquished by: (Sign	IATUFÇ)	Date (Time	Recei	ived by 15q	gnature j		Rei	matic		1 1
Relanguashed by (Sign	(FIUIKI	Cale	Time	Recei	eed by (5.	(grature)		1			

example form under Referring Client. Please be sure to include to who's attention laboratory correspondence should be directed as well as a phone and fax number. Project # If applicable please include a

Complete mailing address as shown in the

project number. The Facility I.D. number for Underground Storage Tank analysis should also be placed here.

P.O.# If applicable please include a purchase order number.

Samplers (signature) Please direct all personnel taking samples to include their name on this line.

Project Name | Identify the project name in this block whether it is descriptive of sample location or client project.

Sample Description is crucial in correctly filling out your chain of custody form. Sample Description alerts Accessioning personnel as to what you wish your sample to be referred to in future correspondence. Please be sure that all sample descriptions match what is written on sample containers. Each sample will require only one line regardless of how many tests are performed

or the number of containers provided (please see example).

Date & Time are crucial information in monitoring holding time regulations for the analysis requested.

Comp Check if a composite sample (24 hr. flow composite or boring soil composite).

Grab Check if an instantaneous grab or exact soil depth is indicated.

of Cont. This block informs the Accessioning department exactly how many sample containers are being returned with the analysis requested.

Everyone coming in contact with your samples from the initial sampler to Accessioning personnel will need to sign the relinquished by and received by spaces as indicated on the form. Accessioning personnel will indicate that your samples have reached their destination by signing the received for laboratory space.

Remarks This block is for any additional information you wish to relay to Accessioning personnel. For example if the analysis you request needs to be placed on a RUSH priority, or if there are any types of hazardous associated with the sample, i.e. flammables.

Should you need any assistance in filling out your chain of custody form please feel free to contact our Client Services Department at 615-726-0177

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1 615 726 0177

ANALYTICAL REPORT

FIRST RESPONSE, INC. 6119 ATTN BILL HELTON 1052 SEARCY WAY BOWLING GREEN, KY 42103

Sample ID: ME-TF01-WS02

Project:

Project Name:

Sampler:

State Certification: 90038

Site I.D.:

Lab Number: 97-A022235

Date Collected: 3/21/97

Time Collected: 10:00

Date Received: 3/21/97

Time Received: 16:45

Sample Type: Water

Analyte	Result	Units	Report Limit	Buan Limit	Dil Factor	Date	Time	Analyst	Method	Batch
Benzene	ND	mg/l	0.001	0.001	i	3/25/97	4:30	J. Jages	8050	7469
Toluene	מא	mg/1	0.001	0.001	i	3/25/97	4:30	J. James	8020	7469
Ethylbenzene	ND	mg/l	0.001	0.00i	1	3/25/97	4:30	J. James	9020	7469
Xylenes, total	ND	mg/1	0.001	0.001	1	3/25/97	4:30	J. James	0208	7469
Mil and Grease	מא	ag/l	1.0	1.0	i	3/24/97	15:39	C.Gerenser	413.1	7164
TPH (Diese) Range)	0.31	mg/l	0.10	0.10	1	3/25/97	15:24	K.Walkup	8015M/3510	8039
L e ad	ND	ag/ 1	0.0030	0.0030	1	3/25/97	7:28	R.Street	6010A	7304
рH	7.1	pĤ Units			1	3/22/97	14:30	J.Hale	9040/150.1	7105
Suspended Solids	18.4	ag/1	10.0	10	i	3/26/97	6157	D. Hoover	160.2	7746

ND = Not detected at the report limit.

Sample Extraction Data

DRO Extracted 3/24/97

Vol extracted: 1000 al Extract Volume: 1.00 al

** SURROSATE RECOVERIES **

Surragate	% Recovery	Target Range	
DRO Surrogate,w	89.0	50	150.
BTEX/6RO Surrogate	85.	50	150.

SPECIALIZED ASSAYS,

2960 Foster Creighton Dr. P.O. Box 40566 Nashville, TN 37204-0566 Phone 1-615-726-0177

ANALYTICAL REPORT

Laboratory Number: 97-A022235 Sample ID: ME-TP01-W802

Page 2

** SURROGATE RECOVERIES **

Surrogate

% Recovery

Target Range

Report Approved By:

, _ .. _. _.

Report Date: 3/26/97

Theodore J. Duello, Ph.D. Michael H. Dunn, M.S. Danny B. Hale, M.S.

1 · 1 · 1

APPENDIX C

	تدر	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US E	EPA ID No.	Manifes! Document No.	2. Page of	1	٠,			
*	8	Generator's Name and Majling Address	en en en en			T "	:	•			
		4618 Alm. 36									
	4.	Generator's Phone ().			;		*				
	5.	Transporter 1 Company Name	6	. US EPA ID N	himbor	.*		•			
	"	11 111 Primites		TIVE EURO		1					
	7.	Transporter 2 Company Name	<u> </u>	US EPA IO N							14
H	L		<u></u> L	<u> </u>			المراوح	1			
	9.	Designated Facility Name and Site Address	10	0. US EPA ID N	lumber	A. Tran	isporter's P	hone		18	
l		Car 1 St Stan Jan		Λ			sportor's P				
Ш	. '	exists to the		T.West. Com	ر در		itty's Phone) - *-	الله الله الله الله الله الله الله الله	'	
Ш	-	When Sylvan Manager Constitution	.	1. JUS 1. J	and the first	LK.	12. Cont	ainam	アノオ 13.		14.
	l''	Waste Shipping Name and Description					No.	Туре	Total	.,	Unit Waryol
H	a.		NI	N - 1/43111			140.	INC	Quanti	<u>y</u> .	19870
	i		•				Alas			:	SHC.
H	1	* Usly Water	NEW.	15 80, 30 18 fe at			Vic	Tr p	يوخ والمناشق	飞.	
Ģ	ъ.	· · · · · · · · · · · · · · · · · · ·									
SWZWG	١.	÷	ÿ	·			. *				
Ř.	-			·	<u> </u>			<u> </u>	· • ·	•	ļ
Ŧ	C									•	
0 R								.			1.
1	d.			 -: 	 						
											• •
H	1.0	10 a sag		<u> </u>	·				<u>.</u>		
	D.	Additional Descriptions for Materials Listed Abor	/ a	•	. '	E. Hand	ling Code	for Was	ics Listed A	pove	
Н										• "	,
1				4	1						
ŀ	15	0		<u></u>	! 	<u> </u>					
1	10.	Special Handling Instructions and Additional Info	nnation	•	·						. :
١			•	2							
1		·		•	. •						. 1
1									,	٠.	
			·	•							
			-				. 3				
	16.	GENERATOR'S CERTIFICATION: I cently the n	naterials described above	on this manifest are not sub	elect to federal regula	tions for re	porting prop	ег фізрові	al of Hazardor	ıs Wast	ю.
Ţ		Printed/Typed Name	1.11.6	Signature	- 1//-	7	·		Month	Dey	Year
T	17	Transporter 1 Acknowledgement of Receipt of M	IS/A-7	# 1 VIE 4. 20m	of fraco	CR 🛰			12	j Z	97
TRANSPORTER	.,.	Printed/Typed Name	ONE TO THE OWNER OF THE OWNER	Signature/			·				
N S	į	DIEUG INSI		1/1/1/11	Jones of				Month 2	Day 314	Your Fry
ģ	18.	Transporter 2 Acknowledgement of Receipt of M	aterials .		7					Z	×
Ē	٠.	Printed/Typed Name		Signature					Month	Day	Year
R	40									· `	
1	19.	Discrepancy Indication Space		·							
_ /											
F		· · · · · · · · · · · · · · · · · · ·									
F								;			
FACILI	20.	Facility Owner or Operator: Certification of receip	it of waste materials co	vered by this manifest ex	cept as noted in Ite	m 19.	,	; :		-	
FACILITY	·		it of waste materials co		cept as noted in Ne	ım 19.			·		
FACILITY	·	Facility Owner or Operator: Certification of receip Printed/Typed Name	of of waste materials co	overed by this manifest ex	cept as noted in Ne	ım 19.	: .	;	Mudn	Day	Year

	NON-HAZARDOUS WASTE-MANIFEST	1. Generator's US EPA ID :		Manifest ocument No.	2. Page	9.1		S. Art.		
1	3. Generator's Name and Mailing Artigless The Art All William Control of the Artigles Service								٠.	
	Transporter 1 Company Name An Auri Dia Grand Transporter 2 Company Name	7 m	US EPA ID Numb US EPA ID Numb	aco.						
	9. Designated Facility Name and Site Address AM Plant Plant du 3.4 18 Faut Way La di	10.	US EPA ID Numb		B. Tran	sponers P aponers,P lity's Phons	hone	212	1 - 1	
	11. Waste Shipping Name and Description	· · · · · · · · · · · · · · · · · · ·	is consisted	<i>F1</i> Y	1 70	12. Conl		13. Tota	·····	14. Unit
	Oily WATER					No.	Туре	Quant		GI /
CHENRAL	b.									
ATOR -	d.			· · · .		, .				
		·	<u> </u>							
	D. Additional Descriptions for Materials Listed Abovo				E. Hend	ling Codes	for Wa	stes Listed A	bove.	
			*	,	ł	IRS	6			· .
	15. Special Flandling Instructions and Additional Inform	nation								· · · · · · · · · · · · · · · · · · ·
	16 GENERATOR'S CERTIFICATION: Ligadia the great							<u>. </u>	· <u></u>	-
li	16. GENERATOR'S CERTIFICATION: Licertify the met Printed/Typed Name		namiesi are not subject t lignature	o tederal regular	lions for re	porting prop	er dispos	ed of Hazanda Month	Aus Waş Day	Year
*	H. Transporter 1 Acknowledgement of Receipt of Mat	Mr Fulling	Blye	47	, <u></u>			0.7	1/3	197
RANSP	Priemediffyped Name	s	Ignature ()	4 5	7,	Tri		Month 2	Pay	Y 35.
P T E R	18, fransporter 2 Acknowledgement of Meceipt of Mate Printed/Typed Name		gnature	···	<u>.</u> /		···	Month	Day	Year
FACI	19. Discrepancy Indication Space				:			···· • • · · · · · · · · · · · · · · ·		
	20. Facility Owner or Operator: Certification of receipt of	of waste materials covered b	y this menifest except	as noted in Ite	m (9.			•		
4	Printed/Typed Name	-	ignatura			\# 1.			Cay	Year

MEMPHIS TANKS

KENWAY CONTRACTING, INC.

4520 Louisville Road BOWLING GREEN, KY 42101 Phone 781-1932

CUSTOMER'S ORDER NO	PHONE	DATE	
		2-13	1995
NAME /5/	H. Carrier		
AUDRESS /	Marja	with	,
	Anno Dones di	v constitut for the second	
			the same of
	. (<u> </u>
······	100	77 I	}
	1,22	$O \mid \cdot \mid$	
-	1. 1	ر اسو	100
	580	h	
100			:
	Martin and Alexander Landson		
			ļ
	- Part -		
	artell' (askanes) () (askanes) () (askanes) () (askanes) () () ()		
		TAX [Ì
BOLD BY MECETYED BY	100	TOTAL	1
dim	11/0		}

Thank You

		San San San San San San San San San San	As There is a	Landing	2. Page	1	. :	. ' - :	- '	
		NON-HAZARDOUS 1. Generator's US EPA ID N WASTE MANIFEST		Manifest Document No.	of	(2,2)			• • •	
3.	Gene	rator's Name and Malling Address WATION	AL GUA	no		1000				
			. 01							
ĺ		THUI MALE	, page .			•				
4.	Gene	erator's Phone () <u>MEMPH</u>	<u>עד ני</u>	<u>.</u>	 					
5.	Tran	sporter 1 Company Name 6.	US EPA ID N		<u> </u>			<u> </u>		
7.	Tran	sporter 2 Company Name 8.	US EPA ID N		ļ	— . 	·			
-	Per	gnated Facility Name and Site Address	US EPAID N	lumber		sporter's Pl		<u> </u>		—
9.	J-000	grated Facility Name and Site Address. Consolidated Recyding		•	_	sporter's Ph				
		Troy IN		- <u></u>	C. Fedi	ility's Phone				14
ļ	\dashv	1000				12. Cont	ainers	13 Total	1	14. Unit
17	, Was	te Shipping Name and Destription				No	1 ype	Quantity	W	Vt/Vol :
a.		OFF-SPEC DIESEL FUEL				004	on	20	ام	G-
										
D		OFF SPEC DIESEZ FUEL SI	UD6E	d wate	\ 	007	DN].0	0	6
L]		ļ	1	
c.	.							1		
						 - 	 -			
٥]	
		•		•					[
					E. Har	ndling Code	s for Wa	stes Listed Ab	ove	
). Ad	ditional Descriptions for Materials Listed Above				_				
										
	15. Sp	ecial Handling Instructions and Additional Information								
$\ \ $										
			•							
\prod					ulations for	r reporting 194	voer disc	osal of Hrusadka	ıs Wasi	to.
	1G. G	NERATOR'S CERTIFICATION: I certify the materials described above on the	Gianati	SUDJECT TO RECEIVE FEG	presons for	. reperting pr	- p : unu p	Month	Day	Year
	Pr	inted/Typod Name	chitratura /	u Belf				105		<u> </u>
۲þ	<u> </u>	LHECTON FOR ; Dan Fulkarson				-		<u> </u>		
ĮĹ		ansporter 1 Acknowledgement of Receipt of Materials	Cionata una					Month	Day	Year
ន្តិ	P	inted/Typed Name	Signature					_ [.		<u> </u> •
TRANSPORTER		D - 1 I I I I I I I I I I I I I I I I I I	<u></u>	- ·						
읽	+	ansporter 2 Acknowledgement of Receipt of Materials	Signature					Month	Clay	Year
E	P	inted/Typed Name							L	1
		icomesano Indiculino Space								
	19. D	iscrépancy Indication Spacé								
F										
Α.								 		
ζį	20.5	acility Owner or Operator. Certification of receipt of waste materials cover-	ed by this manifer	et except as neted l	n item 19					
Ĉ		•								
4-1-03	۷. ۱	<u></u>						44	Day	Vee
44-F-03		nnted/Typed Name	Signature			-		Month	Day	Venr
(0-1-4		nnted/Typed Name	Signature					Month	Day	Vear

SPECIALIZED ASSAY **ENVIRONMENTAL**

REFERRING CLIENT

account: blig Lirat Response, inc. buil Helton AND SOMEON MAY bowling Green, KY 42103

2960 Foster Creighton Drive Nashville, TN 37204 615-726-0177 FAX 615/726-3404

transmission white and mix	90 9906 rax: 502*/93:	~0908	5	oec,	10.	lize	ed Assays: (800) 765-0980
LING CONTROL NUMBE	R (FOR LAB USE ONLY) 647	<u>ک</u> ھا	PROJEC	T #			P.O. #
MPLERS (Signature-Please	Print)		PROJEC	T NA	ME		
FOR LAB USE ONLY	SAMPLE DESCRIPTION	DATE	TIME	COMP	GRAB	A UF COLT	ANALYSIS REQUESTED
97-A0222 35	ME - TP01 - W502	3/21/97	10:08	 	V	6	TOTAL Suspended Solids, pH,
		<u> </u>					
				:			
			<u> </u>			_	
				_			
				ŀ			
		"					
		:					· · · · · · · · · · · · · · · · · · ·
nquished by: (Signature)	3/2/47 12/3 b Received by (8)	5			Receiv	9 60 K	Laboratory by: 3/21/97 16:45
nquished by (Signature)	Date / Time Received by Sy	Dome	4~	54	Remar	ks /	OIL + 6 PENSE - Sun Desord.
equished by: (Signature)	Date / Time Received by: (Sig				/	<u>د</u> د	Total Lead - No Prosord. Total Lead - NO Prosord. DRU - Hel
	1 + THILL RECEIVED BY: (38)	(1841 UPC)				ОДĀ	

ECIALIZED ASSAYS ENVIRONMENTAL 60 Foster Creighton Drive shville, Tennessee 37204

ANALYTICAL REPORT

Lab Number: 97-A022235

Original report and a copy of the chain of custody will follow by mail.

FIRST RESPONSE, INC. 6119

ATTN BILL HELTON

1052 SEARCY WAY

BOWLING GREEN, KY 42103

Sample ID: ME-TP01-W802 Date Collected: 3/21/97

Project: Time Collected: 10:00

Project Name: Date Received: 3/21/97

Sampler: Time Received: 16:45

State Certification: 90038 Sample Type: Water

Site I.D.:

Analyte	Result	Unite	Report Limit	Qæn Limit	DL1 Ractor	Date	Time	Analyst	Method	Batch
Remene	NO	mgr/∆	0.001	0.001	1	3 //5 / 80	4:30	J. James	8020	7469
Toluene	ND	ng ∕L	0.001	0.001	1	3 (25/37	4:30	J. James	9020	7469
Diyibazan	ND	m_{H}/Δ	0.001	0.007	1	3 /25 /97	4:30	J. James	9020	7469
Xylence, total	ND	$n_{\mathbf{H}}A$	0.001	0.001	1	3 /25 /97	4:30	J. James	9020	7469
Cil and Gresse	ND	πg./∆	1.0	1.0	1	3 /24 /57		C.Gerenger	413.1	7164
TEH (Dismol Parge)	0.31	ng A	0.10	0.10	1	3 /25 /37		K.Wallano	8015M.A610	
Lead	NO	mg/L	0.0030	0.0030	1	3 <i>DS 19</i> 7	7:28	R.Street	6010A	7304
E H	7.1	pH Uhita			_ 1	3 /22 /97	14:30	J.Hale	9040/250.1	
Suspended Solids	19.4	mg/1	10.0	10	1,	3 /26 /97	6:57	D. Hanner	160.2	7746

ND = Not detected at the report limit.

Sample Extraction Data

DRO Extracted: 3/24/97 Vol. extracted: 1000 ml. Extract Volume: 1.00 ml.

** SURROGNUE RECOVERIES **

Surregate	Y Recovery	Target Range	
DFD Summgette, w	89.0	50	150.
BIEX/GO Surrogate	85,	50	150.

APPENDIX D

Notification for Underground Storage Tanks	
US7 Division, 4m Floor, USC Tower, 401 Church St., TN DEC, Nashville, TN	ID NUMBER () -
TYPE OF NOTIFICATION	DATE RECEIVED

B. AMENDED C. CLOSURE No, of continuation sheets attached c, of tanks at facility INSTRUCTIONS

Please type or print in ink all items except [signature] in section VIII. This form thust be completed for each location containing underground storage tanks, if more than five (5) tanks are owned at this location, photocopy the folowing sheets, and staple continuation sheets to the form.

IQ NUMBER	0-790983

- A. Date Entered Into Computer
- Data Entry Clerk Initials
- C. Cwner Was Contacted to Clarity Responses, Comments

GENERAL INFORMATION

Notification is required by Federal law for all underground tanks than have been used to store regulated substances since vancary 1, 1974, that are in the ground as of May 8, 1988, or that are brought into use after May 8, 1995, The information requested is required by Section 3000 of the Resource Subservation and Recovery Act, (RCRA), as amended.

NEW FACILITY

mani purpose of this noofication program is to desire and evaluate. underg dung (anks that stone or have stoned periodism or hazaldous substances). tils eatherbot that the information you provide will be based on reasonably. ಒತ್ತು (ಖ್ಯಾಸ್)<mark>ಕ್ರಮಗರತ್ನು ೧೯ ಸ್ವರ್ಥಕ್ಕೆ ಪ್ರವತ್ತಿಕೊಂಡಿ ೧೯ ೩೦೦೯ ಗಳಿಯಾಗಲ</mark>್ಲಿ YOUT ೩೧೧೪/ಈ ೧೯೫೩ ರಕ್ಷಣೆಗೆ, ೧೯ ಇಲು ಕರಣ

What their Notify? Section 9002 of SCRA, as larger deal, receives that unives axempres gainers of ungargroung tanks that store requiated substances must or ty designated State or local agencies of the existence of their lanks, Owner T49 60.5- -

- a) in the case of an underground storage tank in use on November 8, 1984, or prought in pluse after that date, any person who owns an underground storage rank Lised for the storage, use, or dispensing of regulated substances, and
- ## Ease of any underground storage tank in use before November 8; 1984 Dut he longer is use on that date, any person who owned such cank. mmediately belone the discontinuation of its use.
- o) if the State agency so recovers, any motity that has undergone any changes. erradice in difficultion on table system status (unity amended to a information residu za se maubeci.

What Tanks Are Included? Underground storage tank is defined as any one or complication of ranks that (1) is used to contain an accumulation of frequisted substances, fisher(2) whose volume (induding connected underground proints) is: 374 or more beneath the ground. Some examples are underground tables sithing. Gastorne, used oil, or diesex fluer, and 2 industrial soments, pestodes; erbiaces or turniquina.

Hitet ∱ansa Are Excluded? Tarks removed from the ground are ont subject nopricadon. Октеп жама ежерсер жотт порбсарол але

- 5, raying on residencial ranks of 1,100 gaillons on tess capacity used for story of retor tille for noncommercial purposes;
- tanks used for storing healing of for consumptive use on the premises.

- 3. seato (anks)
- A, progrime faculoes (including gastering lines) required under the Natural Gast Program Satery Act of 1968, or the Hazardous Liquid Proeline Satery Act of 1979, or нью з ал итакам роен не facility гериянер иност State Ness,
 - 5, surface impoundments, pits, ponds, or lagours;
 - 5, sowm water or waste water collection systems:
 - 7, flows through process tanks;
- dure trace or associated gamening thes prectly related to bit or gas. production and gathering corraspost
- Business tanks situated in an underground alea (such as a pasement, make). линеменного сий, этай, ок шелей) if the выпада салк is вышавес воси от вроми the surrace of the food.

What Substances Are Covered? The not "cation requirements supply to taken ground storage tanks that contain regulated substances. This includes any substance defined as nazavoous in section 101 in a) of the Comprehensis Environmental Response, Compensation and Cability Act of 1980 (CSRCLA), with the aspection of those substances regulated as hazal books waste oncer Substal C. of RORA, it also incudes petroleum, e.g., prose ou or any fraction thereof which is iguid at standard conditions of temperature and bressure (60 negrees Farmennist) and 14.7 bounds per source inch appoint(4).

Where To Nottliv 7 Sand completed forms 2:

Underground Storage Tank Division 4th Floor, LAC Tower 401 Church Street Tennassee Department of Environment & Conservation Nashville, TN 37243-1541

When To Hottry? 1. Environs of underground statege lanks in the or that have been taken out of polyration after January 1, 1974, but soil in the ground, must notify by May 8, 1966, 2. Owners who bring underground storage tanks into use ager May 8] 1966, must notify within 30 days of bringing the tanks into use. It if the State requires notification of any amendments to the radicy send information to State agency immediately

Penarties; Any owner who knowingly buts to notify or submits buse information shall be subject to a divil panalty not to exceed \$10,000 for each rank for

HUMMA 200	r	which natification is not g	ven or for smich false information is submitted.
· · · · · · · · · · · · · · · · · · ·	L OWNERSHIP OF TANK(S)	11. 1	LOCATION OF TANK(S)
		Tractures by State I she the gen countries call 42, 35, 12 h Long	graphic focation of takes by begrees, Trinuas, and Records, , 85, 24, 37W
Cen	nessee Army National Cuario	Lаткибе	Long Aude
304	l	State Tax Map No.	State Tax Taxoer No
Nas	Audsoi	Facility Name or Company Sta O M S #1 1 Street Appress P 2 Roy Hors 2 1 1 1 0	S Accessionates ,
	101-661-6200	Manyonis	1 A.
प्रमास का संघात जनार का संघात	· ··—	- Shellow	

______-

	III. TYPE OF OWNER	IV. INDIAN LANDS		
-	derai Government	Tanks are located on land within an lands are located on other trust lands.	ndian	Tribe or Nation;
🗀 🕒	te Government 🔲 Private cal Government	Tanks are owned by native American nation, tribe, or individual.	Tanks are owned by native American nation, tribe, or individual.	
		V. TYPE OF FACILITY		
Select ti	he Appropriate Facility Description		;	;
1	Gas Station	Railmad	Truckir	ng/Transport
	Petroleum Distributor	Federal - Non-Military	Utilities	-
	Air Taxi (Airline)	Federal - Military	Reside	ential
]	Aircraft Owner	Industrial	Fam	
	Auto Dealership	Contractor	Other ((Explain)
	VI, ÇONT.	ACT PERSON IN CHARGE OF TANKS	5	
Name	Job Title	Address	Phon	e Number (Include Area Code)
	YU.	FINANCIAL RESPONSIBILITY		
	• 6.	THACOAC NEST GROUDETT		
	I have met the fina accordance with 4	incial responsibility requirements in 0 CFR Subpart H		
Check Al	If that Apply			
	Sett Insurance	Guarantee I	Star	te Funds
	Commercial Insurance	Surety Bond		st Fund
	Risk Retention Group	Letter of Credit	Cuh	er Method Allowed Specify
				•
		-		·
	-			
	VIII. CERTIFICATION	ON (Read and sign after completing all	sections)	
documen	nder penalty of law that I have personally ex- ts, and that based on my inquiry of those ind information is true, accurate, and complete.	ividuais immediately responsible for ob		
	and official title of owner ors authorized representative (Print)	Signature		Date Signed
Ron	ERTDFULKERSON EPS	WHAT .		19 May 97
	,		<u> </u>	
gathering Chief, Info 'Attention	mates public reporting burden for this form to and maintaining the data needed and comp emation Policy Branch PM-223, U.S. Enviro Deak Officer for EPA. This form amends that this notification form may be used while su	leting and reviewing the form. Send co- nmental Protection Agency, 401 M Stra to previous notification form as printed	mments rega et, Washingt	irding this burden estimate to Ion D.C. 20460, marked

Tank Identification Number	Tank No.	Tank No. 2	Tank No.	Tank No.	Tank No
7. Substance Currently or Last Stored In Greatest Quantity by Volume Gasoline Diesel Gasohol Kerosene Heating Oil Used Oil Other, Please specify					
Hazardous Substance CERCLA name and/or, CAS number					
Mixture of Substances Please specify					
X	TANKS OUT OF	USE, OR CHANGE	IN SERVICE		
1. Cłosing of Tank A. Estimatod date last used (mo./day/year)	2-1-47	2-1-97			
Fank was removed from ground Estimated date lank was closed in ground or removed (mo./day/year) Tank fifed with inert material	Z-12-47	2-1297			
* F. Change in service					
2. Site Assessment Completed	~~				
Evidence of a leak detected					

3

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE E-845, PERIMETER PARK 2510 MT. MÖRJAH MEMPHIS, TENNESSEE 38115-1520

April 22, 1997

CERTIFIED MAIL P 182 143 725 RETURN RECEIPT REQUIRED

Mr. Ralph S. Harder, C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41502 Nashville, Tennessee 37204-1502

RE: Permanent Closure Report
OMS # 15 - Memphis
2610 East Holmes Road, Memphis, TN
Facility ID # 0-790983, Shelby County

Dear Mr. Harder:

On October 29, 1996, the Division of Underground Storage Tanks approved your Application for Permanent Closure of Underground Storage Tank Systems (APC) at the above referenced facility. On February 12, 1997, the underground storage tanks at the facility were removed. According to the APC, which was signed by Robert Fulkerson on October 14, 1996, the analytical results for the UST system closure were to be submitted within 45 days of collecting the samples. As of this date the Permanent Closure Report and analytical results have not been received by the Division.

Tennessee Army National Guard shall submit the Permanent Closure Report and analytical results by May 22, 1997.

If you have any questions concerning this correspondence, call me at (901) 368-7974.

Sincerely,

Cynthia J. Patton

Division of Underground Storage Tanks

Cynthia J. Patta

William Helton - First Response, Inc., P.O. Box 20310, Bowling Green, KY 42102-6310 Case File # 0-790983

you for using Return Receipt Service.	Musel
telso wish to receive the tollowing services (for an extra fee): 1. \(\) Addressee's Address 2. \(\) Restricted Delivery Consult postmaster for fee. Jumber Type	8. Addressee's Address (Only # requested and fee is cald)
A the Control of the	Special Specia
- / Sebis dangum art do hoteleans - pospere	· · · · · ·

ust	Ρ	795	143	725	COP	ı
F N D	lece lo insul lo not u Sent lo	rance Cou	Certi erage Pr ernationa Capp	S Har		(((((((((((((((((((
	Postage Cartified		12,700	*** ** * * * * * * * 	32	
	Special	Delivery Fe]
		ed Delivery			. (-	-
na 199	Monom Return f	Receipt Sh & Date Det leceipt Show	rvered ng to Whom ,	/	10_	
00. A	Date, &	Addresses's / Postage &	vidress	\$ 9,	<u>59</u>	1
PS Form 3800, April 1995	Postm	ark or Date		09.	83	

0-790983

TO: CINDY PETTON DATE 3-28-97
FROM:
NUMBER OF PAGES INCLUDING COVER PAGE
COMMENTS
PLEMSE REVIEW & CALL ME TO
DISCUSS.
Oty of water: Approx 50,000 gal.
Thut's
Bies
RETURN FAX NUMBER 1-502-793-0908 TELEPHONE NUMBER 1-502-793-0906
THIS FAX IS FROM:
BILL HELTON JERRY HARRISON DEBBIE WATKINS

Ø 002 € 95 raye

CIALIZED ASSAYS ENVIRONMENTAL 10 Foster Creighton Drive shville, Tennessee 37204

ANALYTICAL REPORT

Original report and a copy of the chain of custody will follow by mail.

FIRST RESPONSE, INC. 6119

ATTN BILL HELTON 1052 SEARCY WAY

BOWLING GREEN, KY 42103

Sample ID: ME-TP01-W602

Project:

Project Name:

Sampler:

State Certification: 90038

Lab Number: 97-A022235

Date Collected: 3/21/97

Time Collected: 10:00

Date Received: 3/21/97

Time Received: 16:45

Sample Type: Water

Site I.D.:

_			Report	Ques.	CA1		-			
Amily De	Restar	Unibs	<u>Ideatr</u>	Limit	Retor	Date	Time	Andres	Method	Batch
# 148 ti					~==					
Deza re	ND	mg ∕1	0.001	0.001	1	3 /25 /37	4:30	J. James	6020	TMEA
Triugge	ND	mg.A	0.00n	0.001	1	3 /25 /8 7	4:30	ப். danes	8 02 20	7459
Dhylhenere	ND	mg A	C.OCT	0.001	1	3 <i>t</i> 5 <i>A</i> 7	4:30	J. James	9020 9020	7459
Marss, ural	ND	mg/A	C. OCL	o.om	1	3.25.87	4:30	J. Janes	6020	7459
Ol) and Greene	RD	πg/L	1.0	1.0	1	3/24/57		C.Gerranez	613.1	7469 7164
ih (Macal Rays)	0.11	ag ∕L	0.10	B.3D	1	3/25/27		K. Mallero	90L9M A510	
Lend	ND	ஈத.∕⊥	0.0030	0.0030	1	3./25.A7	7:28	R.Street	6010A	7304
p ta	7.1	eli Unite			1	3 /22 /87		J. Phila	9046 A50.1	
Suspended Solids	18.4	regi,A⊥	10.0	10	1	3 /26 /97	6:57	D. Hazuer	160.2	7745

ND = RX detected at the report limit.

Saple Extraction Data

IFO Burecteri

3 /24 /37

Vol extracted:

1000 ml Rubrert Volume:

1.00 ₥₹

** SURCERIE RECOVERIES **

Simple	* Recovery	Target Harge	
DEC Submigate, W	69.0	50	150.
HDEK (SEC Submigate	85.	50	150.

FACILITY ID	Event	Received	Comment
0-790983	29 Trip Report	2/12/97	TRIP REPORT
			FEBRUARY 12, 1997:
1	İ		
			I ARRIVED ON SITE AT 11:30 AM.
			A&M CONTRACTING HAD
			REMOVED 2000 GALLONS OF
			WATER FROM TANK PIT. TANKS
			STILL IN GROUND. ODOR
			PRESENT. PEA GRAVEL IN TANK
			HOLD. WATER HAS BEEN KNOWN
		i	TO BE IN TANK HOLD IN THE
			PAST. NO CONCRETE OVER PIT.
			RAIN WATER RECHARGE TO PIT
			BECAUSE SOIL IS ONLY COVER.
			APPROXIMATELY 2 FEET OF SOIL
			OVER PIT FILL MATERIAL. FILL
			PORTS HAD BEEN RAISED TWO
			FEET DUE TO WATER IN TANKS IN
			PAST. WATER IN TANKS DUE TO
			RAIN WATER ENTERING TANKS
	·		THROUGH FILL PORT.
			APM TO DETUDNIA ETED LUNOU
			A&M TO RETURN AFTER LUNCH
		· ·	TO REMOVE REST OF WATER. WATER HAS NOT BEEN SAMPLED.
	}		TIM WITH FIRST RESPONSE
	}		STATED THAT THERE WAS A
			SHEEN ON WATER AND ODOR.
			SHEEN ON WATER AND ODOR.
			WEATHER : CLOUDY AND COLD
			SLEET IN FORECAST.
:			LEFT SITE AT 12:10
			C.J. PATTON
			0.0. I AI I OII

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE

SUITE E-645, PERIMETER PARK 2510 MT. MORIAH MEMPHIS, TENNESSEE 38115-1520

March 14, 1997

Mr. Ralph Harder c/o TNARNG 3041 Sidco Drive, Suite #1121 Nashville, TN 37204-1502

RE:

Compliance Inspection File

OMS #15

2610 E. Holmes Road, Memphis, TN Facility ID # 0-790983, Shelby County

Dear Mr. Harder:

The Division of Underground Storage Tanks has received the October 14, 1997, Application for Permanent Closure of the UST systems registered at the above referenced facility. Consequently, based on your decision to permanently close the UST systems, the Division is closing the inspection file on the facility, and notifying the Nashville Central Office of your decision to remove the tanks. However, TNARNG, OMS #15 will be required to continue with the closure process in accordance with UST regulations, and to submit a Permanent Closure Report within 45 days of the collection of samples.

If you have any questions regarding this correspondence, or if we can be of further assistance, please contact me at (901) 368-7991.

Sincerely yours,

Chuck Nance, Environmental Specialist Division of Underground Storage Tanks

CC:

MFO/UST Inspection File

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION OFFICE CORRESPONDENCE DATE: March 14, 1997 T0: Randy Mann - UST Enforcement FROM: Chuck Nance L. T. SUBJECT: OMS #15

Mr. Ralph Harder, C. P. E. for the Tennessee Army National Guard (STARC), has submitted to the Memphis Field Office, an Application for Permanent Closure of the UST systems currently registered at the above referenced facility. The application was approved by Cynthia J. Patton on October 29, 1996, and the UST systems have since heen removed. The Permanent Closure Report is scheduled to be submitted to this office by March 18, 1997. Therefore, the UST violations discovered during the compliance inspection conducted on July 27, 1995, will not be corrected, and the compliance inspection file has been closed.

If you have any questions regarding this facility please give me a call at (901) 368-7991.

CC;

UST Inspection File UST Closure File

2610 E. Holmes Road, Memphis, TN Facility ID # 0-790983, Shelby County

FROM	DATE
то	
· ·	
	<u> </u>
	
-	

CN-0920

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE E-645, PERIMETER PARK 2510 MT. MORIAH MEMPHIS. TENNESSEE 38115-1520

October 30, 1996

Mr. Ralph S. Harder, C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41502 Nashville, TN 37204-1502

RE: Permanent Closure Application - Approved OMS # 15 - Memphis 2610 East Holmes Road, Memphis, TN Facility ID #0-790981 Shelby County

Dear Mr. Harder:

The Division of Underground Storage Tanks has approved your application for Permanent Closure of Underground Storage Tank Systems dated October 14, 1996 for the above referenced facility. Enclosed is a copy of the approved application. This copy must be kept at the site during all closure activities.

This office must be notified at least one working day in advance of any major field activities.

If a release is identified during closure procedures, then the following initial response actions must be performed by Tennessee Army National Guard as required by Rule 1200-1-15-.06(2):

- (a) Report the release to the Division within 72 hours (e.g., by telephone or electronic mail);
- (b) Take immediate action to prevent any further releases of the petroleum into the environment; and
- (c) Take immediate action to identify and mitigate fire, explosion, and vapor hazards.

All Fund eligible work shall be conducted and/or overseen by an UST Approved Corrective Action Contractor. The current list of approved contractors is enclosed. Also refer to the Authorization for Fund Eligibility form.

Mr. Ralph S. Harder October 30, 1996 Page 2

Tennessee Army National Guard must comply with all applicable federal, state, and local requirements during tank closure activities, including treatment and disposal of contaminated soil and/or groundwater. For information regarding the treatment of petroleum contaminated soils, refer to the enclosed Technical Guidance Document 009.

Enclosed is a copy of the Permanent Closure Report Form, Technical Guidance Document 005 and Technical Guidance Document 009. The Permanent Closure Report Form must be completed and submitted with original or carbon copies of the analytical results. Photocopies will NOT be accepted.

Before the closure of your UST system can be considered complete, an amended UST Notification Form must be completed, signed, and submitted to the UST Central Office in Nashville. Failure to properly submit the form may result in the assessment of additional UST fees. To assist you in properly completing the Notification Form, the following instructions should be followed:

- 1. If tanks are being removed and no additional tanks are being installed, then complete only sections I, II, VIII, and X. The tank identification numbers should correspond with the numbers for these tanks on the previous Notification Form.
- 2. If additional tanks are to be installed at this facility, then sections IX and XI must also be completed. The identification numbers for the new tanks must be different from the numbers of the tanks which were removed (e.g., Tanks 1, 2, and 3 were removed, Tanks 4, 5, and 6 are to be installed).

If you have any questions concerning this correspondence, contact me at (901) 368-7974.

Sincerely,

Cynthia J. Patton

Cynthia J. Patton

Division of Underground Storage Tanks

CJP\79016304\ag

Mr. Ralph S. Harder October 30, 1996 Page 3

Enclosure: Approved Closure Application (copy)

Permanent Closure Report Form (1/94)
Technical Guidance Document 005 (1/94)
Technical Guidance Document 009 (1/94)
Authorization For Fund Eligibility

c: Nashville UST Central Office - Fee & Notification

Section

Memphis UST Field Office

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE E-645, PERIMETER PARK 2510 MT. MORIAH

MEMPHIS, TENNESSEE 38115-1520

October 30, 1996

Mr. Ralph S. Harder, C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41502 Nashville, TN 37204-1502

Permanent Closure Application - Approved CMS # 15 - Memphis 2610 East Holmes Road, Memphis, TN Facility ID #0-790983, Shelby County

Dear Mr. Harder:

The Division of Underground Storage Tanks has approved your application for Permanent Closure of Underground Storage Tank Systems dated October 14, 1996 for the above referenced facility. Enclosed is a copy of the approved application. This copy must be kept at the site during all closure activities.

This office must be notified at least one working day in advance of any major field activities.

If a release is identified during closure procedures, then the following initial response actions must be performed by Tennessee Army National Guard as required by Rule 1200-1-15-.06(2):

- Report the release to the Division within 72 hours (e.g., by telephone or electronic mail);
- Take immediate action to prevent any (b) releases of the petroleum into the environment; and
- (c) Take immediate action to identify and mitigate fire, explosion, and vapor hazards.

All Fund eligible work shall be conducted and/or overseen by an UST Approved Corrective Action Contractor. The current list of approved contractors is enclosed. Also refer to the Authorization for Fund Eligibility form.

Mr. Ralph S. Harder October 30, 1996 Page 2

Tennessee Army National Guard must comply with all applicable federal, state, and local requirements during tank closure activities, including treatment and disposal of contaminated soil and/or groundwater. For information regarding the treatment of petroleum contaminated soils, refer to the enclosed Technical Guidance Document 009.

Enclosed is a copy of the Permanent Closure Report Form, Technical Guidance Document 005 and Technical Guidance Document 009. The Permanent Closure Report Form must be completed and submitted with original or carbon copies of the analytical results. Photocopies will NOT be accepted.

Before the closure of your UST system can be considered complete, an amended UST Notification Form must be completed, signed, and submitted to the UST Central Office in Nashville. Failure to properly submit the form may result in the assessment of additional UST fees. To assist you in properly completing the Notification Form, the following instructions should be followed:

- If tanks are being removed and no additional tanks are being installed, then complete only sections I, II, VIII, and X. The tank identification numbers should correspond with the numbers for these tanks on the previous Notification Form.
- 2. If additional tanks are to be installed at this facility, then sections IX and XI must also be completed. The identification numbers for the new tanks must be different from the numbers of the tanks which were removed (e.g., Tanks 1, 2, and 3 were removed, Tanks 4, 5, and 6 are to be installed).

If you have any questions concerning this correspondence, contact me at (901) 368-7974.

Sincerely,

Cynthia J. Patton

Cynthia J. Patton

Division of Underground Storage Tanks

CJP\79016304\ag

Mr. Ralph S. Harder October 30, 1996 Page 3

Enclosure:

Approved Closure Application (copy)
Permanent Closure Report Form (1/94)
Technical Guidance Document 005 (1/94)
Technical Guidance Document 009 (1/94)
Authorization For Fund Eligibility

c: Nashville UST Central Office - Fee & Notification Section

Memphis UST Field Office

OID

August 1996

STATE OF TENNESSEE DIVISION OF UNDERGROUND STORAGE TANKS

APPLICATION FOR PERMANENT CLOSURE OF UNDERGROUND STORAGE TANK SYSTEMS

The UST system Responsible Party shall complete and submit the original application to the appropriate Division of Underground Storage Tanks field office for approval 30 days prior to closing a UST system. Tennessee Code Annotated (T.C.A.) §68-215-103(16) defines Responsible Party (RP) as the owner and/or operator of a petroleum site or any person who at the time of the release which caused the contamination was an owner and/or operator of a petroleum underground storage tank. T.C.A. §68-215-114(b) states that the Responsible Party shall be liable to the state for costs of investigation, identification, containment and cleanup, including monitoring and maintenance.

Refer to the attached map for the address of the appropriate field office. A copy of the approved application shall be on the premises with the person in charge during closure of the UST system. All of the following items shall be addressed.

The application is valid for twelve months from the approval date. The approved application is non-transferable. If RP of the UST system changes, a new application shall be submitted for approval. Approval of this application is for closure activity only. Fund coverage approval is a separate process.

1	2000
Da	te 14 Oct 16 Facility ID Number: 3-790 9 83-2
i.	Name of Facility: OMS#15- MEMOMS
	Address: 2610 E. Holmes 12d.
	Mamphis, TN 38118
	Phone Number: Och 543-7500 County: 5 HELBY
	On-site Contact (Operator): Cut William R. Hoppier
2.	Name of Responsible Party: MAT ROBERT D. Fullenson
	Address: Honora Branners - 341 Sinco Dr.
	WASHULLE, TN. 37204-1502
	Phone Number 6/5 3/3 0604 Contact person: DAN FICKERSON
3.	Number of tanks registered at this facility:
4.	Number of regulated tanks to be closed:
	A STAIRHIS FIELD OFFICE

Application for Permanent Closure of UST Systems
Date // OCT //
Page 2 of 5

Facility ID#0-790983-2

Tank Number	Size	Contents (past and present)	Usage* (all that apply)	Last Use
790983.1	6,000 gnl	Desil #2	Milomny	Det.
90983-2	60009x	Diel Gas	Milsiany	N/H
:		MIX		
	· 			
Retail, Commercia	l, Heating oil, Emer	gency generator, Residen	tial, Farm, Other	
. Type of closure:	Removal	- Closu	re in place	
		** Inert	naterial selected	
			•	
 Attach a stateme 	nt explaining the re	ason for closure in place.		
		ason for closure in place. e / K/U/	96	
. Proposed date of . Soil and/or ground of product stored	UST system closur nd water samples sl i. If the type of pro	-	tory analyses are bas all samples shall be	analyzed us
 Proposed date of Soil and/or ground of product stored benzene, TPH-G 	UST system closur nd water samples sl i. If the type of pro RO, TPH-DRO, and	nall be collected. Labora oduct stored is unknown,	tory analyses are bas all samples shall be	analyzed us
. Proposed date of . Soil and/or ground of product stored benzene, TPH-G	UST system closured water samples sind water samples sind. If the type of process, TPH-DRO, and the type of the type of process. TPH-DRO, and the type of type of type	hall be collected. Labora other stored is unknown, and a waste oil method. Man	tory analyses are bas all samples shall be	analyzed us
Proposed date of Soil and/or ground of product stored benzene, TPH-G GASOLINE TA Benzene AN	UST system closured water samples slit. If the type of proRO, TPH-DRO, and NKS: (Boiling Poil	hall be collected. Labora other stored is unknown, and a waste oil method. Man	ory analyses are basel samples shall be k all the following t	analyzed us
Proposed date of Soil and/or ground of product stored benzene, TPH-G GASOLINE TA Benzene AN Total Petrole	UST system closured water samples stated water samples stated in the type of processor, TPH-DRO, and NKS: (Boiling Points) The control of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of	hall be collected. Labora oduct stored is unknown, id a waste oil method. Maint Range 70-180° F) Gasoline Range Organics	ory analyses are basel samples shall be k all the following to	analyzed us
Proposed date of Soil and/or ground of product stored benzene, TPH-G GASOLINE TA Benzene AN Total Petrole	UST system closured water samples shall lifthe type of property of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of the type of	hall be collected. Labora other stored is unknown, it a waste oil method. Maint Range 70-180° F)	ory analyses are basel samples shall be k all the following to the followi	analyzed us

If closing chemical tanks, contact the Environmental Protection Agency in Atlanta at (404)

347-3866.

Application for Permanent Closure of UST Systems Facility ID#0-19093-
Page 3 of 5
9. Name of Division approved laboratory Paciniang Assay's Evol. Sci. Comp.
10. Name of Company/Person performing the UST system closure
11. Name of Company/Person obtaining soil/ground water samples
12. All excavated material remaining on the site of generation or on a site owned by the RP or subsidiary of the RP shall be placed on and covered with plastic, and berned. If practical, the material should be segregated pending soil conditions. Proper screening and sampling of the excavated material in accordance with Technical Guidance Document - 005 shall be completed prior to treatment. If treatment is required, the material shall be properly screened and sampled prior to disposal.
If petroleum contaminated material is to be managed in accordance with Technical Guidance Document-009, the appropriate Application to Treat Petroleum Contaminated Soil shall be completed and submitted to the appropriate field office for approval. If the contaminated material is to be treated on a site owned by a Third Party, contact the Tennessee Division of Solid Waste Management.
Give the location/address where contaminated soil will be stockpiled MS#15-Maphis
13. Describe how the contaminated soil will be treated No Sine Marine of Agent Town
14. Give the location/address where the contaminated soil will be treated OM 5 4/5
15. If water is encountered, a maximum of 500 gallons can be properly removed without notifying the Division. Tumpus - Lemovies - Tunnsport -
16. Describe where contaminated water will be treated To Kalman Ton Facility
17. Describe how treated water will be disposed Antron Recycling

Application for Permanent Closure of UST Systems
Date 10196
Page 4 of 5

Facility ID#<u>0790983</u>-/

18. A site map shall be provided in this space giving the location of the underground storage tanks, associated lines, sampling points and any nearby underground utilities. A permanent fixed point must be identified and a distance referenced to the UST system. THE APPLICATION WILL NOT BE PROCESSED WITHOUT THE MAP.

SEB AMMENTO

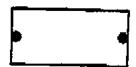
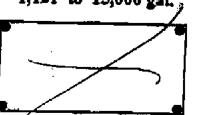
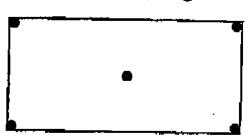
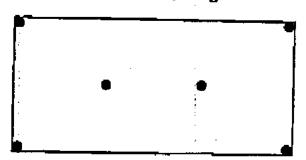

Application for Permanent Closure of	UST Systems	Facility ID	<u> 190483-</u> ,
Date 96 OCT 96 Page 5 of 5	•		<u>190483-</u> , E_2
rage 5 or 5	:	<u>.</u>	1
I, (print) system(s) at this facility, agree to sub results for the UST system closure at release from the UST system(s) at this	mit, within 45 days of ad will resolve all envi	collecting the san	
I certify under penalty of law, includin contained in this form and on any at knowledge, information and belief. I false information, including the possibi	tachments is true, accur am aware that there are	rate and complete s significant pena	to the best of my
UST system RP or RP authorized representative (Print name)	Signature	All I	140cf 96 Date
Title (Print)		•	
STATE OF	COUNTY	DF	
Sworn to and subscribed before me by			on this date
. My commissio	n expires		 -
:			
Notary Public (Print name)	Signature		Date
Stamp/Seal			

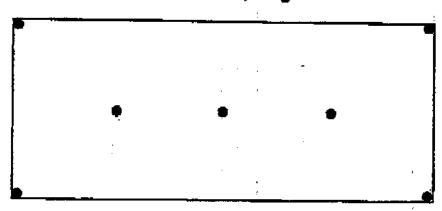
FIGURE 1

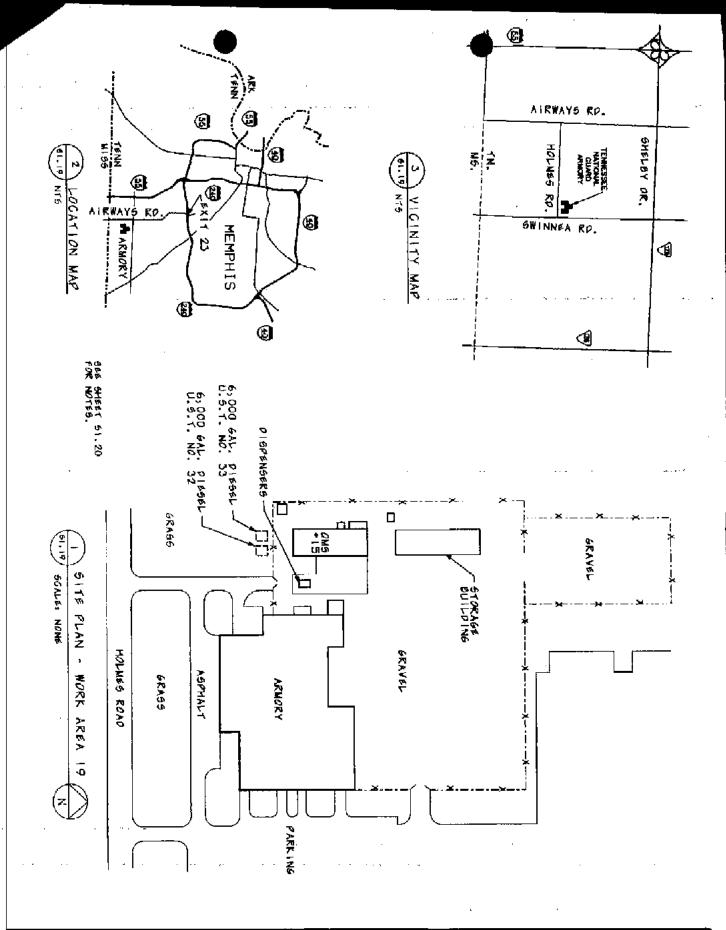

SAMPLE LOCATIONS FOR UST REMOVAL

1,120 gal. or LESS


271502793


1,121 to 15,000 gal.


15,001 to 30,000 gal


30,001 to 45,000 gal.

45,001 to 60,000 gal.

• - Sampling point

DATE JULY 29, 1996 STALEAS HOTED	GITE 19 LOCATION PLAN	TENNESSEE ARCHITECTURAL SERVICES CAPITAL PROJECTS MANAGEMENT	STAMP
161.19	Underground Storage Tanks Removal Memphis National Guaro Armory Memphis, Th. SOC Project No. 361/000-01-96	DEPT. OF FINANCE AND ADMINISTRATION STATE OF TENNESSRE SUITS 500 ~ 511 UNION STREET ~ NASHVILLE,TN (815) 741-4034 ~ FAX (815) 741-2335	

NOTIFICATION DATA FOR UNDERGROUND STORAGE TANKS

FACILITY DATA

FACILITY ID NUMBER: 0-790983

OWNER'S ID : 12491

DATE RECEIVED : 05-08-86

NOTIFICATION TYPE : Amended

NUMBER OF TANKS : 2

OWNERSHIP OF TANK(5):

Name : HEADQUARTERS TN ARMY/NAT GUARD

-

Mailing Address: ATT:AGTN-DFE CAPTAIN COUCH, HOUSTON BARRACKS P O BOX 41502 City: NASHVILLE State: TN Zip Code: 37204-1501

Phone: (615) 532-3376 County: DAVIDSON

LOCATION OF TANK(S):

Name : OMS #15

Street Address: 2610 E HOLMES RD

City: MEMPHIS State: TN Zip Code: 38118

County: SHELBY Latitude: NOT MARKED Longitude: NOT MARKED

OWNER TYPE : Federal

INDIAN LANDS :

Reservation/Trust Lands: NOT MARKED
Owned by Tribe : NOT MARKED
Name of Tribe/Nation : NOT MARKED

FACILITY TYPE(5):

Fed. Military JV

CONTACT PERSON IN CHARGE OF TANKS:

Name : ALBERT FORREST Title: FOREMAN

Address: NOT MARKED

City : NOT MARKED State: NOT MARKED Zip Code: NOT MARKED

Phone : (901) 346-1528

CERTIFICATION:

Name: ROBERT FULKERSON

Title: CAPTAIN Date: 07-19-90

FINANCIAL RESPONSIBILITY:

I have met the financial requirements: NOT MARKED

Method(s):

NOT MARKED

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete.

Signature:

Date:

MOTIFICATION DATA FOR UNDERGROUND STORAGE TANKS

Tank Data

	<u>_</u>						
	PACILITY ID.	0 790983 *	0-790983				*
	TANK ID	1	2	•		• · · · · · · · · · · · · · · · · · · ·	*
		a		<u> </u>	•	•	· · ·
Status of	Tank	•		"	*	•	0 4
	tly In Use	× '		•		0	•
	Out of Use *	6	''	В	1		•
	Out of Use		·· · · ·	•	٥	•	•
Amenda	7""	•		•		1	• 0
#16/19 13/66	0 0		•	±	4	1	
D-16 :	Installation	04-30-82	04-30-82	4	•	•	P- 0
	installation	14			,	•	В В
Age				······································	•		п В
Eat. Tot.	al Capacity (Cale)	0,000	6,000			0	• •
				•	•		•
	of Construction			a		*	• •
	t or Bare Steel			4	•	+	4 9
•	Protected arous			•	•		, ,
	Coated Steel			<u>, </u>		B	•
Совро					0	<u> </u>	•
-	glass Reinf. Plas.	X	<u> </u>	-			• •
Lined	Interior .		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
	e Walled °			•	•	*	• •
Poly.	Tank Jacket			+	٩	5	•
Concr	ere	,	•	+	•		•
Excav	ation Liner "		•	•	•	В	•
Unkno		•	•	•	Q	•	^
	, explanation		•	•	•	•	•
	peen repaired?		•	b	•	•	•
	9			•		•	•
Piping M	aterial		•	•	Δ	•	• *
	Steel		0	•	•	•	a •
	nized Steel	х	° x	•	•	•	
	glass				9	6	•
Сорре				•	•	0	- ·
	dically Protected .		ь	•	(***	0 P
	Bloarly Proceduced		•	0	"	٥	
	le Walled		•	•	•	0	
	dary Containment			1	•	•	•
Unkno			•	•	*	υ	4
Other	, explanation *		•	•		•	a 1
			0	•	•	6	• •
Piping T	YP.		•		n	•	1 7
11	OUT: NO ANTAR		В		•		ù •
	DUI AUTA		•	· · · · · · · · · · · · · · · · · · ·			-
Press	nie		•	· •	-	-	
	ty Fed			<u> </u>	•		•
Pipi	ng been repaired?		<u> </u>			•	•
				10.	· · · · · · · · · · · · · · · · · · ·		· · ·
	e Stored in Tank *		<u> </u>	· · · · · · · · · · · · · · · · · · ·		-	•
Capo	line '		° x	-		•	
Dies			•	•	•	7	
Casol			•		•		•
Kero			5	•	n	<u>-</u>	* *
Heet:	ing Oil °		•	•		•	<u> </u>
	011		•	•	•	•	1 n
	r, explanation°		•	•	٠	٠	•

Tank Data

	FACILITY ID'	0-790983	0.790903	u	*		0
	TANK ID *	1	2	·	•	•	•
	•			В	•	•	
Substance	Stored in Tank *			•	•	4	0
<u>Ha</u> zard	ous Substance °				•		
CERCLA	Name.		'	· · · · · · · · · · · · · · · · · · ·	•	•	•
CAS Nu				-			,
Mixtur		. =		•	•		
	e, Specification *		-			<u> </u>	
- FIXCUL	el observication			•	•		•
			41.			4	
	of Use/Chq. Ser.			<u> </u>		•	•
	ata Last Used *	·		0	•	•	
	ate Tank Closed *				•	•	D 0
Romove	d from Ground *	0		•	*	•	0 0
Closed	in Ground 1					•	+ 0
filled	with Inert Mat. *		"""	4	•	•	*
	Mat. Description				,		· · · · · ·
	in Service						
	1-11 712 42111			•	D		
	аваниент. Стипт.					·	• •
Loak D	stscted *	<u></u>		· · · · · · · · · · · · · · · · · · ·	, <u></u>	+	• •
		•					2 4
<u>Installat</u>	ion •			•		•	0 4
Cortif	ied by Manufac. *	<u> </u>		•	8	+	9 9
Certif	ied by imple. Agn"			9	p	•	0 0
	ted by Engineer .			7			• •
	ted by Imple. Agn	1		•	0	•	0 0
	ists Completed					,	•
	r Allowed Method °	-	<u>-</u>		<u> </u>		
					<u> </u>		
Mernod	Description °			_ 	1912	*	•
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•
Release D		Tank Piping°		ing°			•
<u>Manuel</u>	Tank Gauging "	х •	х '	<u> </u>		8	u B
Tank T	ightness Teating °	х • •	х .	•	9	4	
<u> Invent</u>	ory Controls °	•		,	a	-	+
<u>Automa</u>	tic Tank Gauging *	9 6	i	6	•	0	
	Monitoring °	• -	•	4	• '	0	1 ,
	water Monituring *	• •					1
	Mon./Double Wall"	9 4		+	a .		•
. —	Mon./Sec. Cont. °			 -	1	- 1711	
		* 0				· <u></u>	*
	Lime Leak Detect.°	· · · · · · · · · · · · · · · · · · ·			•	n	
	ightness Testing °			· · · · · · · · · · · · · · · · · · ·	•	•	• •
Other	летлоа	• •		·		٥	,
Other	Description °				D		
				0	• `		•
Spill and		•			4		
	ll Device Inst. °			0	•	-	4 4
	Device Installed	•	-		•	2	* •
	•			a	•		
Installat	tos °				•	4	
	TOU						• •
Nапо					•	+	· · · · · · · · ·
Positi	241			-		•	•
Соправ	¥			4	•		
Date		•		9	•	P	• -
	· · · · · · · · · · · · · · · · · · ·						

RALPH S. HARDER C.P.E., ENVIRONMENTAL ENGINEERING SPECIALIST 5

OFFICE 619-313-0607 FAX 613-313-0769 HEADQUARTERS (AGTN-CFMO) TENNESSEE ARMY NATIONAL GUARD (STARC) HOUSTON BARRACKS, P.O. BOX 41502 NASHVILLE, TN 37204-1502

899 T J 2014

INITIAL SITE CHARACTERIZATION REPORT NATIONAL GUARD ARMORY OMS#15

2610 E. Holmes Road Memphis, Tennessee TDUST Facility #0-790983 ATC Project No. 1995.0043

Prepared For:

Mr. Steven L. Westerman
Environmental Programs Coordinator
Tennessee Department of Finance and Administration
Tennessee Tower, Suite 1500
312 N. 8th Street
Nashville, Tennessee 37243-0300

Date: July 28, 1998

5217 Linbar Drive Suite 306 Nashville, Tennessee 37211 615.331.5010 Fax 615.331.5032

July 28, 1998

Mr. Steven L. Westerman
Environmental Programs Coordinator
Tennessee Department of Finance and Administration
Tennessee Tower, Suite 1500
312 N. 8th Street
Nashville, Tennessee 37243-0300

RE: Army National Guard OMS #15

Holmes Road

Memphis, Tennessee TDUST Facility I.D. #0-790983 ATC Project No. 1995-0043

Dear Mr. Westerman:

On behalf of the Tennessee Department of Finance and Administration (F&A), ATC Associates Inc. (ATC) is hereby submitting the enclosed Initial Site Characterization Report (ISCR) for the above referenced project. It is our understanding that you will forward copies to the Tennessee Division of Underground Storage Tanks (TDUST) central office and Memphis field office.

ATC has completed the primary phase of assessment to characterize the site, and determined the extent of hydrocarbon impact in both soil and groundwater. The results and findings are summarized in this report.

Should you have any questions or comments regarding this project, please call at your convenience.

Respectfully Submitted,

ATC ASSOCIATES INC.

Ken Johnson/ny Staff Geologist

John W. Hargraves Program Manager

cc:

Mr. Jim Ozment - TDEC Central Office Mr. Rudy Collins - TDEC Jackson Office

EXECUTIVE SUMMARY

ATC Associates Inc. (ATC) was retained by the Tennessee Department of Finance and Administration (F&A) to complete an Initial Site Characterization Report (ISCR) at the Memphis Army National Guard OMS # 15 located at 2610 Holmes Road, Memphis, Shelby County, Tennessee. The methodologies used for the investigation were in accordance with the Tennessee Division of Underground Storage Tanks (TDUST) "Environmental Assessment Guidelines" (1996). The results and findings of the investigation are summarized in this ISCR,

A total of five monitoring wells were installed by ATC during one phase of drilling. All five wells were installed at on-site locations. Based on the lack of drinking water wells located within 0.25 miles of the site, ATC recommends that groundwater cleanup levels of 0.07 parts-per-million (ppm) benzene and 1.0 ppm Total Petroleum Hydrocarbons (TPH) be applied to this site. Based on soil permeabilities of 10-6 to 10-7 cm/sec and a non-drinking water classification for groundwater, ATC recommends that soil cleanup levels of 50 ppm Benzene and 500 ppm TPH be applied to this site.

Laboratory analysis of samples collected during the investigation indicate the soil and groundwater beneath the site has not been impacted by hydrocarbons in concentrations above the applicable cleanup levels. Based on this and a site ranking score of 138, ATC recommends no further action and site closure.

TABLE OF CONTENTS

A,	INTROD	UCTION	1
В.	SITE LO	CATION	2
C.	SOIL IN	VESTIGATION	7
	C .1	Geology	7
	C.2	Soil Boring Results	9
	C,3	Analytical Results	10
	C.4	Soil Properties	11
	C.5	Soil Containment Plume Maps	12
D.	GROUNI	DWATER INVESTIGATION	16
	D ,1	Hydrogeology	16
	D.2	Monitor Well Construction	22
	D.3	Well Development	23
	D .4	Monitoring Well Sampling	23
	D.5	Analytical Results	24
	D.6	Groundwater Classification Procedure	25
	D.7	Groundwater Containment Plume Maps	28
E.	SITE RA	NKING	31
F.	PROPOS	ED ADDITIONAL MONITORING WELLS	31
G.	ASSESSI	MENT ACTIVITIES COST	31
H.	SIGNAT	URE PAGE	32

TABLE OF CONTENTS (Continued...)

Table 1 - Soil Analytical Summary11

TABLES:

Table 2 - Soil Properties Summary	13
Table 3 - Water Level Data Summary	18
Table 4 - Well Construction Usage Summary	23
Table 5 - Groundwater Analytical Summary	,25
ADDENDICES	
APPENDICES	
Appendix A - Standard Boring Logs	
Appendix B - Soil Analytical Reports	
Appendix C - Soil Permeability Report	
Appendix D - Groundwater Analytical Report	
Appendix E - Groundwater Classification Procedures	
Appendix F - Water Quality Laboratory Reports	
No Drinking Water Analytical Was Performed	
Appendix G - UST Site Ranking Form	
Appendix H - TN UST Cost Estimate Cover Sheet and Report Preparation Cost	

Estimate Form

TABLE OF CONTENTS (Continued...)

FIGURES:

Figure 1 - Site Vicinity Map	3
Figure 2 - Scale Site Map	4
Figure 3 - Monitoring Well Location Map	5
Figure 4 - Site Vicinity Map	6
Figure 5 - Soil BTX Plume Map	14
Figure 6 - Soil TPH Plume Map	15
Figure 7 - Potentiometric Surface Map	19
Figure 8 - Potentiometric Surface Map	20
Figure 9 - Water Well Location Map	26
Figure 10 - Benzene Contamination Plume Map	29
Figure 11 - TPH-GRO Contamination Plume Man	30

INITIAL SITE CHARACTERIZATION REPORT NATIONAL GUARD ARMORY OMS #15 2610 E. Holmes Road Memphis, Tennessee TDUST Facility I.D. #9-790983 ATC Project No. 1995.0043

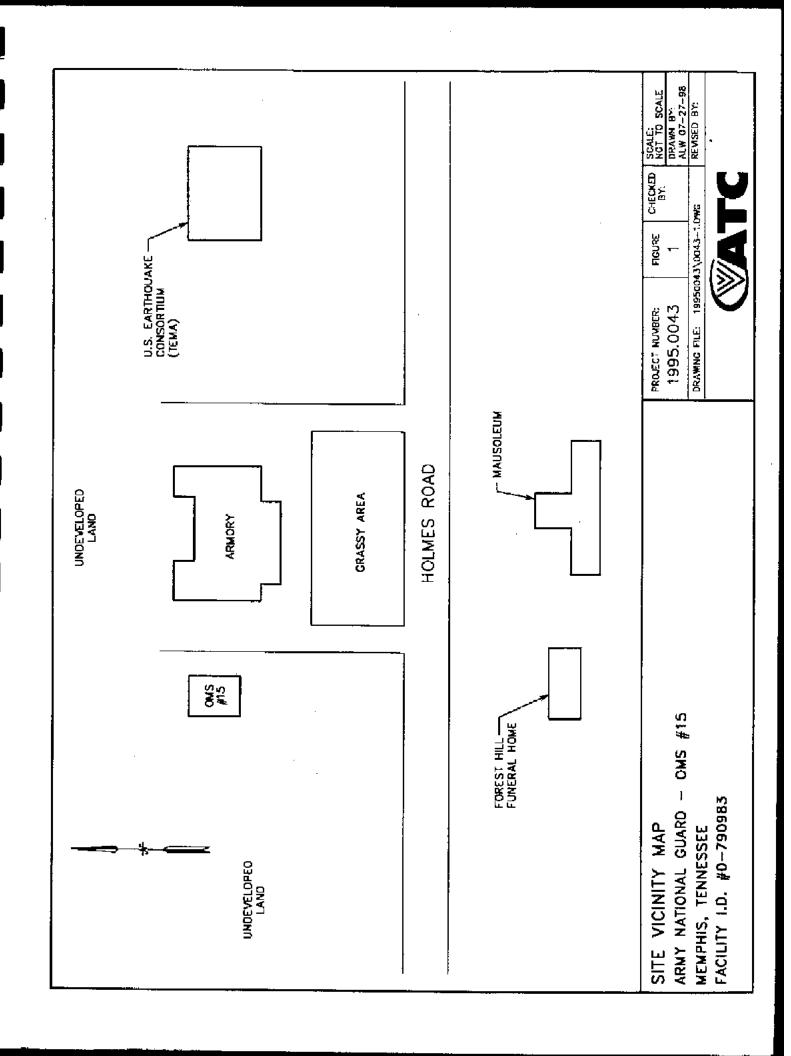
A. INTRODUCTION

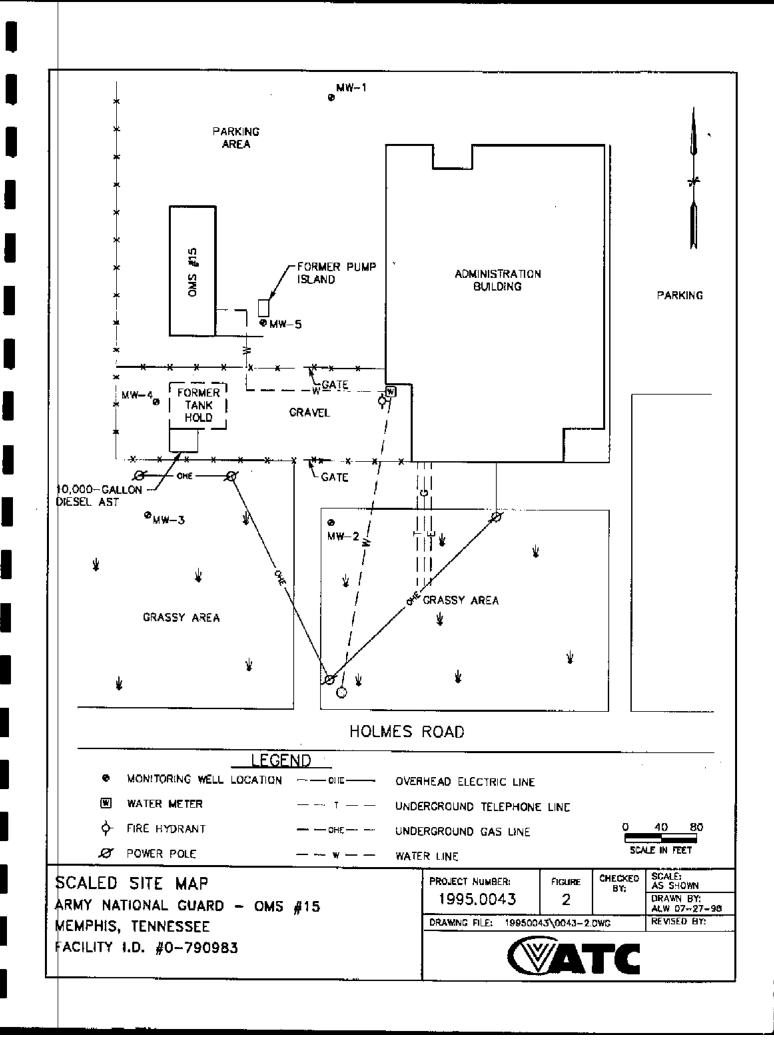
On May 15, 1997, First Response Inc. submitted a Permanent Closure Report to the Tennessee Department of Environment and Conservation (TDEC) Division of Underground Storage Tanks (DUST) Memphis field office detailing UST removal activities at the National Guard Armory OMS #15 located in Memphis, Tennessee. Analytical results from soil sampling during the removal provided readings which exceed the most stringent clean-up levels

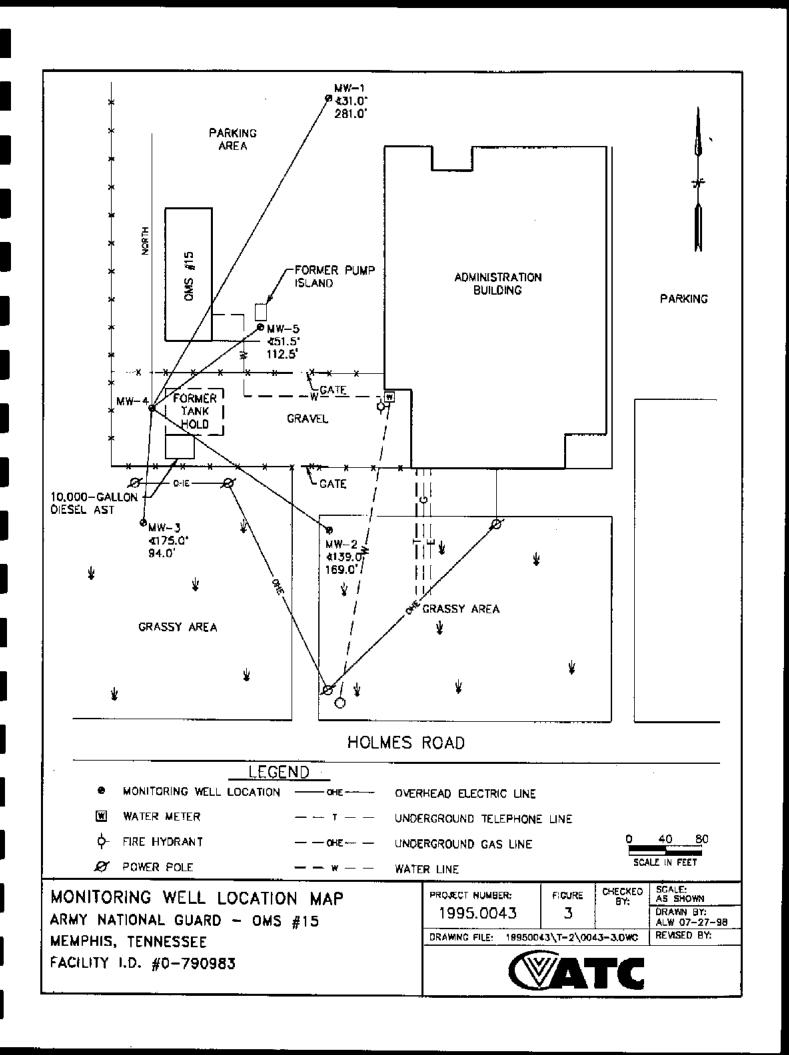
On December 23, 1997, ATC Associates Inc. (ATC) was retained by the Tennessee Department of Finance and Administration to complete subsurface investigation activities and maintain regulatory compliance.

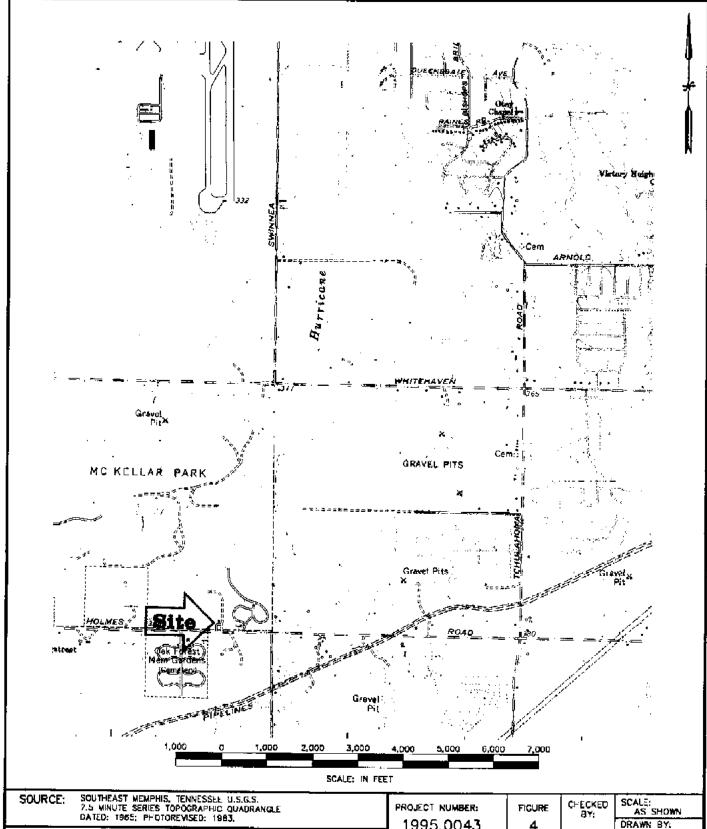
2. Five groundwater monitoring wells were installed on-site in April 1998, to define the extent of hydrocarbons in soil and groundwater beneath the site.

A water use survey consisting of a computer search, field interviews, and field surveys, was completed as the initial steps in the groundwater classification procedure. The results of this survey, which are discussed in Section D.6 of this report, indicate that this site is a "non-drinking water" site.


Technical Guidance Document - 014 "UST Site Ranking System" was completed and a score of 138 was derived. The completed site ranking form is included as Appendix G.


B. SITE LOCATION


- 1. The Site Vicinity Map is illustrated in Figure 1.
- The Scaled Site Map is illustrated in Figure 2.
- The Monitoring Well Location Map is illustrated in Figure 3.
- 4. The Site Location Topographic Map is illustrated in Figure 4.
- 5. The site is located at 2610E Holmes Road, Memphis, Shelby County, Tennessee. Its location as well as surrounding topographic and cultural features are illustrated on Figure 4. Topography in the site vicinity is slight relief to gently rolling. Intermittent surface flow is toward the north and west and surface flow drains indirectly into undeveloped land adjacent to the north and west property boundary.


Land use in the site vicinity is mixed commercial and residential. The site is bound to the north by undeveloped land, to the east by the United States Earthquake Consortium with undeveloped land beyond, to the south by Holmes Road with Forest Hill Funeral Home and Cemetery beyond, and to the west by undeveloped property.

The site property is rectangular in shape with north/south and east/west dimensions of approximately 600 feet and 500 feet, respectively (see Figure 3). Approximately half of the property consists of a grassy area located on the southern portion of the site. The western and northern property boundary are enclosed by a chain link fence. The Administration building occupies the central and eastern portion of the property. The OMS building is located near the western property boundary, and the former tankhold is located directly south of the OMS.

SITE LOCATION TOPOGRAPHIC MAP NATIONAL GUARD ARMORY OMS #015 MEMPHIS, TENNESSEE FACILITY I.D. #0-790983

1995,0043

DRAWN BY: ALW 07-27-98 REVISED BY:

DRAWNG FILE: 19950043\T-2\0043-4.DWG

building. A 10,000-gallon above ground storage tank (AST) which stores diesel fuel is located adjacent to the former tankhold. The remaining central and northern portion of the property serves as a parking area for various military vehicles. This parking area consists of a mixture of asphalt and gravel

An underground water line, telephone line, and electric line intersect the southwest corner of the Administration building and terminate at Holmes Road. An underground water line intersects the west central portion of the Administration building and terminates at the southeast corner of the OMS building. Overhead electric lines intersect the southwest and southeast portion of the site and terminate near the entrance to the site near Holmes Road. The location of the subsurface utilities are illustrated in Figure 2.

C. SOIL INVESTIGATION

ATC completed a subsurface investigation during the assessment of this site. The subsurface investigation was required to define the extent of hydrocarbon impact in soil and groundwater. During April 1998, monitoring wells MW-1 through MW-5 were installed onsite.

C.1 Geology

a) The National Guard Armory OMS #15 is located in the Gulf Coastal Plain Physiographic Province. This area is characterized by gently rolling topography formed by erosion, and includes alluvial, fluvial, and sedimentary units from the Tertiary and Quaternary age geologic formations. The area is covered by a blanket of loess sediments (clayey and sandy silt) which make up the present land surface in most areas of the Mississippi River flood plain. Underlying the loess blanket is a sequence of clastic sedimentary units that range from low energy environmental sand and gravels.

b) Published Geologic maps of the southeast Memphis Quadrangle, Tennessee, currently are not available. According to the Soil Conservation District Map for Shelby County, the site is located within the Memphis-Grenada-Loring Association.

This association is common throughout the Shelby County. It is characterized by nearly level to sloping, well drained and moderately well drained, silty soils on broad uplands. The soils in this association formed in silt deposits 5 to 30 feet deep.

Memphis soils are on the narrower ridge tops and steeper hillsides and are well drained. Memphis soils have a surface layer of brown silt loam and a subsoil of brown to reddish-brown silty clay loam or silt loam.

Grenada soils are commonly on nearly level ridgetops and sloping hillsides. They have a surface layer of brown silt loam, a subsoil of yellowish-brown silt loam, and a fraginan at a depth of 15 to 30 inches.

Loring soils are on ridgetops and hillsides and are moderately well drained. They have a surface layer of brown silt loam, a subsoil of brown to dark-brown silt loam or heavy silt loam, and a weak fragipan at a depth of 12 to 30 inches.

c) The soils penetrated during drilling at this site consisted of three recognizable sections which are in descending order: 1) silty clay, 2) gravel, and 3) poorly sorted sands.

The uppermost section consists of light brown to reddish brown silty clay to an average depth of 15.34 feet below land surface (bls). This uppermost unit ranges from soft to stiff and slightly moist. Groundwater saturation is present in this section at an average depth of 12.5 feet bls.

The second section consist of a poorly sorted gravel layer ranging from an average depth of 15.34 feet bls to 15.88 feet bls. This unit sometimes contains coarse sand.

The underlying section penetrated consists of a poorly sorted sand ranging from an average depth of 15.88 feet to the terminal depths of the borings. This section is brown to reddish-brown.

- d) A bedrock contour map was not provided due to the absence of bedrock.
- e) No dip and strike measurements were made due to the absence of bedrock.

C.2 Soil Boring Results

On site wells MW-1 through MW-5 were drilled by Tri-State Drilling Services using a truck mounted drill rig equipped with 8.25 inch outside diameter (O.D.) hollow stem augers. A 5.0 foot length split spoon sampler was used to collect soil samples from ground surface to the approximate total depth of each boring.

All soil samples retrieved during each phase of the investigation were logged by the onsite geologist. Standard boring logs for each boring are included as Appendix A.

The drilling rig, sampling tools, and all downhole equipment were decontaminated prior to each use with a high pressure steam cleaner. All drilling

and sampling activities were completed in accordance with TDUST Environmental Assessment Guidelines (EAG, 1996).

The EAG protocols for selecting soil samples for laboratory analysis were followed during all sampling activities. Upon opening the soil sampler, the sample was split and one portion was placed in a laboratory container and immediately stored on ice for possible analysis. The remaining portion of the sample was placed in a sealable plastic bag, for headspace screening, and allowed to volatilize for a minimum of fifteen minutes. The onsite geologist then used a Foxboro Organic Vapor Analyzer (OVA) Flame Ionization Detector (FID) to measure and record relative levels of volatile organics which were present in the headspace portion. A minimum of two samples were selected from most of the borings for laboratory analysis; the sample with the highest OVA-FID reading, and the sample collected at the point of initial contact with groundwater. Proper chain-of-custody procedures were followed during sample collection and handling activities.

C.3 Analytical Results

- a) Soil samples collected during this investigation were submitted for analysis of benzene, toluene, ethyl-benzene, and xylcnes (BTEX) with Methyl-tert-butyl ether (MTBE) by EPA method 5030/8020, and Total Petroleum Hydrocarbons Gasoline Range Organics (TPH-GRO) and total Petroleum Hydrocarbons Diesel Range Organics (TPH-DRO) by Tennessee standard method. Laboratory services were provided by Hygeia Laboratories, a subsidiary of ATC, located in Marietta, Georgia.
- . b) The soil sample analytical results are summarized in Table 1. The laboratory reports and corresponding chain-of-custody forms are included as Appendix B.

TABLE 1 Soil Analytical Summary ARMY NATIONAL GUARD OMS # 15 TDUST Facility I.D. #0-790983

Boring	Interval	Date		2.00		Analytical	Parameter			
Well	Sampled, (feet bis)		Benzene	Toluene	Xylenes	MTER	Total BTX	TPH: GRO	DRO N	Total TPH
Metho	d Detection		0.002	0.002	0.002	0.025		0.5	4.0	
MW-1	8-10	4-7-98	Ν̈́D¨	ND	ИD	ND	ND	ND	ND	ND
MW-I	6-8	4-7-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	6-8	4-7-98	ND	ND	עא	ND	ND	ND	ND	ИD
MW-2	8-10	4-7-98	ND	ND	ND	, ND	ND	ND	ND	ND
MW-3	5-7	4-6-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-3	10-12	4-6-98	ND	ND	ИD	ND	DИ	ND	ND	ND
MW-4	3-5	4-6-98	ND	מא	ND	ND	ND	ДИ	5.0	5.0
MW-4	10-12	4-6-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	5-7	4-6-98	ND	ND	ND	מא	ND	ND	ND	ND
MW-5	10-12	4-6-98	ND	ND	ND	ND	ND	ND	ND	ND

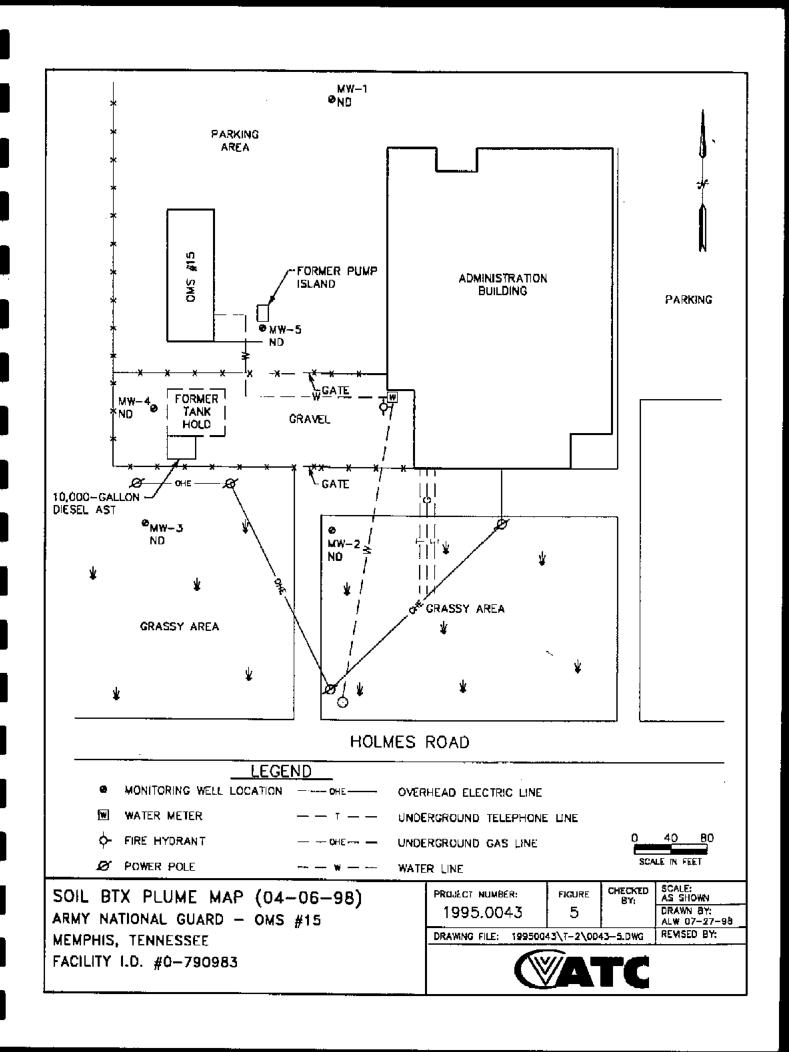
NOTES:

Results listed in parts-per-million (ppm)
Benzene clean-up level = 50 ppm
TPH clean-up level = 500 ppm
ND - None Detected
MW - Monitoring Well
Shaded areas exceed applicable clean-up levels

C.4 Soil Properties

- a) Two shelby tubes were collected from boring SB-5 at intervals of 9-11 feet bls to 11-13 feet bls. The 11 to 13 foot bls sample was collected as the most permeable zone and the zone just above the water table. The 9 to 11 foot bls sample was collected as the second most permeable zone.
- b) The samples were collected by direct-push shelby tube techniques. The soil boring was advanced to the top of a desired sample interval. A shelby

- tube was then lowered into the boring, and an undisturbed soil sample was collected by pushing the shelby tube through the desired interval.
- c) The shelby tube samples were tested in accordance with method 9100 of test methods for evaluating solid waste, Third Edition (SW-486) and in general accordance with ASTM D-5084. Fractional Organic Carbon was tested in accordance with ASTM D-2974-90 (Method C).
- d) Tri-State Testing Services, Inc. In Memphis, Tennessee, performed the analysis.
- e) Soil permeability data is summarized in Table 2.


C.5 Soil Containment Plume Maps

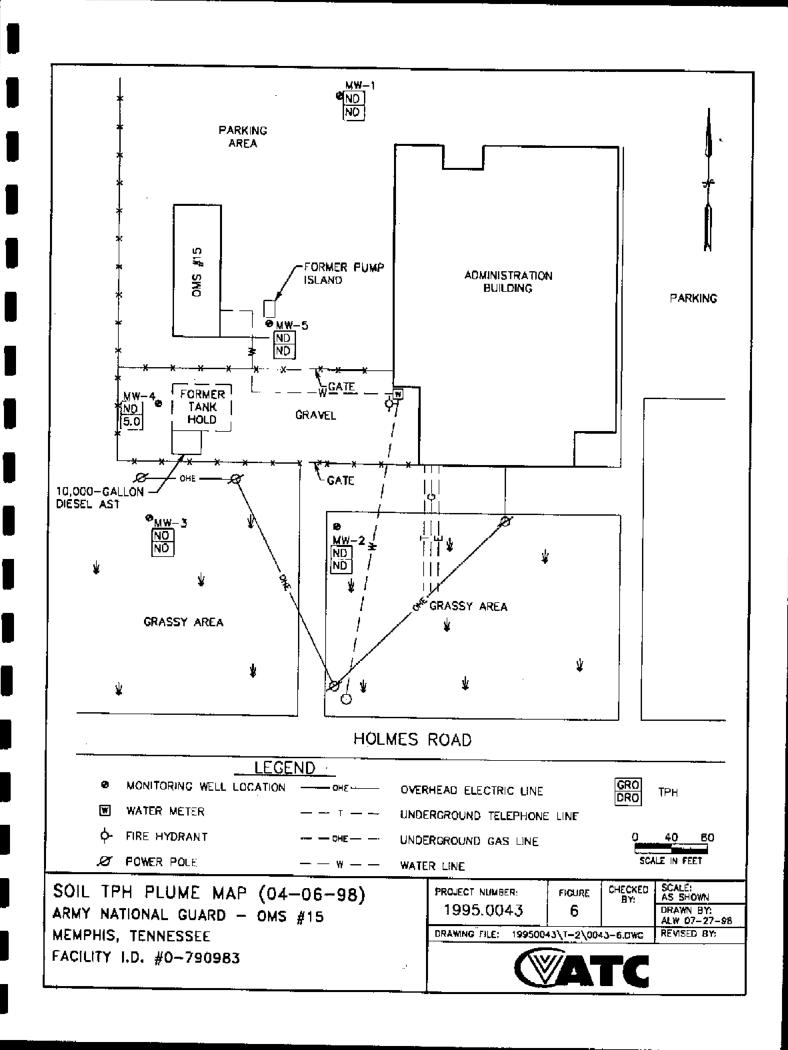

Plume maps depicting the estimated lateral extent and concentrations of BTEX and TPH in soil beneath the site are included as Figures 5 and 6, respectively. BTEX and TPH-GRO concentrations were not detected in the immediate vicinity of monitoring wells MW-1 through MW-5. The highest concentrations of TPH-DRO are present within the immediate vicinity of monitoring well MW-5 adjacent to the former dispenser island. TPH-DRO concentrations were not detected in the vicinity of monitoring wells MW-1 through MW-4. The containment area of the plume and general plume morphology, indicate that plume migration is minimal. Soil analytical results indicate TPH levels below site action limits.

TABLE 2 Soil Properties Summary NATIONAL GUARD ARMORY 0MS #15 TDUST Facility I.D. #0-790983

Boring Depth (bl Zone	s)	SB5A-1 9-11 Vadose Zone	SB5A-2 (j.13 Capillary Fringe
Parameters	units		
Permeability	cm/sec	2.3 X 10 ⁻⁷	4.1 X 10 ⁻⁶
Volumetrie Air Content	cm³-air/cm³-soil	0.017	0.012
Volumetric Water Content	cm ³ -air/cm ³ -soil	0.334	0.316
Total Soil Porosity	cm³/cm³-soil	0.351	0.328
Soil Bulk Density (wet)	g-soil/cm³-soil	2.04	2.06
Fractional Organic Carbon	g-carbon/g-soil	0.009	0.009

Based on the most permeability sample of 4.1 X 10-6 and the groundwater classification of non-drinking water, the applicable clean-up levels were determined. The levels are 50 parts-per-million (ppm) benzene and 500 ppm TPH. Appendix C contains the soil properties report from Tri-State Testing Services, Inc.

D. GROUNDWATER INVESTIGATION

Five groundwater monitoring wells, MW-1 through MW-5, were installed during the investigation phase during April 1998, to assess conditions in the vicinity of and laterally from the suspected point of hydrocarbons release. Monitoring well MW-1 was located in an inferred upgradient position. Wells MW-2 and MW-3 were located in inferred downgradient and lateral directions. MW-4 was installed adjacent to the suspected point of release. MW-5 was installed adjacent to the former pump island.

Laboratory analysis of groundwater samples collected from groundwater monitoring wells MW-I through MW-5 indicated that the groundwater contaminate plume had been adequately defined and that groundwater beneath the site had not been impacted. Analytical results indicated that BTEX, TPH-GRO, and TPH-DRO parameters were not detected in monitoring wells MW-1 through MW-5.

D.1 Hydrogeology

- a) Saturated conditions occur at an average depth of approximately 12.5 feet bls within the underlying silty clays. The inferred direction of groundwater flow is westerly. Primary aquifer recharge is believed to be from associated tributaries of Hurricane Creek, McKellar Lake, and from infiltrating meteoric water. Preferential pathways for infiltrating water were not identified.
- b) Free product was not observed during the site investigation.
- c) Historic water levels measured at the site area summarized in Table 3.

- d) Potentiometric maps for water levels measured in April 24, 1998, and June 11, 1998, are illustrated in Figures 7 and 8 respectively. The inferred direction of groundwater flow April 24 and June 11, 1998, was westerly.
- e) The hydraulic gradient (i) is defined as the loss of head (dh) over the linear distance (dl) dh/dl = di. The hydraulic gradient (i) was an average determined between wells MW-2 and MW-3 from the potentiometric data collected from April 24, 1998, and between wells MW-2 and MW-4 from the Potentiometric data collected from June 11, 1998.

4/24/98

6/11/98

319.998 (MW-2 static elevation)
-318.60 (MW-3 static elevation)
1.39 (dh)

319.00 (MW-2 static elevation) -316.76 (MW-4 static elevation) 2.24(dh)

 $\frac{dh = 1.39 \text{ ft}}{dl = 150 \text{ ft}}$

dh = 2.24 ftdl = 172.5 ft

 $i = 9.26 \times 10^{-3}$

 $i = 1.29 \times 10^{-2}$

Average hydraulic gradient, (i avg) = $(9.26 \times 10^{-3} + 1.29 \times 10^{-2}) / 2$ = 1.11×10^{-2} Initial Site Characterization Report TDUST Facility I.D. #0-790983

TABLE 3 Water Level Data Summary NATIONAL GUARD ARMORY OMS #15 TDUST Facility I.D. #0-790983

1 (1977) 1977 1 (1978) 1 (1977)	V71									
Adjusted Potentiometric Surface	318.03	316.98	319.99	319.00	318.60	316.58	317.84	316.76	319.48	318.08
Potentiometric Surface Elevation	318.03	316.98	319.99	319.00	318.60	316.58	317.84	316.76	319.48	318.08
Thickness of Free Product	dK	dN	đK	dN	Ē	d₹	ďN	ďK	dK	ďУ
Depth from TOC to Water	6.04	7.09	3.41	4.40	2.58	4.60	3.98	90′5	3.29	4.69
Depth from TOC to free Product	Ν̈́	ΝΡ	NP	NP	AN.	a'N	ΑN	ďΑ	ďN	NP
Date Measured	4-23-98	6-11-98	4-23-98	86-11-9	4-23-98	96-11-9	4-23-98	6-11-98	4-23-98	6-11-98
TOC Elevation	324.07	324.07	323.40	323.40	321.18	321.18	321.82	321.82	322.77	322.77
Well Depth	17.68	17.68	17.77	17.77	17.45	17.45	17.09	17.09	17.52	17.52
Well	MW-1	I-MW	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5

NOTES:

All measurements in feet NP= No product encountered

t) Using Darcy's Law, the apparent groundwater velocity (v) in centimeters per second (cm/sec) is the hydraulic conductivity (K) times the hydraulic gradient (I) divided by the efficient porosity (Ne).

$$V = \underline{K(i)}$$
Ne

A 20 percent porosity was used in the equation. Using a published hydraulic conductivity for clayey sands of 1.0 X 10⁻³ cm/sec, and the hydraulic gradient of 1.11X 10⁻², the groundwater velocity is calculated as:

.001 cm/sec (.011) ft/ft

0.20

 $\approx 5.5 \times 10^{-5} \text{ cm/sec}$

Converted to a yearly rate, the anticipated groundwater flow based on the above calculation is approximately 1,734.48 cm/yr.

D.2 Monitor Well Construction

a) Drilling activities for groundwater monitoring wells MW-1 through MW-5 were completed by Tri-State Testing Services using a mobile rig equipped with 8.25 inch outside diameter (O.D.) hollow-stem auger. Soil samples were collected during drilling operations with a 5.0 foot length split spoon sampler.

Monitor wells MW-1 through MW-5 were constructed of 2-inch diameter schedule 40 flush threaded PVC riser and 0.010 inch slot well screen. The screen section of the well was positioned to extend approximately 5 feet below the saturation zone and approximately 5 feet above.

A filter pack of 10-20 silica sand was then tremied into the well annulus to a point approximately two feet above the top of the well screen. A bentonite pellet seal approximately two feet thick as then positioned above the filter pack and hydrated with clean water. Cement/bentonite grout was then placed in the well annulus above the bentonite seal to within approximately one-half foot of the ground surface. Each well was completed at the surface with locking water-tight expansion caps and a load bearing manhole set flush in a concrete pad.

- b) Standard Drilling Logs are located in Appendix A.
- c) Well Construction Material usage is summarized in Table 4.

TABLE 4
Well Construction Usage Summary
NATIONAL GUARD ARMORY OMS #15
DUST Facility I.D. #0-790983

Well	Fill Sand	(lbs)	Bentonit	e (Ibs)	Grout	COMPLEX.CAR	Concrete
	Estimate	Used	Estimate	Used	Estimate	Used	Uscd (lbs)
MW-1	312.5	300	46	50	6.4	7.0	160
MW-2	312.5	300	46	50	6.4	7.0	160
MW-3	312.5	287.5	46	50	8.4	9.0	160
MW-4	312.5	300	46	50	8.2	8.0	160
MW-5	312.5	287.5	46	50	7.9	8.0	160

NOTES:

D.3 Well Development

Upon Completion of well installation activities, the wells were developed by removing water with a disposable bailer. Each well was bailed until relatively clear of sediment. Although relatively clear of visible sediment, the development water retained a reddish-brown color that is believed to be due to the high iron content of the host sediments. No odors were detected from wells MW-1 through MW-5.

D.4 Monitoring Well Sampling

Prior to sample collection, each monitoring well was opened, water was allowed to reach static levels, and the resulting depth to water was measured and recorded.

This information was then used to calculate the standing well volume, and a minimum of three well volumes were purged from the well prior to sampling.

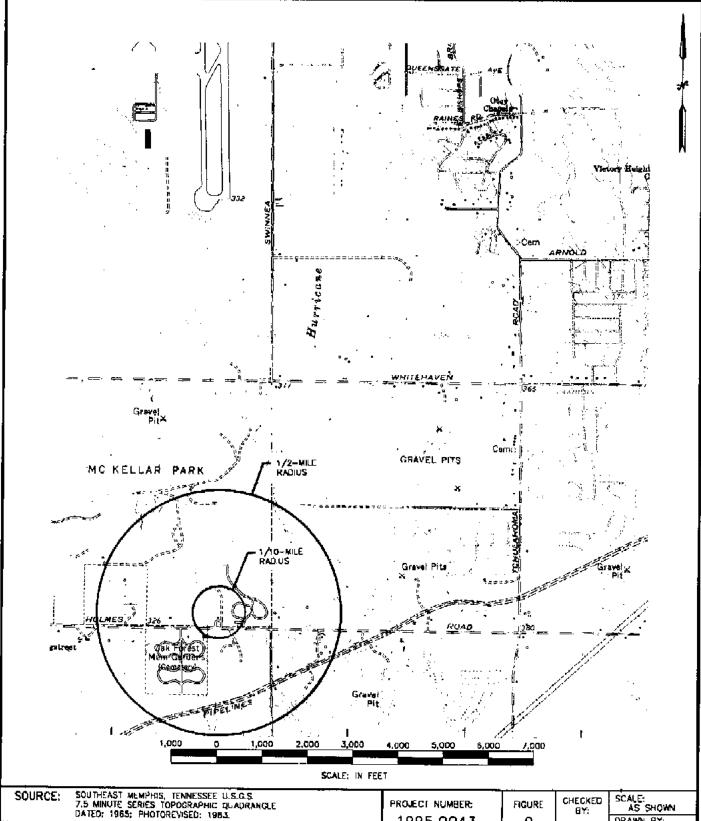
^{*} More grout required due to uneven annulus.

Groundwater samples were collected with single-use disposable bailers and new nylon string. Upon retrieval, the samples were placed in the appropriate laboratory sample containers, labeled, and placed on ice until delivery to the laboratory. Proper chain-of-custody procedures were followed during all sample collection and handling activities. Laboratory services were provided by Hygeia Laboratory of Marietta, Georgia. The groundwater samples were analyzed for BTEX, MTBE, TPH-GRO, and TPH-DRO.

D.5 Analytical Results

- a) Historical analytical results for groundwater samples collected at this site are summarized in Table 5. Benzene, TPH-GRO, and TPH-DRO were not detected for MW-1 through MW-5.
- b) Groundwater Analytical Reports are located in Appendix D.

TABLE 5 Groundwater Analytical Summary NATIONAL GUARD ARMORY OMS #15 DUST Facility I.D. #0-790983


Well	Date			Analy	ical Parame	ters		on tarpitano
Boring	Sampled	Benzene	Toluene	Ethyl- Benzene	Total () Xylenes	MTBE	TPH- GRO	TPP. DRO
Method I	Detection	0.0004	0.0004	0.0004	0.0004	0.005	0.1	0.1
Lir	nit							10.1
MW-1	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-2	4-24-98	ND	0.0045	ND	0.0006	ND	ND	ND
MW-3	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-4	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-5	4-24-98	ND	ND	ND	ND	ND	ND	ND

NOTES:

All results listed in parts-per-million (ppm)
Applicable benzene clean-up level = 0.07
Applicable TPH clean-up level = 1.0 ppm
Shaded areas exceed applicable clean-up levels

D.6 Groundwater Classification Procedure

- a) Data from the water use survey.
 - i. The location of wells and springs is illustrated in Figure 9.
 - No drinking water supplies were identified within a one-half mile radius of the site.

DRINKING WATER WELL LOCATION MAP ARMY NATIONAL GUARD - OMS #015 MEMPHIS, TENNESSEE FACILITY I.D. #0-790983

1995.0043

9

DRAWN 6Y: ALW 07 27 98

DRAWING FILE: 19950043\T-2\0043-9.DWG

REVISED BY:

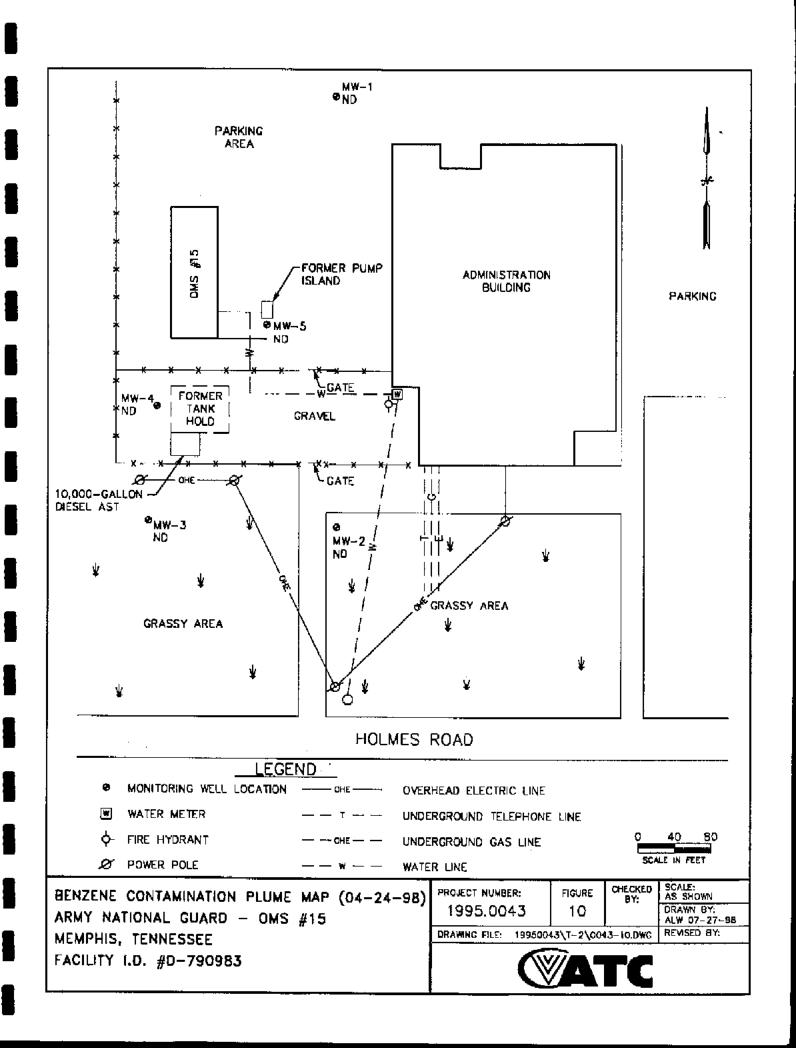
- iii iv. Completed water use survey forms for all water supplies (wells and springs) identified within a one-half mile radius of the tank hold are located in Appendix E.
- v. ATC personnel conducted a reconnaissance of the vicinity and located no private, domestic, or commercial drinking water wells. Drinking water supplies for the site and vicinity are publicly provided by the Memphis Light, Gas, and Water Utility Department.

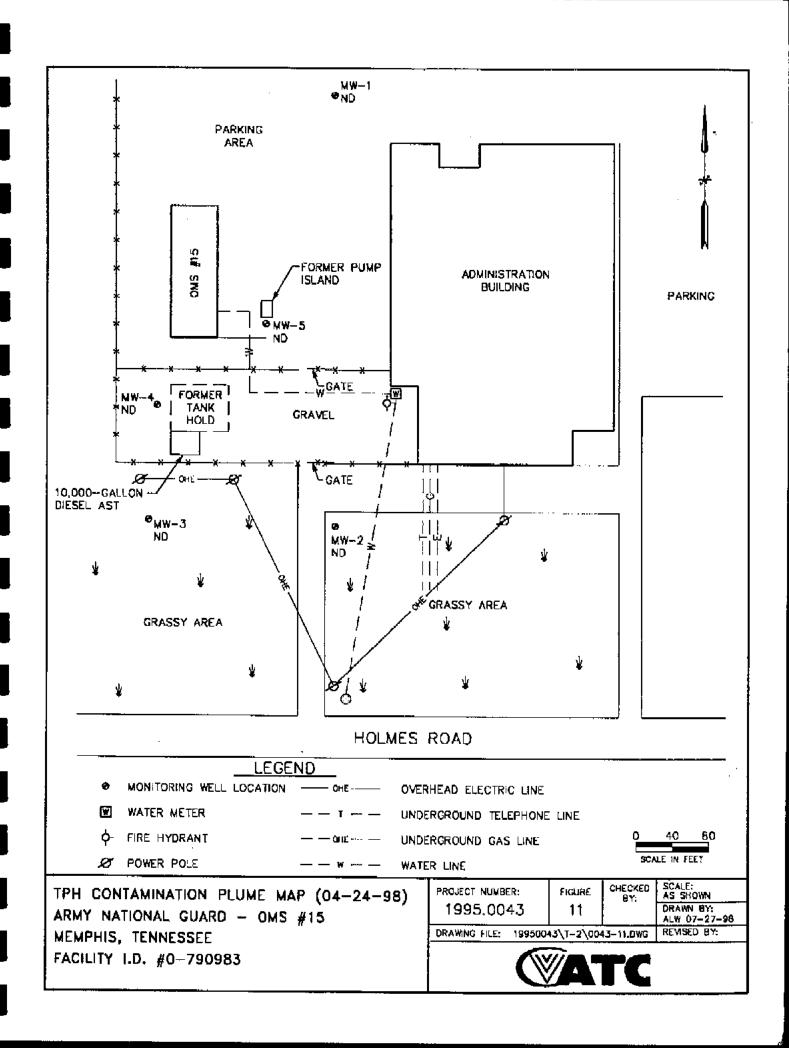
A water well database printout was obtained from the Tennessee Division of Water Supply. Based on recorded latitudes and longitudes, there are two drinking water production wells within an approximate one-half mile radius of the site. These drinking water wells include the Haisch residence located approximately three-tenths of a mile west of the site and the Anderson residence located approximately four-tenths of a mile east of the site. However, these residences have been abandoned due to the southward expansion of the Memphis International Airport. Therefore, a "non-drinking water" classification is applicable.

- vi. No alternative water supplies or systems are required.
- b) Data from Analytical Sampling

Since a drinking water supply was not located within a one-half mile of the site, no analytical sampling was performed.

e) Data from the Pump Test


Pump tests were not conducted during the investigation of this site.


d) Applicable Clean-up Levels

The data collected during the investigation indicates that a "non-drinking water" status is appropriate for the study aquifer. ATC recommends that groundwater clean-up levels of 0.07 ppm benzene and 1.0 TPH be applied for interpretation of the site data.

D.7 Groundwater Containment Plume Maps

Benzene, TPH-GRO, and TPH-DRO groundwater plume maps are depicted in Figures 10 and 11, respectively. Analytical results for all parameters indicate no detectable levels of hydrocarbons in the groundwater. Topography for the site slopes toward the west and north.

E. SITE RANKING

Appendix G contains the completed Site Ranking Form. The score for the site was 138.

F. PROPOSED ADDITIONAL MONITORING WELLS

No additional monitoring wells are warranted.

G. ASSESSMENT ACTIVITIES COST

Appendix H contains the completed cost forms for this investigation.

H. SIGNATURE PAGE

I certify under penalty of law, including but not limited to penalties for perjury, that the information contained in this report and on any attachments, is true, accurate and complete to the best of my knowledge, in formation, and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for intentional violations.

STATE OF TENNESSEE
Steven L. Westerman
Owner/Operator (Print)

Stenarire Stenarire

25 99 Date

STATE OF TENNESSEE

TENTESSEE		
Sworn to and subscribed before me by	Steven L. Westerman c	on this date
My commission expires		
Notary Public - Print Name		
Signature		
John W. Hargraves P.E. or P.G. (Print)	Signature	<u>07-30-98</u> Date
STATE OF <u>TENNESSEE</u>	4116 TN Lic/Reg.#	
Sworn to and subscribed before me by $\frac{7/30/98}{}$	John W. Hargraves on this da	ate
My Commission expires	xpires MAY 28, 2000	
Marcie A. Allen	-	•
Notary Public - Print Name		

-----‡ ------

APPENDIX A

STANDARD BORING LOGS

----- ‡ ------

ARMY AbdioNal Guard MILE HWI 71 OHS # 15 495.0043 1003 Standard Boring Log 7RI - STATE: State of Tennessee Building Underground Storage Tank Division Department of Environment and Conservation 16 ALC) EARPLES & CORES COMPLETION CHOICEPTON (CHOICE THE PARTY STREET, PARTY) PENETRATION PATE DEPTH GRAPHIC LITHELDS BORDIOUR DIVIENDS for es gravels 142 ks sety (8, Ct. Brn, soft to Med Stell, saturated, organica) esty ce, Han, ned still E still, Saturated, St. v. Fine grained.
Fo staining , root Styce, Sdy, Rash Bin Stepp, solutated, postly Forter Sas, rom de d'is 1963 Seely rounded slift whiter poorly
slift whiter poorly
soften sol, seek-mudded TIME 0.01 Delibros and sa course Sd. Robell Wrn, Poorly Sorted 179 130H 17.9

KÁLITY K	Army Natio	nal buard	OM S	# 15				0790983 Walk AW 2 3
0000	MAPS 1 U)	Bulding	COUP. DATE		-	84.	.3	Standard Boring Log
	سکہ یہ برگ		DATES.	romes Heldon De TRIS	INTO	207	<u> </u>	State of Tennessee
1	16	<u> </u>	<u> </u>	100 44" TD 1	42 <u>1</u>	=		Underground Storage Tank Division Department of Environment and Conserva:
O	Awz	۷	COMMENTS					
	1	5) Rd	.		-	<u> </u>	PLES	
ks.	COMPLETION DAGRAM BURGHOLE DAMETER 7	PENERALTON ASTR	ОСТМ	GWHIC UNKLOOY	8		# ¥ # ¥	(Color, Technic, Structure, etc)
-		' - 	╣╸╌	\ .			/	Chillow HROSH, AM. Sug
	4172 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			And the state of t	1.3	(ن)		Sty Clay it Rosh Brn, sur gray which is moist, step organics (roots), blocky
			2.9		1.2	Ĭ	/ Put	organics, blocky, still
•	A D 335 881	4-1-1-1	₩ • -	Management Co. Sec. 1 or Sec. 1	13	cs 		Slfe, Clay, goegish, c. wois, - Stiff, Fe staining, root - kotes
			7.9				100	1
	2 E		 <u>-</u>		1		1 (3) (3) (4) (4)	U. Moist to setweted
•			" -		2.2	(3)	N A	- 6-terning,
		7	129		<u>}</u>			1,26fei
			-		2.0			Sity Clay, quegish, Sty, poorly sorted
•			<u>//2</u> 3	racc		ارا	<u> </u>	Fame CESS
7.9			 				Щ	St. Palsh Bru, 100 My Sort
								Bott 17.9
	† `	++++	# -	<u> </u>	1	\parallel		
] [] [] [] []		<u> </u>	-			-
				4.				<u>L</u>
	+		"	1	-	<u> </u>		
				<u> </u>				- -
					-			
		4 1 1 1 1 1	 	뤽- · · ·	1			-

ł

٠.

Army Nationa	i Guard Di	START DATE	***** 4-6-95°	12	45	-		0-790983 WW HW3 1
MAS NEWS		COMP. INT	* 1M2 4.6-9,2		¥41	- 3.	,	Standard Boring Log
1 #15 (\$3.50)	Builting	Homes T	JAMES MEGLE De TRI-	$C \square N$	<u>05</u>		<u>, </u>	State of Tennessee
1 A		EDY (VET)	^{ከተርር}	//\S	<u>A</u>	_		Underground Storage Tank Division Department of Environment and Conserve
₩ MW3		COMMENTS	<u>_</u>					<u> </u>
glessy.	ISS KA							
CONFLETION					1	uPU CO	CS.	
RAT BOSCHOTE OWNELES: A 4	PE PERMATON BATE	QCTH.	CRAPHIC UTHOLOGY	8	£	E/W	MOL	(Color, Testure, Structure, etc)
	╵ ╸ ┪╌╸ ╏╶┎╸╻ ┉╋╌┰╌		-/4.4 67	_		1		5 1011
	1			3,4	cs	V	aα	Fill Clay Brn/Rish B
	┩ ┠╂╫╫┼	3.e.				Δ		Sty clay, UBIN, stiff, Moist, very organic (roots)
3.7	 	3 2	+++++	5.4	ረን	V	o (
		4.3.2	gent of the	9		\Box		
9.7		∭ -		8.4		IY	ŜΧ	Sty Clay, greyish. - Med Stiff . v. hoist. Sd. Fine granes, Fe stan
7.8		7-		1	ß	ĮΛ	780	Sd, Fine grained, Fe stan
	- 	7.8		T		1	0.0	Sety Clay, Sdy . BM/
	17111111	 		5,2	k	X		Sity Clay, Sdy, 13th - greysh mix, Fine to med. - grain sd, san peubles,
		"			ľ		LIN LIN LIN	Fe Stations
		∦ ,,	112	5,2		[V]	124	Sty Clay, groush, stuff so. peables, incoded, Sd. pour
	 	13.8° 	10000	3.8	\vdash	╫	╁	Petholes Sarted
	1 Fill	₩ • ₩3.			١,,	Ĺ	بن	G-al costi r-uled
1 1 1 1	 	₩ "-	7-	7.0	10	ΙX	T	Rash, rainted to sub.
] ,7]]		$\ \ $		- Rowaled , water
17.8	_	17 - 17 2 17 3		+	+	1	╀.	BOH 17.8
		₩ .		-				F ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	+++++	** **	<u></u>	 	+	\dagger	╁	.=
	-	₩ .						
		Щ.	4	-				-
 	 	₩	<u> </u>	+-	+	+	+	
	┪┟╂╫╇							<u> </u>
	1	III		1				
		Ш	<u> </u>					
		Щ	<u> </u>]				

.

Army Nections	al Guard e	DHS#	5				0-190983 1/2 MW4 7
OF STEEL	Budding	LOGGED St.	TAMES Mulabor	// TX JX		_	Standard Boring Log
		CHATTER PER	440101				State of Tennessee Underground Storage Tank Division Department of Environment and Conserva
grassy Rea	gressy Mes Ra	COMMON STATE					•
MIL GORDHOLE DIMETERS 8 //	AND PERSONAL RATE	CEPTH	CENTREC CONTROL	8	—	PUS CORES	(Calor, Teshire, Structure, etc)
gros de la constante de la con		• -)	I30		/₩	Fill , Brn Cl
		2.]		118	(4	X	Sly Clay . grayed, , Fine St. organic , Fine St. organic , Fine St. organics (roots) . Fine St
V V		•	grade and the first	47.			Saturated to wet
		73	and the second s				- areash silts clay to
			And the second s	3.8			greyish silty clay to St (10) very warse, wet stoining expirit sands, water
	2	10/3					
STA STATE OF THE S		13.		5.6	,		dark greyish silly Cl., Sol and poorly sork
		.7		la.			Sol, Coarse grained, round to sub-rounded, water
na l		11.7		 			BON 11.7
		* -			T		
1 1		<u> </u>		-			
				- -			 - -
	1 11111		<u> </u>	-		\perp	<u> </u>

FACILITY	Army	Nation	70.	Guard	OM.	s# <i>15</i>				0.790983 MW5 71
100,00					SIAKI DAT	4.6.93	49	CO	0	PROJECT #: 1990, 0043
16:	1 <u>5</u> / F	Estavo.			COMP. SAIT	4.6.75		00	حل	Standard Basha I and
#	で】 (j		βu	ilding J.	10400 St.	JAMES M: Cabe	TH LE	*	534	Standard Boring Log
12	F. 14.0 1	, , 	۱ ٔ		The state of	ሳም <i>ጉድ</i> ፒ-ፍን	AT	-		State of Tennessee
47		-	ŀ	_ j	ELEV (MSL)	"" 444"CO F	+3 A (E3)			Underground Storage Tank Division
Fe	uce "			√1	COMMONTS	112	/ept-			Department of Environment and Conservation
		prol me	·	2d						
	CONFLETACION CONTRACTOR CONTRACTO		TT	·-J		[-			MPTES CORES	
<u>⊯8.</u>	CLACRAM		텵	PORTIVIOR PAR	DEFTH	GWANC LINUXCEY	ş	<u></u>	-11	CERCOPPICA (Cator, Testura, Structura, etc)
ļ <u>.</u>	BORDHOLL DINNETES	'ð''					1000 21	1		
_	<u> </u>			 						
	<u> </u>] [<u>:</u> ا	5333				L.S. atavels
	1 1/2		7 [***	2.0	¢	N۵	Silly Clay, L+ Rd Sh Brn/Brn Miv Satherand blk podules, Fe sheet
	4		<u>,</u>	 	2	and the section of th	2.0		M	organics blocky
			7 }	╀╅╫╂╂╟	2.8	+			7	"Selty Clay, Lt Rish Brn,
	-t	6 13	┥┝	 	-		ঠুত		//6	Selty Clay, Lt Rish Brn, - Saturated, Sd, Fix grained, Fe staining and concretions (upper 21), blocky
	20代 1			1 111 1 1				ي	<u>V</u>	Fe staining and concretions
ļ										w cupper 2'y, blocky
			1 [,	in a first of the second second second second second second second second second second second second second se	4,7			M
ŀ			1	1 	. >	manaman a salam in minan.			V Võ	β <mark>-</mark>
			┨┞	╂╫╫╂	7.8				7	. Pltu Sdy CD, L+ Rdy Grn, soft
ŀ			4 +	╂╼╁╂╬╌╂╌╂╂	∦ -∄				\mathbb{N}°	- Fire graned Sd, St Staining,
ļ	<u> </u>	-	$\perp \downarrow$	<u> </u>	10		4-3	cS	\mathbb{W}	Sty Sdy Cl, L+ Rach Brn, soft, Fine granned Sd, St Staining, wotr
	ا الميوم	*: .	11			1	4.6		<u> </u>	rá[Ru]
į] v[]				/ ŭ	sen ce w/sd, gregish.
			V	1 		V 124 44			\mathbb{N}	sky cl w/sd, gregish, fine graines
	2'AX E		╀┸┼	╂┿╫╂╂	13.8			Н	۲.	A Janey Clay Rash Bon, med Stiff, was cr. Peubles
	3 8	· [┨├	╂╫╂╂	-		_		$ \setminus \cap$	Stagg, wascr. Peubles
-			\perp	1 111 11	112	4-2	28		Ц	
	E					1111		دد	1	
	[·	7 [COULD	ua.		I	Lange Pebbles 10/30
1			1	╂╂╬┼╂┼	77	The transfer	4,0	1	1	Towns to sub-roused, with
178	 		4 F	┦┩╠┼┦ ┼	17.7			_		BOH 17.8
	İ			╌╀╬╫╌┼┼┼	 					F 5011 . 114
				<u> </u>						
-]] []]]]		Ì		Ιĺ	
ì			7 [Γ
	'		1	 			i		$ \ $	Γ
			┪┝	┼╫┼┼	╢╶					 -
			┥┝	┿╫╫┼╫	∦ −₹					-
	 		1	<u> </u>	∦ 20 –		<u> </u> _	<u> </u>	┞╌┞	-
-] []]]]]				L
*] [1			1		
			7 t		1		1			
			1 }		∦ ₹			ļ		
	}		4 }	╫	₩ -		1	1		-
	1		.1	111111111		3	ļ	1	П	

I

ı

ı

ı

APPENDIX B

SOIL ANALYTICAL REPORT

----- ‡ -----

HYGEIA LABORATORIES, INC. 1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.D.								
	-	LAB:	182525	182526	182527					
		STATION:	MW 5	MW 5	MW 4					
		- Idea	09:24	09:32	10:17					
Benzene	0.002		ND	ND	ND					
Toluene	0.002		ND	ND	ND					
Ethylbenzene	0.002		ND	ND	ND					
Total Xylenes	0.002		ND	ND	ND					
MTBE	0.024		ND	ND	ND					
Surrogate Rece	overies %	•								
Fluorobenzene			100	104	102					

ND-None Detected

Respectfully submitted,

Reviewed by: My LABORATORY DIVISION CHEMISTRY

Page 1 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.	SAMPLE I.D.							
		LAB: STATION:	182528 MW 4 10:24	182529 MW 3 13:01	182530 MW 3 13:10					
Benzene	0.002		ND	ND	ND					
Toluene	0.002		ND	ND	ND					
Ethylbenzene	0.002		ND	ND	ND					
Total Xylenes	0.002		ND	ND	ND					
MTBE	0.024		ND	ND	ND					

Surrogate Recoveries %

Fluorobenzene 103 101 101

ND-None Detected

Respectfully submitted,

Reviewed by: qu

()

LABORATORY DIVISION

Page 2 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10-13/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.D.								
		LAB: STATION:	182531 NW 2 09:00	182532 NW 2 09:07	182533 NW 1 10:15					
Benzene	0.002		ND	ND	ND					
Toluene	0.002		ND	ND	ND					
Ethylbenzene	0.002		ND	ND	ND					
Total Xylenes	0.003		ND	ND	ND					
MTBE	0.024		ND	ND	ND					
Surrogate Recoveries %										
Fluorobenzene			103	97	98					

ND-None Detected

Respectfully submitted,

Reviewed by:

CHEMISTRY/LABORATORY DIVISION

Page 3 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: 6W-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/13/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.D.		
	- -	LAB: 182534 STATION: MW 1 10:20		
_				
Benzene	0.002	ND		
Toluene	0.002	ND		
Ethylbenzene	0.002	ND		
Total Xylenes	0.002	ND		
MTBE	0.024	ND		

Surrogate Recoveries }

Fluorobenzene 98

ND-None Detected

Respectfully submitted,

Reviewed by: **

CHEMISTRY ABORATORY DIVISION

Page 4 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: TPH-8015B (GRO) DATE SAMPLE ANALYZED: 04/10-13/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

SAMPLE I.D.	STATION	EQL	PARAMETER	
*****			TOTAL PETROLEUM HYDROCARBONS CONC. RANGE	
182525	MW 5 (09:24)	0.5	ND	
182526	MW 5 (09:32)	0.5	ND	
182527	MW 4 (10:17)	0.5	ND	
182528	MW 4 (10:24)	0.5	ND	
182529	MW 3 (13:01)	0.5	ND	
182530	MW 3 (13:10)	0.5	ND	
182531	MW 2 (09:00)	0.5	ND	
182532	MW 2 (09:07)	0.5	ND	
182533	MW 1 (10:15)	0.5	ND	
182534	MW 1 (10:20)	0.5	Фи	

ND-None Detected

Respectfully submitted,

Reviewed by: 952

HEMISTRY LABORATORY DIVISION

Page 5 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: TPH-8015B (DRO) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

SAMPLE I.D.	STATION	EQL	PAR TOTAL PETROLEUM CONC.	METER HYDROCARBONS RANGE
182525	MW 5 (09:24)	4	ND	M
182526	MW 5 (09:32)	4	ND	
182527	MW 4 (10:17)	4	5	Diesel
182528	MW 4 (10:24)	4	ND	
182529	MW 3 (13:01)	4	ND	
182530	MW 3 (13:10)	4	ND	
182531	MW 2 (09:00)	4	ND	
182532	MW 2 (09:07)	4	ND	
182533	MW 1 (10:15)	4	иD	
182534	MW 1 (10:20)	4	ND	

ND-None Detected

Reviewed by: 94,

Respectfully submitted,

CHEMISTRY LABORATORY DIVISION

Page 6 of 7

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

CLIENT: ATC Associates Inc. - Nashville, TN LAB PROJECT #: 23317
CLIENT I.D. #: 10-67-11887

ANALYTICAL REPORT CASE NARRATIVE

- All holding times were met and no QA problems were encountered.
- The analytical results and EQL's for soil samples are based on wet weight. Dry weight calculations are available upon request.

NOTES:

- This "Analytical Report" may not be reproduced, except in full, without the written approval of the laboratory.
- Results relate only to the items tested as received (see chain-of-custody).
- EQL = Estimated Quantitation Limit
- ND = Not Detected within the calibration range of the test method down to the EQL

Respectfully submitted,

CHEMISTRY LABORATORY DIVISION

CERTIFICATIONS

A2LA - No. 0330-01; AIHA - Lab ID 09072; Alabama - Lab ID 40970; Arkanaas; Connecticut - Lab ID PH-0208; Delaware; Florida - No. 97056 (EW), No. 97268 (DW); Georgia - No. 804; Indiana - Lab ID C-GA-01; Kansaa - E-10212 (SW); Kentucky - Lab ID 90053; Maryland - No. 251; Massachusetts - Lab ID M-0A040; North Carolina - No. 409; South Carolina - No. 98012; Tsunessee - Lab ID 02327 (DW), UST Program; Virginia - Lab ID 0024

HYGEIA LABORATORIES, INC. SAMPLE LOCATION, HEMARKS 1300 Williams Drive, Suite A Received by: (Signature) Marietta, Georgia 30066-6299 FAX (770) 514-6966 (7,70) 514-6933 $\widehat{\mathbb{C}}$ Q LABORATORY ANALYSIS 15.5 ł 9 Ş ~<u>~</u> Date / Time Project Manager / Phone (08/08) OBO HAI (COOS) OND HAT Relinquished by: (Signarure) (1000 000) Ale \gt > LAB PROJ. NO. CHAIN OF CUSTODY RECORD X C. >٦. LAB I.D. NUMBER 2010-0-1909 S CONTAINERS ثح Ĉν. Ni (Signature) 2-7 \sim Received by: (Signature) 14.44.42 mm cép VOIDINED GBRBTJIR Pacifich Ż. > CANO и У TIOS Date / Time Date / Time **MATER** PROJECT NAME O'MS 196 **GRAB** >-> ٧ >.-> > CLIENT TW FACAL COMPOSITE ٠,٠ 01:17 0201 0974 6907 Piot CO60 15-1-h 1015 1 3 0 Ş Cartinions Startelling Relinquished by: (Signature) Relinquished by (Signature) 4-6-93 ling-13.73 7. 1.6-1.1. A. 9-19 < 5°€-'n 11.6.1 からつか 16.9% SAMPLEHŞ: (Signatury) OATE SAMPLING METHOD 1960MY French Charstell SAMPLE 1 D. NO. REMARKS how A CON 14:05 40:24 1 W 25 X 1. C. J. May Z 1 2 2 2 3

----- ‡ -----

APPENDIX C

SOIL PERMEABILITY REPORT

SERVICES, INC.

Measurement of Hydraulic Conductivity

Client: ATC Associates

Project No.: E-4-090

Date of Report: 04/30/98

Project Name: Army National Guard, 2610 East Holmes Road, Memphis, Tennessee

Sample I.D.: Boring No.: SB5A1, Shelby tube, Depth: 9' - 11'

Soil Description: Brown Silty Clay

Test Media: City of Memphis Water

TN Facility I.D. No.: 0-790983

Volumetric Air Content .017 cm³-air/cm³-soil

Volumetric Water Content $-334 \text{ cm}^3 - \text{H}_2\text{O}/\text{cm}^3 - \text{soil}$

Total Soil Porosity $.351 \text{ cm}^3/\text{cm}^3-\text{soil}$

Soil Bulk Density (wet) 2.04 g-soil/cm3-soil

Moisture Content 21.4 Percent

PERMEABILITY

Temperature Correction, $R_t = .925$

 $K_1 = 2.7 \times 10^{-7} \text{ cm/sec}$ $K_2 = 2.0 \times 10^{-7} \text{ cm/sec}$

 $K_3 = 2.1 \times 10^{-7} \text{ cm/sec}$

 $K_4 = 2.2 \times 10^{-7} \text{ om/seo}$

Coefficient of Permeability, $K_{20} = 2.3 \times 10^{-7} \text{ cm/sec}$

Test in accordance with Method 9100 of Test Methods for evaluating Solid Waste, Third Edition, (SW-846) and in general accordance with ASTM D-5084-90. Fractional Organic Carbon tested in accordance with ASTM D-2974-87 (Method C)

Lab No.: P-98-025

Reviewed By:

G SERVICES, INC.

Measurement of Hydraulic Conductivity

Client: ATC Associates

Project No.: E-4-090

Date of Report: 04/30/98

Project Name: Army National Guard, 2610 East Holmes Road,

Memphis, Tennessee

Sample I.D.: Boring No.: SB5A2, Shelby tube, Depth: 11' - 13'

Soil Description: Brown Silty Clay with trace of Fine Sand

Test Media: City of Memphis Water

TN Facility I.D. No.: 0-790983

Volumetric Air Content .012 cm3-air/cm3-soil

Volumetric Water Content .316 cm³-H₂0/cm³-soil

Total Soil Porosity .328 cm³/cm³-soil

Soil Bulk Density (wet) $2.06 \text{ g-soil/cm}^3-\text{soil}$

Moisture Content 18.1 Percent

PERMEABILITY

Temperature Correction, $R_t = .979$

 $K_1 = 4.0 \times 10^{-6} \text{ cm/sec}$ $K_2 = 3.9 \times 10^{-6} \text{ cm/sec}$ $K_3 = 4.4 \times 10^{-6} \text{ cm/sec}$ $K_4 = 4.0 \times 10^{-6} \text{ cm/sec}$

Coefficient of Permeability, $K_{20} = 4.1 \times 10^{-6} \text{ cm/sec}$

Test in accordance with Method 9100 of Test Methods for evaluating Solid Waste, Third Edition, (SW-846) and in general accordance with ASTM D-5084-90. Fractional Organic Carbon tested in accordance with ASTM D-2974-87 (Method c).

Lab No.: P-98-026

Reviewed By:

TESTING SERVICES, INC.

Report of Fractional Organic Carbon

Client: ATC

Project No.: E-4-090

Project: Army National Guard

Date of Report: 28 April '98

2610 East Holmes Hoad Memphis, Tennessee

Sample i.D.: Jar sample, Boring No.: 1, Sample No.: 1

Fractional Organic Carbon .009 g-carbon/g-soil

Tested in accordance with ASTM D-2974-87 (Method C).

Lab No.: FOC-E4090

Reviewed By:

David D. McCrav

APPENDIX D

GROUNDWATER ANALYTICAL REPORT

----- ‡ ------

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

Client:

ATC Associates - NASHVILLE, TN

5217 Linbar Drive

#306

Nashville, TN 37211-3662

Attention:

James McCabe

Project Name:

OMS #15 Facility ID # 0-790983

Project ID:

1995,0043

Received:

6/12/98

Lab Project No.

24061

Report Date: 7/1/98

CASE NARRATIVE

- 1 The holding times for each sample were met.
- 2 Where applicable, results & reporting limits are based on wet weight; dry weight calculations available.

Reviewed by: VIV

Respectfully Submitted,

<u>Lab id</u> CLIENT ID 188213 MW-1 188214

MW-4

MATRIX COLLECTED

WATER 6/11/98 WATER 6/11/98

HYGEIA laboratories, inc.

6/23/98

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

24061

Report Date: 7/1/98

Total Petroleum Hydrocarbons-Diesel

Matrix: Water

Analysis Date:

Units: mg/L (ppm)

Method: EPA 8015 B

6/19/98 Prep. Date:

Analyst: DBT

Lab ID: Client ID:	188213 MW-1		188214 MW-4	-
Analyte	Result	RL	Result	RL
TPH-Diesel	ND	0.1	ND	0.1
<u>Surrogate Recovery (%)</u> PZ-49	41 %		64 %	

NOTES:

- Results relate only to the samples tested as received (see chain-of-custody).
- ND = "Not Detected" within the calibration range of the test method down to the reporting limit
- RL = "Reporting Limit"
- Dates are presented in the format "month/day/year"

Certifications

American Association for Laboratory Accreditation (A2LA) - No. 0330-01; American Industrial Hygiene Association (AIHA) - Lab ID 09072 Alabama - Lab ID 40970; Arkaneas; Connecticut - Lab ID PH-0208; Delaware; Florida - No. 97056 (EW), No. 97268 (DW); Georgia - No. 804; Indiana - Lab ID C-GA-01; Kansas - E-10212 (SW); Kentucky - Lab ID 90053; Maryland - No. 251; Massachusetts - Lab ID M-GA040; North Carolina - No. 409; South Carolina - No. 98012; Tennessee - Lab JD 02827 (DW), UST Program; Virginia - Lab ID 0024

This report may not be reproduced, except in full, without the written permission of Hygeia Laboratories, Inc.

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

Client: AT

ATC Associates - NASHVILLE, TN

5217 Linbar Drive

#306

Nashville, TN 37211-3662

Attention:

Ken Johnson

Project Name:

Memphis OMS #15/ Fac ID# 0-790983

Project ID:

1995.0043

Received: Lab Project No. 4/27/98

23512

Report Date (m/d/y): 5/22/98

 LAB ID CLIENT ID
 COLLECTED

 183802 MW-1
 4/24/98

 183803 MW-2
 4/24/98

 183804 MW-3
 4/24/98

183805 MW-4 183806 MW-5

4/24/98 4/24/98

CASE NARRATIVE

- 1. The holding times for each sample were met.
- 2. Where applicable, results & reporting limits are based on wet weight; dry weight calculations available.
- 3. Samples MW-1 (183802) and MW-4 (183805) 1 Liter Amber bottles for Diesel Range Organics were broken in transit. Ken Johnson was notified 4/27/98.

Reviewed by: ใฝ่ฟ้

Respectfully Submitted,

Hygela Laboratories, Inc.

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

23512

Report Date (m/d/y): 5/22/98

	Volatile Organi Matrix: V	•	An	ıalysis Date:	Units: U- 5/5/98	g/L (ppb) Prep. Date:		EPA 602 Analyst:	MZ
	Lab ID; Client ID;	183802 MW-1		18380 MW-2	_	18380 MW-3		18380 MW-4	
	Analyte	Result	RL	Result	RL	Result	RL	Result	RL
	Benzene	ND	0.4	ND	0.4	ND	0.4	ND	0.4
	Ethylbenzene	ND	0.4	ND	0.4	ND	0.4	ND	0.4
	Toluene	ND	0.4	4.5	0.4	ND	0.4	ND	0.4
	Total Xylenes	ND	0.4	0.6	0.4	ND	0.4	ND	0.4
	MTBE	ND	5	ND	5	ND	5	ND	5
<u>Su</u>	rrogate Recoveries (%)								
	Fluorobenzene	101 %		102%		104 %		101 %	

Volatile Organics (BTEX)

Matrix: Water

Analysis Date:

Units: ug/L (ppb) 5/5/98

Units: mg/L (ppm)

Prep. Date:

Method: EPA 602 5/5/98

Method: EPA 8015B

Analyst: MZ

Lab ID:	183806	
Client ID: _	MW-5	
Analyte	Result	RL
Benzene	ND	0,4
Ethylbenzene	ND	0.4
Toluene	ND	0.4
Total Xylenes	ND	0.4
MTBE	ND	5

Surrogate Recoveries (%)

Fluorobenzene

101 %

Total Petroleum Hydrocarbons-Gasoline

	Matrix: V	V ater		Analysis Date:	5/5/98	Prep. Date:	5/5/98	An aly st:	MZ
	Lab ID: Client ID;_	18380 MW-1	_	18380 MW-2		183804 MW-3	-	18380 MW-4	
5	Analyte TPH-Gasoline urrogate Recovery (%)	Result ND	RL 0.1	Result ND	RL 0.1	Result ND	RL 0.1	Result ND	RL 0.1
_	Isopropyltoluene	116 %		110 %	l	118 %		108 %	

HYGEIA laboratories, inc.

5/5/98

1300 Williams Drive, Suite A - Martetta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

23512

Report Date (m/d/y): 5/22/98

Total Petroleum Hydrocarbons-Gasoline

Matrix: Water

Analysis Date:

Units: mg/L (ppm)

Prep. Date: 5/5/98

Method: EPA 8015B

Analyst: MZ

Lab ID:

183806

Client ID:

MW-5

Analyte

Resuit RL

0.1

TPH-Gasoline

ND

Surrogate Recovery (%)

Isopropyitoluene

110 %

Total Petroleum Hydrocarbons-Diesel

Matrix: Water

Analysis Date:

Units: mg/L (ppm)

5/6/98

Prep. Date:

Method: EPA 8015B

4/28/98

Analyst: DBT

Lab ID: Client ID: Analyte

Surrogate Recovery (%)

TPH-Diesel

PZ-49

183803 MW-2 Result

36 %

ЙN

RL

0.1

MVV-3 RL Result ND 0.1

183804

47 %

MW-5 Result RL ND 0.1

183806

65 %

NOTES:

- Results relate only to the samples tested as received (see chain-of-custody).
- ND = "Not Detected" within the calibration range of the test method down to the reporting limit
- RL = "Reporting Limit"

Certifications

American Association for Laboratory Accreditation (A2LA) - No. 0330-01; American Industrial Hygiene Association (AIHA) - Lab ID 09072 Alabama - Leb ID 40970; Arkansas; Connecticut - Lab ID PH-0208; Delaware; Florida - No. 97056 (EW), No. 97268 (DW); Georgia - No. 804; Indiana - Lab ID C-CA-01; Kansas - E-10212 (SW); Kentucky - Lab ID 90053; Maryland - No. 251; Massachusetts - Lab ID M-GA040; North Carolina - No. 409; South Carolina - No. 98012; Tennessee - Lab ID 02827 (DW), UST Program; Virginia - Lab iD 0024

This report may not be reproduced, except in full, without the written permission of Hygela Laboratories, Inc.

APPENDIX E

GROUNDWATER CLASSIFICATION PROCEDURES

----- ‡ -----

TERNESSER DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF NATER SUPPLY RECORDS OF WATER WELLS IN SELECTED AREAS OF TENNESSEE

EXPLANATION OF COLUMN HEADINGS

GDAD/HTH	= Designation by number, Quadrans and ninth of the 2.5 - minute quadrangle area in which the well is located. The
	leading numbers identify the 15-minute quadrangle, the next two letters identify the 7.5-minute quadrant and the
	ast digit identifies the one-minth subdivision of the latter.

COUNTY - County in which the well is located.

WELL NUM = identification number assigned to the well by the State.

 An inspection number assigned to the well at the time of inspection by the State. TAG NUN

CANER'S NAME = Name of person or organization for whom the well was drilled.

- Name of street or road from which to access the well. Blank if unknown. CACATION ROAD

COMF DATE = Month, day and year the well was completed.

Blank if well has not been inspected. day and year the well was inspected by TIHE. = Nonth, STAC DANI

TOT DEPTH = Total depth of the well in feet.

che well. ir feet, below land surface to the top of the shallowest aquifer or water-bearing sone tapped by = Depth, AQ DEFIN

88 2ero. Yields less than one-half gpm reported Potal yield of the well in gallons per minute [gpm]. TOT YIBLD Static water-level: depth, in feet, from the land surface to the surface of the water standing in an idle well STAT LEVEL

Casing depth: depth, in feet, to the bottom of the weter tight casing installed in the well. CSE DEPTH

FLAST = Plastic; STEEL = Steel; OTHER = any other material such as concrete, fiberglass or tile. Casing type: CSE TYPE

Construction of the well in the interval supplying water to the well: OPEN = Uncased or open hole: SLOT = Hand perforated or slotted pipe: SCREEN = Manufactured device designed to maintain the wall of the borehole and allow ground water to enter the well. WELL FINISH

The depth, in feet, from the top to the bottom of the interval that is open to the well. INTERVAL

Water Quality: a word to describe the relative quality of the well waser such as GOOD, FAIR, BAD, LIME, IRON, SULPUR, SALT, OIL, GAS, OTHER. MAT QUAL

Name of the geologic formation tapped by the well (not generally reported). SEDS ORS

LATITUDE = Latitude of well site in degrees, minutes, and seconds.

Longitude of well site in degrees, minutes, and seconds. LONGITUDE

Accuracy Code for latitude and longitude: S = Nearest second; F = nearest 15 seconds; T = nearest 30 seconds; M = nearest minute; Blank = nearest 2.5 minutes. A/C

LOG = Refers to availability of drillers log: Y = yes; N = nc.

License number of driller who supervised construction of the well. Names provided upon request. DRILLER

Purpose for which the well was constructed: HOME = residential; COMM = commercial; etc.

USE

TEMNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECGEDS OF WATER WELLS ON THE SOUTHEAST-WEMFELS QUADRANGLE 104095W) IN.

COUNTY HEA	REG NUM CHART'S NAME REG NUM LOCATION 30AD	COMP DATE TO' INSPT DATE AQ	TOT DEPTH	TOT YIELD STAT LEVEL	CSE DEFTH	WELL FINISH INTERVAL	361	WAT DUAL TAG NUN	LONGITCOE	58 18 18	DRILLER USE
04095W 1 SHELEY	15700218 LEHMA-ROBERTS CO EXPRESSMAY LAMAR	C6/29/1964 / /	233		1	200 -	233		35-05-30 85-58-00	Ð	00103 1 N D
04395W 1 SHELEY	157C0514 MID-SWRGFLIGERAISD	C2/21/1967	664	154	459 STEEL	459 -	495		35-06-54 85-58-56	Ø	00100 IND
0409SW 1 SHELBY	15700953 MID SOUTH REFR WHS	10/29/1971	496 460	23 165	460 STEEL	460 -	496	DNG	35-06-52 89-58-57	w	00103 0044
C4095W 1 SHELBY	15709010 FRISCO RRR SH K-9K-	7261/00/1927	371 311	500 65	;	311 -	37.		07+69+66 68+50+66	ហ	e e
C4095W 3 SBELBY	15709011 FRISCO RR SH K-10-1	06/00/1927	386	36	i 1	136	986	G00D	35-05-38 39-59-14	co.	Q.
0409SK 1 SHELDY	15705012 MENTHIS CC SHSK-111	00/00/1920	392	1 1	1	1	ì	¥5	35-06-57 89-57-44	ហ	KON
04095W 1 SHELLBY	15709013 MENPHIS C C SHEK-12	00/00/1941	376	290	1	18 19 1	375	g000	35-06-57 39-57-36	o,	MON
04095W 1 SHELLBY	15709014 RAILWAYS ICE SH:K-1	3261/30/00	355	13.6	330 STEEL	1 086	183		35-05-41 39-58-58	m	OTER
0409SW 1 Shelby	15709015 RAILWAYS ICE SE:K-1	03/06/1947	390	1601	;	}	ł	G000	35-05-40 39-58-58	Ø	QNI
04093W 1 SHELBY	15709016 RAINEGW LAKE SH:K-1	05/DC/193€	464 434 434	750 .	403 STEBL	- 603	464		35-05-23 39-57-59	o,	KUN
04693W 1 Shelby	15709017 RAINBOW LAKE SH:K-1	05/3C/1937 / /	808	11	407 STEEL	- 207	45.9		35-05-24 39-57-59	o,	MON
04695W 1 SHELBY	15709018 MID.S.REFRIG SH:K-1	00/00/1921	다 다 나	500	1	}	ł	GOOD	35-66-54 35-58-57	ហ	OTHR
04095M 1 SHELBY	15709019 MID S REFRIG SH:K-1	/ /19	200	11	 STEEL	1	!	GOOD	35+05+05 85+08+05	co.	отня
0409SW 1 SHELBY	15709020 SWIFT & CO SHSK-191	1 / 13	443 391	7.3	391 STEEL	1 1	1	GCOD	35-06-17 89-59-23	co.	отнв
04095W 1 SHELBY	15705021 BMIFT & CO SHSK-202	, , ,	220			1	-	GCOD	35-06-16 89-59-23	Ø	E S
04095W 1 SHELBY	15709022 SNIFT & CO SHSK-212 03/00/1951	03/00/1951	655	1720 115	1	;	ŀ	dops	35-06-16 89-59-24	co.	00029 IND

TENNESSEE DEFARTMENT OF ENVIRONMENT AND CONSERVATION - EIVISION OF WATER SUPELY RECORDS OF WATER WELLS ON THE SCUTHEAST-MEMPHIS QUADRANGLE (04095W) TN.

1

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVACION - DIVISION OF WAITER SUPPLY RECORDS OF WAITER WELLS ON THE SCUTHEAST-NEWSHIS OCAPPANDLE (04099M) IN.

COUNTY ATH	H WELL NUM REC NUM	COCATION RCAD	COMP DATE 1	TOT DEPTH AO DEPTH	TOT YIELD STAT LEVEL	CSE	DEPTH WELL FINISH TYPE INTERVAL	SE	WAT QUAL TAG NUM	LONGITUDE	28	DRILLER USE
0409SM 2 Shelby	15709023	WALLS ESSOSH K-22-2	, /18	. · 	237	TELETS	: 	l		35-06-57 89-56-44	40	CTBR
O4CSSM 2 Shelby	15709037	15709037 MEMPHIS LG & W SH:K	03/10/1532	1310	1 1	TEELS	1 1	ļ	GNX	35-07-21 89-56-00	ហ	MUM
04095W 2 SHELBY	15709038	MEMPHIS LG & W SH:K	02/11/1932	547		471 57261	165	547		35-07-21 89-56-00	တ	NON
04095W 2 SHELBY	15709039	MEMPHIS LG & W SHIK	61//	055	ļ l	1	1 1	1		35-07-13 89-56-01	so.	MOM
04595W 2 Shelby	15709040	MEMORIES DE LA MESER	01,03/1932	1313	500	19978	1			35-07-12 89-56-01	co.	NO.
04095W 2 SHELBY	15709041	MEMBERS LG & W SHIK	01/28/1932	442	450 67	!	1	1	4 009	35-C7-07 89-56-01	co.	MON
O4095W 2 Sheliby	15709042	15709042 MEMPHIS LG & W SH:K	05/31/1940	409 ·	4 50 81	382 STEEL	378 -	439	d cos	35-C7-05 89-56-01	s	MON
04095W 2	15709043	MEMPHIS LG & W SH:X	00/00/1933	485 407	450 48	407 STBEL	- 107	485	QC09	35-06-59 85-56-01	60	MON
C4095W 2 SHELBY	15709044	15709044 MEMPHIS LG & W SH:X	04/12/1943	জ ক জ ক ক ক	450 160	415 STEEL	- 515	4 3	dcoo	35-06-53 85-56-01	523	MON
C409SW Z Shelby	15709045	15709045 MEMPHIS LG & W SH:X	, ,15	1370	11	}	(}	1	0000	35-06-53 85-56-03	w	0-00-29 MUN
C4095W Z Shelby	13709046	13709046 MEMPHIS LG & W SH:X	1 / /	442	1	1	.	1		35-06-58 89-55-53	۲n	MON
C409SW 2 SHSLBY	15709647	5709047 Memphis ig & W Shix	/ /19	420 359	11	}	, {	. 1		35+66-58 89-55-54	69	00029 MUN
0409SW Z SHSLBY	15799648	15709048 Menphis ig r w shin i	09/00/1550	420 359		:		.		35-06-59 89-55-54	S	0000 MUR
0409SW 2 SHELBY	15709649	15709649 MEMPHIS LG & W SH:X)	1320/1961	449 369	125	STEEL	1 690	449	goas	35-06-58 89-55-54	cq	NON
0409SW 2 Shelby	15709050	MEMPHIS IG & W SHIK	00/00/1933	.: 687 1	450 63	;	386 1	489	GCCS	35-06-58 89-55-51	u,	NC M
04095W 2 Shelby	15709051	15709051 MEMPHIS LG & W SH:X	03/21/1935	3 £ 6 3 £ 5	116	SIEEL		!		35.06.58 89-55-40	ω	MCM.

TERMESSE DEPARTMENT OF ENVIRONMENT AND CONSERVATION -- DIVISION OF WATER SUPPRING PROCESSES OF WATER WELLS ON THE SOUTHEAST-MEMPHIS QUADRANGLE (64095W) TN.

COUNTY	REG NUM	LOCATION ROAD	INSPI DATE	AC DEPTH	STAC LEVEL	CSE TYPE	INTERVAL		TAG NUM	LCMGITUDE	9	USE
0409SW 2 Skelby	15709052	MEMPHES LG & W SB:K	57//	1303 1225	11	STEEL	224 -	1303	coos	35-06-58 39-55-41	œ	MUN
3409SW 2 SKELBY	15709053	MEMPHIS LG & W SEEK	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	66 1 6 1	; ;	i		1		35-06-58 89-55-34	ro .	MUN
3409SW 2 SHELBY	15709054	MEMPHIS LG & W SEAK	06/30/1544	375	450 117	1	334 -	37.5	6900	35~06~59 89~55~33	w	MUN
O409SPF 2 SHELBY	15709055	MENSHIS LO & W SHENE	04/08/1932	1301	450 84	 Jeres	; ;	ţ		35-07-02 39-55-36	CC.	00029 MON
0409SM 2 SHELBY	15709056	W 3 SI SIHEMBM	/ /19	428 308	1925	STEBL	' 	1		35-07-02 89-55-40	co	0C 029 MUM
04095W 2 SHELBY	15709057	MEMPHIS IG & W SHIK	0€/30/1941 / /	1307 1233	500 98	1		}		35-07-06 39-56-00	α	00029 MDN
04095W 2 SHELBY	15709058	Name of a manage	12/00/1941	1305 1243	450 112	STEGL	250 ~	1305	UNK	35-07-02 39-55-41	DQ1	NO.
04095W 2 SHELBY	15709059 MEMPHIS	New Wark	08/13/1943	508	1.6	STEEL	447 -	503	3000	35-07-16 89-56-09	တ	MDN
0409SW 2 Shelby	15709060 MEMPHIS	E: H 8 B : €	08/03/1943 / /	0.00 0.00 0.00 0.00	104	319 STEEL	219 -	362	3000	35-07-16 39-56-04	co.	MUN
04095W 2 SHELBY	15709061 MEMPHIS	3.6 & W SB:X	11/00/1943	472	- 86 - 86	425. STEEL	429 -	472	300D.	35-07-17 39-55-47	o,	XQX
0409SW 2 SHELBY	15709062 MEMPHIS	MEMPHIS 3G & W SHE	61/ /	580		1				35-07-17 89-55-58	ഗ	NON
0409SW 2 SHELBY	15709063 MEMPHIS	7.6 & M 8B:X	07/01/1944 / /	514 451	125	451 STEEL	465	514	0000	35-07-26 39-56-06	to _a	NG N
0409SW 2 SHELBY	15709064 MEMPHIS	3.6 & M SHEX	07/15/1944	£70 : 416	66	TEEL	421 -	470	GOCD.	35-C7-25 89-55-48	ιυ	NON
0409SW 2 Syriby	15709055	Xendris ja a m shak	10/00/1943	474 413	1 68	 STEEL	1	{		35-07-19 89-55-38	ro	Z5
04095W 2 Shelby	15709066	MEMPHIS JG & W SH.Z	/ /19	663 638]]	ł				35-07-23 89-55-52	E/A	MUN
0409SW 2 SHELBY	15709057	15709067 MEMPHIS IG & W SHIK	/ /19	525	[]		1	. ;		1 1		NO.

TENNESSEE DEPARTHENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-NEMPELS QUADRANGLE (04095W) TM.

QUAD / UNTH COUNTY		WELL NUM OWNER'S NAME RBG NUM LOCATION ROAD	COMP DATE 1	TOT DEPTH AQ DEPTH	TOT DEPTH TOT YIELD AQ DEPTH STAT LEVEL	CSE	DEPTH WELL FIKISH TYPE INTERVAL	ВН	WAT QUAL TAG NUM	LATITUDE	28 28	driller Use
O4C9SW 2	15705068	15705068 MEMPHIS LO & W SHIK	1 / /	19-1 65-1 10	!!			1		11		TEST
O4C9SW 2 Shelby	15709069	15709069 WENPHIS LG & W SH:K	07/21/1947	388 328	1425	STEEL	328 -	98	0000	35-05-42 89-55-41	εΩ	MOK
O409SW 2 SHELEY	15709070	15709070 MEMPHIS LG & W SH:K	05/30/1947	301	580	TEGUS	235	301		35-05-33 85-55-52	v,	MOR
0409SW 2 Syelby	15709071	MEMPHIS LG & W SH:K	09/12/1946	360 260	1500	{	260 -	360	g000	35-05-23 89-55-53	60	KOX
O409SW 2 SHELBY	15709072	15709072 MEMPHIS LS & W SH:K	1 /25	293	1450	;	212 -	293	000g	35-05-14 85-55-53	w	MOX
04095W 2 Syelby	15709073	MEMPHIS LG & W SHOK	11/13/1946	915 273	1550.		1	1		35-05-18 39-55-44	ço.	MON
O4095W 2 SHELBY	15709074	15709074 MEMPHIS LG & W SH:K	11/04/1946 / /	273	1600.	STEEL	213 -	273	1000	3E-05-14 39-55-36	တ	NOW
04095W 2 SHELBY	15709075	15709075 MEMPHIS LA & W SHEK	00/00/19\$B	96	4.0	STESL	! !	.	3000	35-05-13 89-55-36	€03	TEST.
04095W 2 SHELBY	15709076	15709076 MEMPHIS LG & W SH.K.	12/19/195D	374	101					35-07-12 39-55-47	ra	MOK
O4O9SM 2 SHELEY	15709077	15709077 KEMPHIS LG & W SH:K	SH:K 11/02/1950 / /	479	45¢ 124	TEMIS	419 -	479		35-07-12 89-55-43	Ø	MON
C MS6090 C MS6090	15709082	15709082 KEMPHIS LG & W SHAK	06/03/196:	480 420	122		420 -	480	g005	35-07-24 85-55-47	on.	KOX
O4095W 2 Sabley	15709088	15709088 KEMPHIS LG & W SH:K	06/25/1963 / /	80 H	11	· 	1	1	0000	35-07-25 89-56-06	Ŋ	KOX
O409SM 2 SHELEY	15709089	15709089 MEMPHIS LG & W SH:R	08/32/1963	540		1	!	}	G00D	35-07-29 89-55-39	и	NO.
O409SW 2 SHELBY	15709090	MEMPHIS LG & W SH:K	09/26/1963	312	1 1	1		. }	80	35-07-05 89-53-56	€O.	NO
0409SM 2 Shelby	15709703	MEMPHIS LG & W SH:K	00/33/1965	550	1.1	;	;	:		35-07-12 89-56 C0	co.	NO
0409SW 2 SHELBY	15709704	15709704 MKMPHIS LG E W SH:K	SH:K 10/18/1966	372 306	1166	308.	306	365		35-07-12 89-55-47	69	MON

٩Đ

PAGE

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SCUTHEAST-MEMPELS CADEANCLE (04095W) IN.

H H	MIN TITE RIG MIN	OWNER'S NAME LOCATION ROAD	COMP DATE INSPT DATE	TOT DEPTH AQ DEFTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPS	WELL PINISH INTERVAL	HS.	NAT COAL	LATITUDE LONGITUDE	7,4	DRILLER USE
1	15709705	V A HOSP SH:K-9	/ /19	돼!! 하 !	01	1		[35-05-17 89-55-26	U:	OZHR
	15709706	MEMPHIS LG & W SE:K	05/24/1969	617	}	1	1	}		35-05-53 89-55-30	w	TEST
	15709708	MEMPHIS EG & W SH:K	06/00/1959	618		}	1	ļ		35-06-27 89-55-33	(A)	TEST
	15709739	15709739 MENCHIS LG & W 8H;K	09/18/1955	630		1	1	1		35-07-02 89-55-35	¢)	TEST
	15709710	2.82 W & 51 STHEMEN OF W SHIE	07/21/1972	428 380	{ 	1		}		35-05+33 89-55-54	w	NOW
	15709750	MEMPHIS LG & W SH-X	00/00/1970 / /	81	; ;	;	 	1		35-07-07 89-55-00	ço.	JC029 Test
	94001160 X	MIGW 3824 PCPLAR AVE	03/11/1994	530 526	1400	406 PLAST	SCRIEN 411 -	526	GCOS	1 1	>-	30.674 MJN
	95002033 DB004036	PACTON & TAYLOR GERMANTOWN	05/03/1995 / /	21.0	4c 50	190 PLAST	SLOT . 190 -	210	GCOD	1 I 1 I	\$4	OCS65 IRR
	95002034 D0004037	PACTON & TAYLOR GERMANTOWN	05/04/1995	21.0	4.6 0.6	190 PLAST .	SLOT 190 ~	210	dcop	1 t 1 t	*	OCS65 IRR
	15709024	COLONIAL CC SHHK-23	/ /19	98E	: 1 년 1 년	STEEL	 		gcob	35-06-47 89-54-19	ο	30030 OTHR
	15709025	15709025 COLONIAL CC SHHK-24	03/0C/1942 / /	410	300	387 STEEL	349 -	410		35-06-45 89-54-19	60	NO.
	15709030	5709030 MEMP PARK CLSHNK 30	9561/30/QQ / /	80 E	113	.	(}	1	രാ	35-06-37 89-54-47	เก	00029
	15709086	SOJTHERN BIT SH:K-8	/ /19 / /	270	 	ì	: 1	l	g009	35-06-52 89-53-44	to	CMI
	15709737	KEMPHIS LG & W SHEE	10/08/1959 / /	619	11		1 	1		35-06-35 89-54-39	ហ្វ	TSST
	91000953	MEMPHIS LG & W PARK	10/17/1990 / /	454 445	20 0 0 141	335 STEEL	SCREEN 339 -	\$45	GOOD	1 1	\$ 1	00674 MUN
	97002136 1 E0023073	DIXON GALLERY PARK AVE 4339	05/26/1997	583	 120	253 OTHER	SLOT: 253 -	283	3000	1 1 1 1	۶ı	00565 IRR

:

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSENVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SCUPHEAST-HEMPHIS QUADRANCLE (04095W) TN.

OUAD / PMI COUNTY	OUAD / NTH WELL NOW OWNER'S NAME COUNTY REG NUM LOCATION ROAD	COMP DATE 1	TOT DEPTH AQ DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH	WELL FINISH INTERVAL	HS.	WAT COME TAG NOW	LATITUDE LONGITUDE	A/C LOG	DRILLER USE
D409SW 4 SHBLBY	15700217 WETAL BLDGS CO	07/08/1964	1 XI	}	í t	48 1	ស្ត		35-03-37 89-59-57	W	C0108 OTHR
D409SW 4 SHELBY	15700871 CATEISH MOTEL	02/20/1969	210 165	295 42	180 STEEL	!	-	0,000	35-04-34 89-57-40	tu•	00036 MUN
04095W 4 SHELBY	15709029 W NORRIS SH K-29K-2	1 / 1	436	[;	 	1	0000	35-02-58 89-59-30	r/a	00108
04095W ± SHBLBY	15709036 MEMP MUN AIR SH:K-3	01/14/1559	E 1	1 1	ניי	}	ł		35-03-D8 89-58-36	t/a	Test
O4C9SW S SHBLBY	15700308 CONNECTY B	, , 19	109	18	105 30886	105 -	109		35-02-47 89-56-16	វេវា	EOME
0409SW 5 SMBLBY	15700218 MCCALL E	05/11/1965	108	35	104 STEEL	104 -	103		35-02-50 89-56-16	ca	00138 EOME
04198W 5 Sybloy	15700648 BUISE J	06/21/1968	101	198	STEEL	. 69	101		35-03-12 89-55-13	t/s	CO108 EOME
04095K 5 SMELBY	15701378 MCCLAY NILE ED FOREST HILL ED	11/14/1985	178	95	158 PLAST	SCREBN 158 -	178	G000	1 1	54	C0052 FARM
04095W S SRELBY	15709005 OKWILLE HOSP SH:K-	06/19/1920	502	60	1	}	}	300D	35-03-25 89-56-15	w	NGN NGN
04095W S SHELBY	15709005 OAKWILLE HOSP SH:K-	00/00/1929	413	m m	{	!	¦	G005	35-03-25 89-56-14	to.	PARM
04199W 5 SHELBY	1570SC07 J GARAVELLI SHSK-6-	00/00/1934	101	275 285	!	1	1	3000	35-03-07 89-55-42	ເດ	00029 COMM
0409SW 5 SHELBY	15709008 J GARAVELLI SHSK-7-	00/06/1935	001 	325	:	!	ì	3000	55-03-05 99-55-41	ĽΛ	00029 COMB
0409SW S SHELBY	15709026 I VACCARIO SHSK-252	10/01/1953	229	1ដ្	200	200	22.0	g005	35-04-39 89-55-42	sa	00138 Farx
0409SW 5 SHELBY	15709035 S D ODELL SH K-35-3	/ /19 / /	279	80 +	SCEEL	- 682	279		35-04-26 89-56-52	EN.	HOME
0409SW S SHELBY	90006222 XEMPHIS LG & W 3890 HICKORY HI	11/36/11	13 <u>4</u> 0 1257 :	133 13	1255 STEEL	SCREEN	1340	GOOD	1 1 1 1	> ٠	00614 CTHR
0409SW 6	15706643 S BELL TELEPHONE CO	11/04/1963	140 108	. 20 .	69	129 -	439		35-02-52 89-54-10	co.	00029 INC

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WAITER SUPPLY PECORES OF WAITER WELLS ON THE SOUTHEAST-MENFHIS QUADRAMOLE (04095W) IN.

					ς,							9.		٠		
CRILLER USE	00347 CTSR	00574 COMM	00686 CTHR	00441 1RR	00108 CTHR	00108 :/ HOME	00108 // WOM	.00108 OTHR	. 00286 HOME	00108 MUN	-00108 IND	OMIZ9	00198 // COMB	00286 KOME	00286 V	100108 HOME
28	ហ	> +	×	¥	w	ល	w	ω.	m/	cv	cn ·	es.	EC:	tn	w	in
LATITUDE	35-04-52 99-53-26	1 1	1 1	1 (35-02-30 89-59-22	35-00-21 89-58-07	35.00.24 89-56-27	35-02-14 89-58-18	35-00-24 89-57-36***	35-00-19 89-59-08	35-31-17 89-59-25	35-08-41	35-00-22 89-58-40	35-0C-00 89-55-24	35-00-28 39-58-56	35-CC-08 89-59-21.
WAT QUAT TAG NUM	UNK	GOOD .	отия	doop					GDCD			goos	מססם	GOOD	GOOD	
3% 						_										
E .	92	475	: }	240	51	9 8	347	255	99	286	310	υ 0	₹7	41	28	313
WELL FINISH INTERVAL	74 -	SCREEN 415 -	1	OPEN 200 -	24 1	329 -	339 (246 -	1 09	264	263	276 -	33	40 -	72 -	305 -
CSE DEPTH	92 Plast	410 STEEL	140 PLAST	200 PLAST	1	1	į	1	60 STEEL	1	1	270 3TEBL	43 P∴AST	40 PኋልST	72 Plast	305
TOT YIELD STAT LEVEL	1 1	750 11	13 (1)	N 00 00 00 00 00 00 00 00 00 00 00 00 00	1 88	145	24.5	. 92	e 44 라	157	96	200 85	01.	୯୯	. 29	148
TOT DEPTH 3	21	479	140	240 240	. t 1 Ln 1	338	347	255	65 45	285	61 10 10	302	43 19	 সাংগ্ৰ সাংগ্ৰ	82 61	513
COMP DATE I	03/11/1965 / /	04/20/1989 / /	05/21/1990	02/04/1990	10/28/1962	09/31/1964	67/21/1964	10/01/2964	11/02/1964 / /	08/31/1965 / /	04/29/1966 / /	10/03/196 6 / /	07/25/1967	07/31/1967 / /	10/18/1968 / /	02/26/1969
WELL NUM CMNER'S NAME REG NUM LOCATION ROAD	15736417 TEXACO OIL COMPANY (90000659 PROTEIN_TECHNOL MENDENHALL RD	90001550 PROPERTIETREZ (91001002 TREZVANT DELTA IRRI (AMERICAN WAY	15700069 MEMPHIS LG & W	15700210 ANDERSON D	15700213 MEMPHIS PARK COMM (15760249 V.SCOVI V	1570262 BROWN T	15700367 BAPTIST HOSPITAL G	15700433 ALLENBERG CIL CO C	15730464 AIRWAYS EQUIPMENT C 1	15700577 CAK FORES C SH:K-10 C	15700581 MOUSEY C	15730703 HAISCH L	15700751 RASP W
QUAD / NTH COUNTY	C4095W 6 SRELBY	04095W 6 SHELBY	0409SW 6 SHELBY	O4C9SW 6 SHELEN	OdCOSM 7 SHELEY	O409SW 7 SHELBY	O4095W 7 SHELDY	04095W 7 SHELBY	040957 7 STELSY	04095W 7	04095W 7 Shedey	04095W 7 SHELBY	0409SW 7 SHELBY	04095% 7 SHELBY	0409SK 7 SHELBY	0409SK 7 SHELBY

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY PECORES OF WATER WELLS ON THE SOUTHEAST-NEWPELS QUADRANGLE (04095W) IN.

DRILLER USE	MOC 68	00193 KDOM		00033) MOX	FARK	00030 FARK	00674 Kok	00193 HOME	00103 MUN		00003 HOKE	00158 HOMB	COLCB	COC 29 MON	COC 29 MON	00029 MON
A/C LOG	Ø	ហ		¢o.	ശ	t o	> +	ហ	v)	ß	H	v3	to.	*	> +	>1
LATITODE	35-00-25 89-57-39	35-C0-28 39-57-44		35-C0-23 39-58-28	35-02-09 89-59-25	35-00-24 89-58-26		35-02-11	35-00-17 89-55-32	35-00-19 89-57-19	35-C2-00 89-56-00	35-00-25 89-57-16	35-C0-25 89-55-31	1 1 1 1	1 1	1 1 1 1
WAT DUAL TAG NUM	GOOD	G000					G00D					G005		отня	OTHE	отин
HS.	ы М	83	1	370	1		540	180	296	ł	52	on on	263	143	135	.8
WELL FINISH INTERVAL	318 ·	- 09	t t	- €9		i 	SCREEN 530 -	173 -	1 12 12 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Ì	47 -	- 84 -	261 -	SCREEN 130 -	SCREEN 125 -	SCREEN 18 -
CSE DEPTH CSE TYPE	318 PLAST	80 PLAST	1	STEEL	STEEL	STEEL	525 STEEL	172 STEEL			1	94 PlAST	251 STEEL	130 PLAST	. 125 PLAST	18 PLAST
TOT YIELD STAT LEVEL	15	2,1	116	26	7.0	405 134	125 130	.1 55	T 33 -	<u> </u>	0	8 C C	133	! !	<u> </u>	1.1
TOT DEPTH AQ DEPTH	138 302	80 27	318	370 360	360	1 1	570 530		1	; ;	52	94 80	268	- 40 	: , , se ; ,	60 I
COMP DATE	05/25/1970	09/24/1971	/ /19	12/06/1961	/ /29	1 /25	1657/81/11	11/12/1963	06/10/2964	65/ /	09/29/1964	/ / / / / / / / / / / / / / / / / / / /	02/15/2968	06/03/1985	06/35/1985 / /	05/12/1985
H WELL NUM CHNER'S NAME REG NUM LOCATION RCAD	15700872 RIDGECREST 3 CHURCH	15700963 CHURCH OF GOD	15709028 HARRISON D \$6:K-2	15705079 HEN PARK COM SH:K-7	15709080 SMITH CARRY SH:K-80	15709087 NEW PARK COM SH:K-8	91003851 MEMPHIS LG & W 4869 AIRWAYS BL	15700039 WHITAKER E	15700182 BELLA COUMTRY CLUB	SINNE ECO IIZO025I	15700252 CLIFFORD RUSH	15700573 DAVENPORT	15700612 HOLMES A	15701367 BROMNING_PERRIS ROLMES RD	15701368 BROMNING_FERRIS FOLMES RD	15701369 BROMNING_FERRIS HOLMES ND
COUNTY	C4095W 7 SHELBY	C4095W 7 Sheldby	C4095W 7 Shelby	04095W 7 Sheley	04095W 7 Shrlay	O4C9SW 7 SHELBY	O4095W 7 Shelby	0409SW 8 SHELBY	04095W 8 Sabley	04095W 8 Sybley	04095W 8 Syeley	04095W 8 Syelby	0409SW 8 SHELEY	O409SW 8 SHELBY	0409SW 8 Shelen	0409SW 8 SHELBY

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SCUTHEAST-MEMPHIS QUADRANGLE (0409SW) IN.

15701370 BIOCHEST REPRETED 06/12/1965 35 15 15 15 15 15 15 1	CUAD / NTE COUNTY	NTH WELL NJM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE TOT INSPI DATE AQ	T CEPTH CEPTH	TOT YTELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	H H	WAT QUAL TAS NOW	LATITUDE LOMGITUDE	28	ORILLER USB
15701371 BROWNING_PERRIS 06/12/1995 29	l	15701370	BROWNING_PERRI HOLKES RO	06/10/1985	3.5	11	26 Plast		36	至	1 1	,	00000 MOM
6. 15701372 SROANING_PERRIS 06/13/1985 22 PAAST 12 22 27 1 6 15701372 SROANING_PERRIS 06/13/1985 25 PAAST 15- 25 07HR 1 8 15701373 SROANING_PERRIS 06/14/1985 22 12 25 CREEN 15- 07HR 1 8 15701374 SHOWNING_PERRIS 06/14/1985 22 12 25 CREEN 150 07D 15-00-00 1 8 157013028 HACKERS NATAL 06/14/1985 22 5TEST 150 07D 150-00-00 1 8 157013028 HACKERS NATAL 06/14/1985 25 5TEST 150		15701371	BROWNING_PER HOLMES RO	06/12/1985	8	1 1	18 PLAST		28	OTHE	1 1	>=	30029 MON
STATES 15701373 3ROWING FERRIS 06/14/1935 25		15701372	BROWNING_FERRIS HOLMES RE	06/13/1985 / /	1 53	1,1	12 Purst	SCABEN 12 -	ξ. (2)	OCHR	()	*	30029 MON
E 15701574 ARCALINE_FRRIS 06/14/1935 22		15701373	BROWNING FER HOLMES AD	06/14/1985	25		15 P.AST	SCREEN 15 -	50 70	OTHE		>1	00029 MOM
B 15731681 W PAREILS MAKE 1967 1		15703374	BROWNING_FER HOLXES RD	06/14/1985	21	1 1	12 PLAST	SCREEN 12 -	22	OIHR	t 1	>1	00029 MON
B 15739C91 BUNLEDTE CH SEIK-E1-8 2/20/1962 315 STEEL 3.06 3.15 3.05 3.15 3.05 3.15 3.05 3.15 3.05 3.15 3.05 3.15 3.05 3.15 3.05 3.15 3.15 3.05 3.15		15701523	œ		19C 19C	255	150 PLAST	SCREEN 150 -	190	gcop			00158 HOME
Stronger Stronger		15739081	W PARRISH SK	32/20/1962	315 306	·. []	 STEEL		315			0)	HOME
8 15709023 MEMPHIS LG & W SHIR OX/196/1964 528		15739091	BUNCED'TE CH	00/30/1963	155	::	 -		;	0009		υ.	00212 MDOX
8 15709093 MEMPRIS L3 & W SFIR D9/30/1964 52B 35-07-31 S 9 2000495 CACKSON LAR 10/15/1951 72 15 62 SCPEEN 72 72 15 62 SCPEEN 72 72 72 15 15 62 72		15709092	MEMPHIS IG & W	05/08/1964	55.		1		;				TEST
8 92004995 JACKSOH LARR 10/15/1951 72 15 62 SCREEN GOOD YOUR MALE. D.		15709093	WEMPHIS DO & W	09/30/1964	52B	; ;	i		1		5-07-31 9-55-51	Ø	MÜN
9 15700452 DELTA IRRIGATION CORRETE CO 11/29/1966 251 36		92000495	JACKSON TCHULAKOMA RD	10/15/1951	2.0	10 F-	62 PLAST	SCPEEN 62 -	5	0000) 1		00007 HCME
9 15700716 PISCHER CONCRETE CD 11/29/1968 254 132 573 225 73 225 73 237 73 237 73		15700452	DELTA IRRIGATION CO	06/29/1966	251	; on	;		35.5			رب د	00108 IND
9 15700716 PISCHECONCRSTE CD 11/29/1968 264 222 2 2 2 4 89-54-51 8 9 15700846 PULLIAM NURSERY 02/23/1970 227 207 207 207 207 207 207 207 207 207 207	0409SM 9 SHBLBY	15700725	PISHER CONCRETE	11/29/1968	273	132	225 STEEL	ran.	273			2 1	00108 IND
9 15700846 PULLIAM NURSERY 02/23/1970 227 207	O4C9SM 9 SHELBY	157007:6	ы Н	11/29/1968	264	130	222 ST SEL		264			en.	00108 IND
9 15700945 MAYLE.D. SB:X-10 06/13/1974 165 10 166 ''' GOOD 35-02-03 S / / 100 50 PLAST 156 - 166 89-53-22		15700846	PULLIAN NURS	02/23/1970 , ,	227	120	207 Plast		227	G008		œ	00052 COMX
	0409SM 9 SHBLBY	15700945		06/13/1974	165 103	10 50	166 Plast		991	0000			0040C HOME

TEMNESSEE DEPARTMENT OF ENVIRONMENT AND COMBENVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MEMBES QUADRANGE (C409SM) IN.

QUAD / NTI COUNTY	H WELL NUM REG NUM	NTH WELL NUM CONNER'S NAME REG NUM LOCATION ROAD	COMP DATE INSPT DATE	TOT DEPTH AQ DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	E S	WAT QUAL TAG NUM	LATITUDE LONGITUDE	A/C LOG	DRILLER USE
04055M 9 Shelby	15700946	S J SCHL BR SH:K:10	1721/12/70	489 500	1001 - 93	390 STEEL	403 -	483	GCOD	35-01-56 89-53-21	S	00003D IND
O4C9SW 9 SHELBY	15700547	15700547 SCHLITZ 53:K-10	07/21/1971	485 500 ·	1001	390 STEEL	199	- 479	GCOD	55-01-50 89-53-27	ы	00030 IND
O4C9SW 9	15700948	3 J SCHL BREW SH:K-10	107/21/1971	495 500	1001 91	404 STEEL	412 -	26 3	6000	55-01-50 89-53-38	EN.	C0030
0409SW 9 Syblay	15700949	SCHITZ SH:K-10	07/21/1971	473 500	1301 93	381 STEEL	387 -	167	0000	35-01-58 89-53-37	t/)	C0030
0409SW 9 SHELBY	15703985	RALSTON PURINA K-10	06/02/1972	477	1.1	410 STBEL	41 W	69	0000	35-01-55 89-53-00	60	62000
04395W 9 Shelby	1570390	RALSTON PURINA K-10	07/19/1972	473 417	, 600 82	410 STEBL	417 -	467		35-01-53 89-53-00	co,	00029 KON
04095W 9 SHELBY	15700996	TRAISTIN PURKA TEST	, , , ,	192	:: :1	ŧ	1		GCOD	1 I 1 I		00029 IND
C409SW S SHELBY	15701073	ALLEN MATERIALS SUNGERFORD	6/ 7/1974	160	10 87	156 STEBL	SCREEN 156 .	180	IRON	25-01-00 89.53.00	f+ >=	06108 IND
C4098W 9 SHELBY	15701073	JAS.SCHLITZ BREJOSE RAINES ROAD	08/23/1974	467	1.1	375 STBEL	SCREEN 244 -	324	GCOD	35-02-00 89-58-30	€ >=	06029 IND
04095W 9 SHELBY	15701082	RALSTON PURINA MENDENHALL	11,06/1974	462	11	400 STBBL	SCREEN 405 -	456	GOOD	35-02-00 89-53-00	F >-	00029
04095W 9 SHELDY	15721268	15701268 WHITEMEAD PROPERTIE	11,24/1981	260 200	143	210 PLAST	210 -	260	G00D	35-03-09 89-53-55	to.	06570 80%E
04095W 9 SRELBY	15701568	HEMPHIS LG & W 3899 HICKORY HI	04/03/1989	787 680 -	1400. 118	678 Stbel	SCREEN 680 -	783	GOOD	35-00-00 89-52-30	o >-	0cc29 xon
O4098W 9 Shelay	15701569	15701569 MEMPHIS IG & W 3911 RICKORY HI	02/03/1989	475 471	1400 116	356 STREL	369 -	471	G005	35-00-00	ω > -	00C29 XON
0409SW 9 SHELBY	15701570	15701570 NEMPHIS LG & W 3901 RICEORY HI	03/06/1989	1 1		 CTHER	1	ŀ		35-00-00 89-52-30	s ×	06629 OTER
0409SW 9 Shelby	15701584	L MEMPHIS IG & W 4269 CRUMP	06/12/1989	5.45 5.68	148	463 STEEL	SCREEN 468 -	568	GCOD	35-00-00 89-52-30	ra >-	06029 MUN
0409SW 9 Shelby	15735031	15705C31 PRISCO RR SH X-31-3	7 /15	176	1.6	SIBEL	1	1	G COD	35-01-42 89-53-52	£Λ	

TENHASSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MENPHIS QUADRANGLE (6409SW) TN.

QUAD / NTE COUNTY	REG KUM	QUAD / WTH WELL NUM OWNER'S NAME COUNTY REG NUM LOCATION ROAD	COMP DATE TOT INSPT DATE AO	с оврти оврти	COT DEPTH TOT YIELD CSB DEPTH WELL FINISH AO DEPTH STAT LEVEL CSB TYPS INTERVAL	CSE TYPE	WELL FINIS INTERVAL		MAT QUAL TAG NUN	LACITUDE	200	A/C DRITIER LOC USE
C4098W 9 SHELBY	15709078	15709078 R C CAN CO SHIK-787	8341K-787 0D/00/1958		11	 	1	1) Year	35-01-06 89-53-13	LOS	00108 IND
C409sw 9 Shelby	15705083	15705083 WHITE STONE SERK-8	SE:X-8 04/23/1962	165	! 60	STEEL	1	1		35-01-26 89-53-05	os.	00108 IND
04095W 9 SHELBY	15709084	15709084 R H WOOD SH:X-84K-8 08/06/1961	08/BC/1961	214	B	 PLAST	200 -	214	doos	35-01-26 89-53-05	Eq.	HOMES
0409SW 9 SHELBY	15709085	15709085 C B 3CWE	67//	7. I	15	1	!	}	gcog	35-01-15 89-54-36	ts.	HOME
0409SM 9 SHELBY	97002872 D0025144	97002872 APAC IN INC D0025144 TUITIES	06/27/1957	180 90	250 90	140 PLAST	SCREEN 140 -	. 081	goop	1 1 1 1	- بر	00570 COMH

----- ‡ -----

APPENDIX F

WATER QUALITY LABORATORY REPORTS

NO DRINKING WATER ANALYTICAL WAS PERFORMED

----- ‡ -----

APPENDIX G

UST SITE RANKING FORM

UST SITE RANKING FORM

Facility ID Number: 0-790983

Facilty Name:

Army National Guard OMS #015

Facility Address:

Memphis, TN

Date Ranking Form Completed:

7/16/98

Geologic and Hydrogeologic Factors

Minimum depth to the water table	<u> </u>	
<5.0 Feet	X 50	
5.1 to 10.0 Feet	45	1
10.1 to 15.0 Feet	40	1
15.1 to 30.0 Feet	35	1
30.1 to 50.0 Feet	25	
50.1 to 75.0 Feet	15	1
75.1 to 100.0 Feet	10	1
> 100.0 Feet	5	
ISCR, 07/29/98, p. 19, Table 3	Score	51

Minimum distance between water table & contaminated soil			
<5.0 Feet	į	50	
5.1 to 10.0 Feet		45	
10.1 to 15.0 Feet	4	40	
15.1 to 30.0 Feet		35	
30.1 to 50.0 Feet		25	
50.1 to 75.0 Feet		15	
75.1 to 100.0 Feet		10	
> 100.0 Feet	" I== "	5	
No soil contamination	X	0	
ISCR, 07/29/98, p. 12, Table 1	Score	\neg	0

3	Soil Permeability		
	Undetermined	30	
	> 10^-4 cm/sec	30	
	10^2-4 to 10^-6 cm/sec	X 20	
	<10^-6 cm/sec	10	
	ISCR, 07/29/98, p. 14, Table 2	Score	20

Calculated Groundwater Flow Rate	
<10 Feet/day	X 3
10 to 40 feet/day	6
40 to 90 Feet /day	12
90 to 130 Feet /day	18
130 to 260 Feet/day	24
> 260 Feet/day	30
KARST	30
ISCR, 07/29/98, p. 18	Score

Receptor Factors

. 5	Basements/Crawl Spaces/Utility Vaults	7	
ا ا	Solution Solution	150	
	50.1 to 100.0 Feet from known contamination		
	100.1 to 200.0 Feet from known contamination	75	
1	200.1 to 300.0 Feet from known contamination	50	
		25	
	> 300.1 Feet	X 0	
1	ISCR, 07/29/98, p. 8	Score (<u> </u>
<u>ب</u> ا	List of the second seco	•	
6	Sanitary sewer mains and service lines	<u> </u>	
	<50.0 Feet from known contamination	75	
•	50.1 to 100.0 Feet from known contamination	40	
	100.1 to 200.0 Feet from known contamination	20	
	200.1 to 300.0 Feet from known contamination	X 10	
	> 300.1 Feet from known contamination	0	
	ISCR, 07/29/98, p. 8 and Figure 2 on p. 5	Score 1	Ō
			_
-	Character Course	7	
	Storm Water Sewers		
	< 50.0 Feet from known contamination	50	
1	50.1 to 100.0 Feet from known contamination	30	
	100.1 to 200.0 Feet from known contamination	10	
	200.1 to 300.0 Feet from known contamination	5	
ì	> 300.1 Feet	X 0	
	ISCR, 07/29/98, p. 8 and Figure 2 on p. 5	Score	<u>o</u>
,			
8	Other Subsurface Utilities (I.e. natural gas, water, electric, telephone, etc.)	7	
	<50.0 Feet from known contamination	75	
	50.1 to 100.0 Feet from known contamination	X 40	
	100.1 to 200.0 Feet from known contamination	20	
	200.1 to 300.0 Feet from known contamination	10	
	> 300.1 Feet from known contamination	10	
	ISCR, 07/29/98, p. 8 and Figure 2 on p. 5	Score 4	<u> </u>
 	13011, 072330, p. 6 Bild Figure 2 611 p. 3	ocore 4	<u>"</u>
9	Public Water Supply Source	7	
	<0.1 miles	300	
	0.1 to 0.25 miles	200	
	0.25 to 0.5 miles	100	
l	>0.51 miles	X 0	
	ISCR, 07/28/98, p. 26-28	Score	0
40	Indicate Wester Council Course	_ 	
10	Private Water Supply Source		
	<0.1 miles	200	
	0.1 to 0.25 miles	150	
	0.25 to 0.5 miles	100	
	>0.51 miles	X 0	
	ISCR, 07/28/98, p. 26-28	Score	0
11	Distance to Surface Water	1	
	<.1 miles	25	
	0.1 to 0.25 miles	X 15	
	0.25 to 0.5 miles	5	
	>0.51 miles	1 0	
	ISCR, 07/28/98, p. 27, Figure 9		5
	rowin, wirewau, p. et., i iyura a	100016 1	∵
		<u> </u>	

Contaminant Factors

				
	A. Max.	B. App.	C. Cont.	
12	Contam.	Cleanup	Conc.	
Centaminant Concentration	Levels	Levels	Ratio A/B	
Benzene in ground water	0.00	0.07	0.0	
TPH in ground water a close \$95	90m 0.0	1.00	0.0	
BTX in Soil	0.000	50.00	0.0	
TPH in Soil	5.0	500.00	0.0	f_{ij} α
ISCR, 07/28/98, Table 1, p. 12 (SOIL)				
ISCR, 07/28/98, Table 5, p. 26 (GW)				
12 Benzene in ground water				
<1.0		 }	X 0	
1.1 to 10.0			25	
10.1 to 50.0		· · · · · · · · · · · · · · · · · · ·		
			50	
50.1 to 100.0		-	100	
100.1 to 500.0			200	
> 500.1			300	
			Score	0
13 TPH on groundwater		···		
<1.0			X 0	
1.1 to 10.0			20	
10.1 to 50.0			40	
50.1 to 100.0			80	
100.1 to 500.0			120	
> 500.1			200	
			Score	0 200
14 Benzene in soil				
<1.0			X 0	
1.1 to 5.0			25	
5.1 to 10.0			50	
10.1 to 50.0	- -		100	
>50.1			200	
			Score	0
15 TPH in soil				
<1.0			X 0	
1.1 to 5.0		· · ·	20	
5.1 to 10.0				
10.1 to 50.0			40 80	
>50.1			100	
- 04.1				0
			Score	
17 Total site score				138
1. It are and adding				190

----- ‡ -----

APPENDIX H

TN UST COST ESTIMATE COVER SHEET

AND

REPORT PREPARATION COST ESTIMATE FORM

----- ‡ -----

INITIAL SITE CHARACTERIZATION REPORT COST FORM

Submit with ISCR	Estimated Costs	Actual Costs
Site Check		N/A
<u> 18 18 19 19 19 19 19 19 </u>		
Initial Abatement/Emergency Response		N/A
Pree Product Recovery		N/A
Initial Site Characterization	\$26,001.00	\$17,389.00
Monitoring (per event)	N/A	
Additional Assessment Activities	N/A	
Environmental Assessment	N/A	

ASSESSMENT ACTIVITIES COST ESTIMATE FORM

Provide a brief description of the tasks included in this estimate. (Expand this form as necessary)

- No new work is planned, except for well abandonment
 3.
 4.
 5.

Professional Services						
Personnel (List Below)	Hours	Cost Per Hour	TOTAL			
	, , , , , , , , , , , , , , , , , , , ,					
		PM				
		GRAND TOTAL				

	ASSOCIATED (CHARGES	
Drilling			
Excavation			
Trucking	* 1		
Surveying			
Analytical Samples	\$/Sample		
Rentals (List Below)			
Disposal - Free Product			
Water Soil			
Capital Expenditures (List Be	low)		

Permitting						
Lodging and Per Diem		Days x \$				
Mileage	Miles	<u></u>	/mile		<u> </u>	•
Miscellaneou	ıs (List Below)					11
				· · · · · · · · · · · · · · · · · · ·		
<u>,</u>			GRAN	ID TOTAL		

INITIAL SITE CHARACTERIZATION REPORT NATIONAL GUARD ARMORY OMS#15

2610 E. Holmes Road Memphis, Tennessee TDUST Facility #0-790983 ATC Project No. 1995.0043

Prepared For:

Mr. Steven L. Westerman
Environmental Programs Coordinator
Tennessee Department of Finance and Administration
Tennessee Tower, Suite 1500
312 N. 8th Street
Nashville, Tennessee 37243-0300

Date: July 28, 1998

5217 Linbar Drive Suite 306 Nashville, Tennessee 37211 615.331,5016 Fax 615.331,5032

July 28, 1998

Mr. Steven L. Westerman
Environmental Programs Coordinator
Tennessee Department of Finance and Administration
Tennessee Tower, Suite 1500
312 N. 8th Street
Nashville, Tennessee 37243-0300

RE: Army National Guard OMS #15

Holmes Road

Mcmphis, Tennessee

TDUST Facility I.D. #0-790983 ATC Project No. 1995-0043

Dear Mr. Westerman;

On behalf of the Tennessee Department of Finance and Administration (F&A), ATC Associates Inc. (ATC) is hereby submitting the enclosed Initial Site Characterization Report (ISCR) for the above referenced project. It is our understanding that you will forward copies to the Tennessee Division of Underground Storage Tanks (TDUST) central office and Memphis field office.

ATC has completed the primary phase of assessment to characterize the site, and determined the extent of hydrocarbon impact in both soil and groundwater. The results and findings are summarized in this report.

Should you have any questions or comments regarding this project, please call at your convenience.

Respectfully Submitted,

ATC ASSOCIATES INC.

Kin Johnson/19 Ken Johnson/19 Staff Goologist

cc:

Mr. Jim Ozment - TDEC Central Office

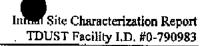
Mr. Rudy Collins - TDEC Jackson Office

EXECUTIVE SUMMARY

ATC Associates Inc. (ATC) was retained by the Tennessee Department of Finance and Administration (F&A) to complete an Initial Site Characterization Report (ISCR) at the Memphis Army National Guard OMS # 15 located at 2610 Holmes Road, Memphis, Shelby County, Tennessee. The methodologies used for the investigation were in accordance with the Tennessee Division of Underground Storage Tanks (TDUST) "Environmental Assessment Guidelines" (1996). The results and findings of the investigation are summarized in this ISCR.

A total of five monitoring wells were installed by ATC during one phase of drilling. All five wells were installed at on-site locations. Based on the lack of drinking water wells located within 0.25 miles of the site, ATC recommends that groundwater cleanup levels of 0.07 parts-per-million (ppm) benzene and 1.0 ppm Total Petroleum Hydrocarbons (TPH) be applied to this site. Based on soil permeabilities of 10-6 to 10-7 cm/sec and a non-drinking water classification for groundwater, ATC recommends that soil cleanup levels of 50 ppm Benzene and 500 ppm TPH be applied to this site.

Laboratory analysis of samples collected during the investigation indicate the soil and groundwater beneath the site has not been impacted by hydrocarbons in concentrations above the applicable cleanup levels. Based on this and a site ranking score of 138, ATC recommends no further action and site closure.


TABLE OF CONTENTS

Α.	INTRODU	JCTION	. 1
В.	SITE LOC	CATION	. 2
C.	SOIL INV	ESTIGATION	.7
	C.1	Geology	.7
	C.2	Soil Boring Results	9
	C.3	Analytical Results	0
	C.4	Soil Properties	1
	C.5	Soil Containment Plume Maps	12
D.	GROUND	WATER INVESTIGATION1	16
	D.1	Hydrogeology1	16
	D.2	Monitor Well Construction	22
	D.3	Well Development	23
	D.4	Monitoring Well Sampling	23
	D.5	Analytical Results	24
	D.6	Groundwater Classification Procedure	25
	D.7	Groundwater Containment Plume Maps	28
E.	SITE RAN	VKING3	\$1
F.	PROPOSE	ED ADDITIONAL MONITORING WELLS3	51
G.	ASSESSM	IENT ACTIVITIES COST3	31
Н.	SIGNATI	JRE PAGE	ŧ2.

TABLE OF CONTENTS (Continued...)

TABLES:

Table 1 - Soil Analytical Summary11
Table 2 - Soil Properties Summary
Table 3 - Water Level Data Summary
Table 4 - Well Construction Usage Summary23
Table 5 - Groundwater Analytical Summary25
APPENDICES
Appendix A - Standard Boring Logs
Appendix B - Soil Analytical Reports
Appendix C - Soil Permeability Report
Appendix D - Groundwater Analytical Report
Appendix E - Groundwater Classification Procedures
Appendix F - Water Quality Laboratory Reports
No Drinking Water Analytical Was Performed
Appendix G - UST Site Ranking Form
Appendix H - TN UST Cost Estimate Cover Sheet and Report Preparation Cost
Estimate Form

TABLE OF CONTENTS (Continued...)

FIGURES:

Figure 1 - Site Vicinity Map	
Figure 2 - Scale Site Map	
Figure 3 - Monitoring Well Location Map	
Figure 4 - Site Vicinity Map	
Figure 5 - Soil BTX Plume Map	
Figure 6 - Soil TPH Plume Map	
Figure 7 - Potentiometric Surface Map	
Figure 8 - Potentiometric Surface Map	
Figure 9 - Water Well Location Map	
Figure 10 - Benzene Contamination Plume Map	
Figure 11 - TPH-GRO Contamination Plume Map	

INITIAL SITE CHARACTERIZATION REPORT NATIONAL GUARD ARMORY OMS #15 2610 E. Holmes Road Memphis, Tennessee TDUST Facility I.D. #9-790983 ATC Project No. 1995.0043

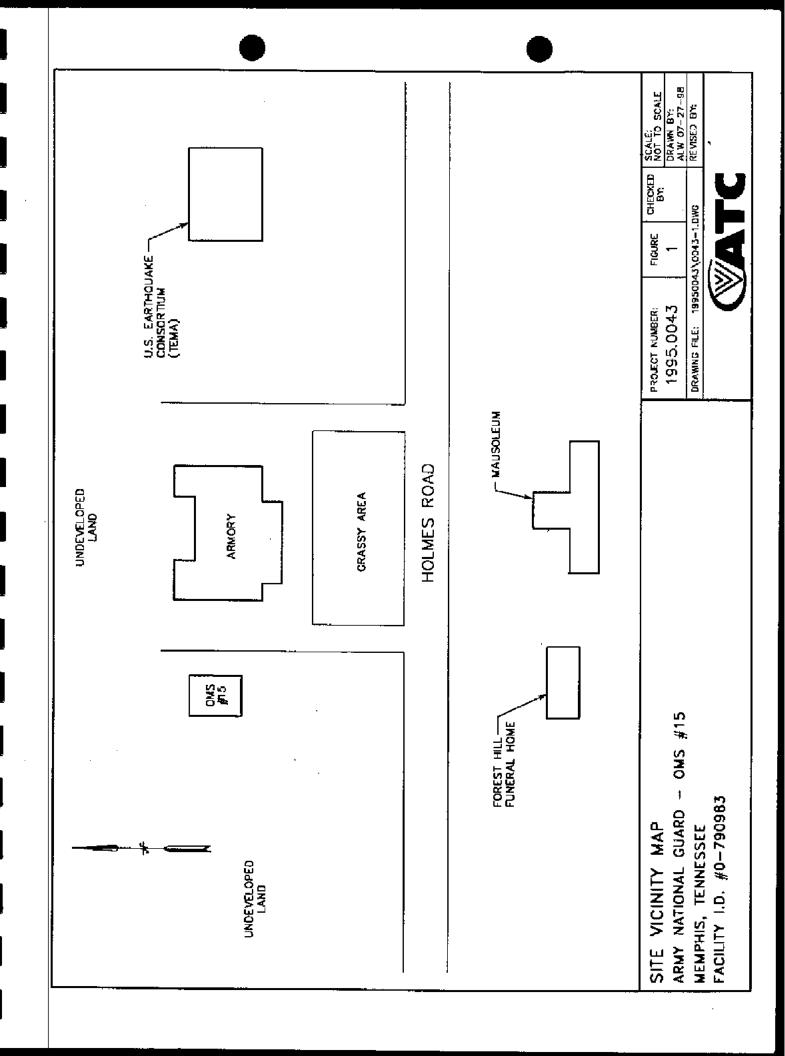
A. INTRODUCTION

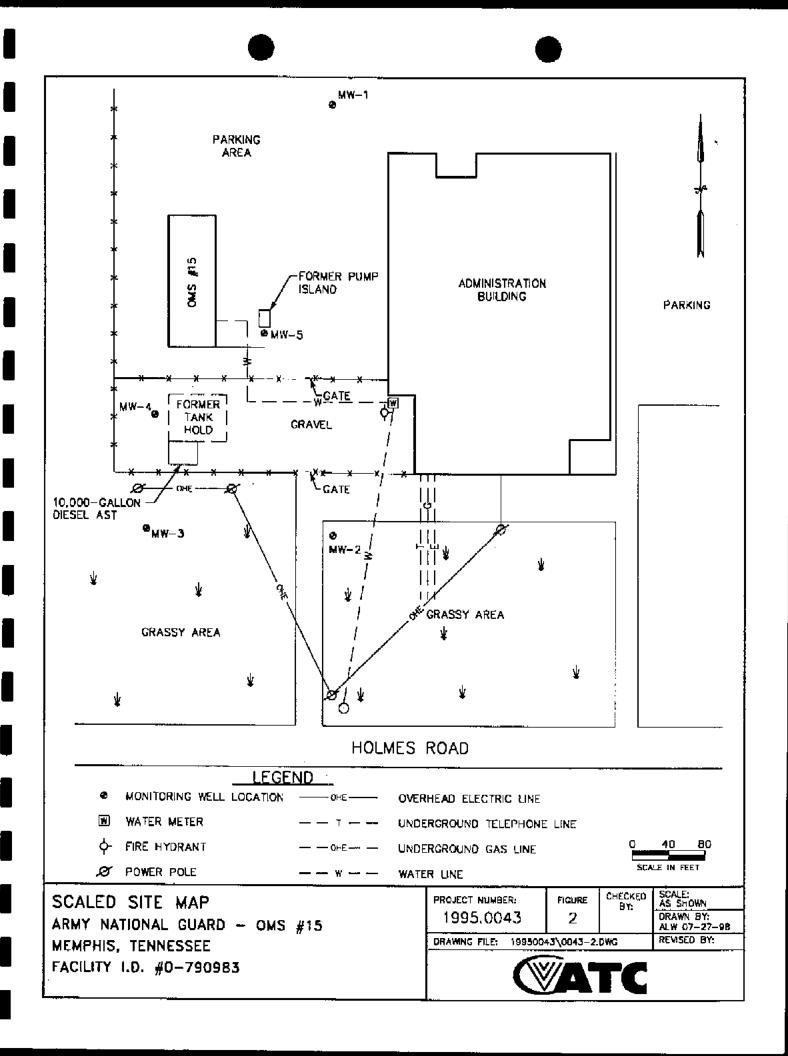
On May 15, 1997, First Response Inc. submitted a Permanent Closure Report to the Tennessee Department of Environment and Conservation (TDEC) Division of Underground Storage Tanks (DUST) Memphis field office detailing UST removal activities at the National Guard Armory OMS #15 located in Memphis, Tennessee. Analytical results from soil sampling during the removal provided readings which exceed the most stringent clean-up levels

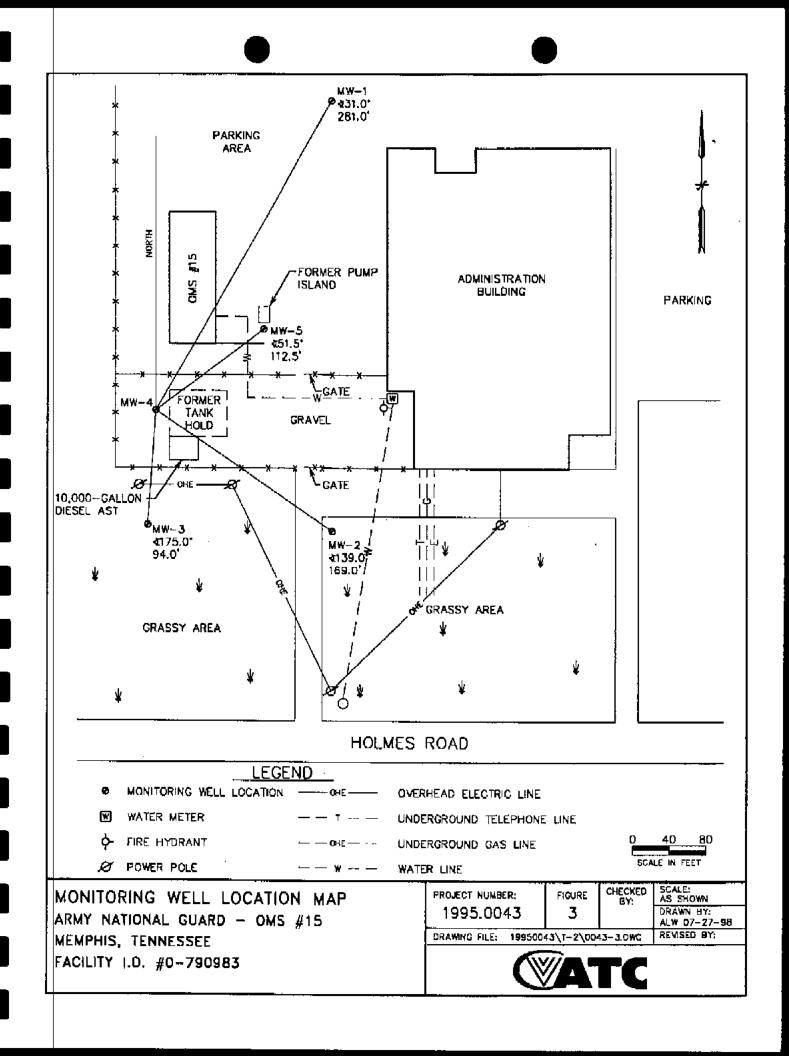
On December 23, 1997, ATC Associates Inc. (ATC) was retained by the Tennessee Department of Finance and Administration to complete subsurface investigation activities and maintain regulatory compliance.

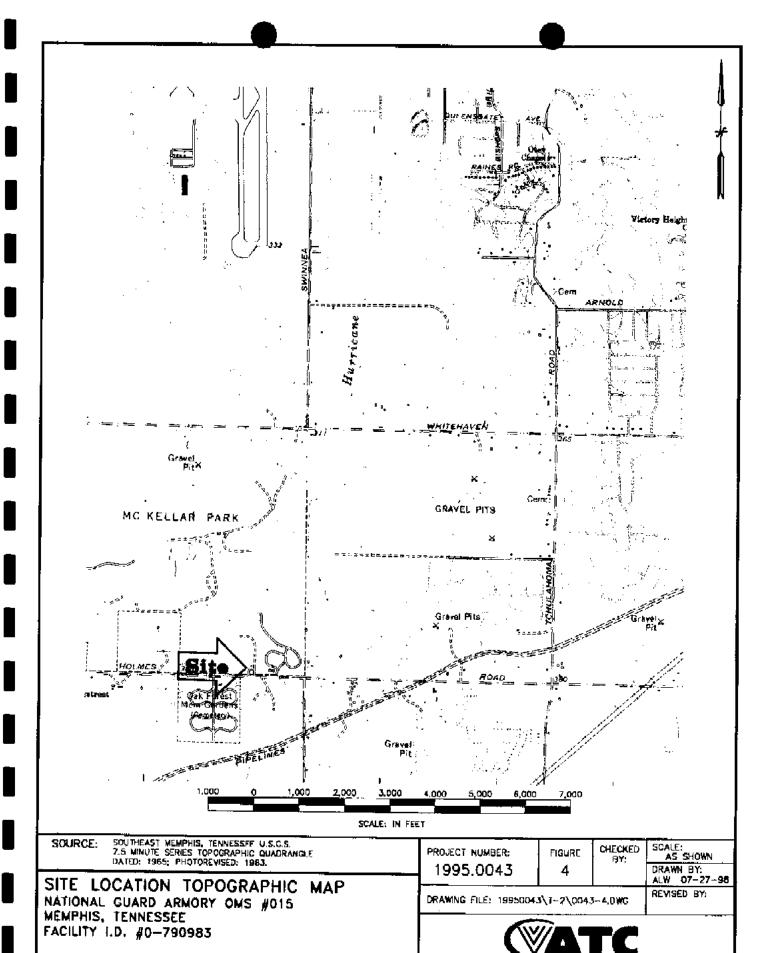
 Five groundwater monitoring wells were installed on-site in April 1998, to define the extent of hydrocarbons in soil and groundwater beneath the site.

A water use survey consisting of a computer search, field interviews, and field surveys, was completed as the initial steps in the groundwater classification procedure. The results of this survey, which are discussed in Section D.6 of this report, indicate that this site is a "non-drinking water" site.


Technical Guidance Document - 014 "UST Site Ranking System" was completed and a score of 138 was derived. The completed site ranking form is included as Appendix G.


B. SITE LOCATION


- 1. The Site Vicinity Map is illustrated in Figure 1.
- The Scaled Site Map is illustrated in Figure 2.
- 3. The Monitoring Well Location Map is illustrated in Figure 3.
- The Site Location Topographic Map is illustrated in Figure 4.
- 5. The site is located at 2610E Holmes Road, Memphis, Shelby County, Tennessee. Its location as well as surrounding topographic and cultural features are illustrated on Figure 4. Topography in the site vicinity is slight relief to gently rolling. Intermittent surface flow is toward the north and west and surface flow drains indirectly into undeveloped land adjacent to the north and west property boundary.


Land use in the site vicinity is mixed commercial and residential. The site is bound to the north by undeveloped land, to the east by the United States Earthquake Consortium with undeveloped land beyond, to the south by Holmes Road with Forest Hill Funeral Home and Cemetery beyond, and to the west by undeveloped property.

The site property is rectangular in shape with north/south and east/west dimensions of approximately 600 feet and 500 feet, respectively (see Figure 3). Approximately half of the property consists of a grassy area located on the southern portion of the site. The western and northern property boundary are enclosed by a chain link fence. The Administration building occupies the central and eastern portion of the property. The OMS building is located near the western property boundary, and the former tankhold is located directly south of the OMS.

building. A 10,000-gallon above ground storage tank (AST) which stores diesel fuel is located adjacent to the former tankhold. The remaining central and northern portion of the property serves as a parking area for various military vehicles. This parking area consists of a mixture of asphalt and gravel

An underground water line, telephone line, and electric line intersect the southwest corner of the Administration building and terminate at Holmes Road. An underground water line intersects the west central portion of the Administration building and terminates at the southeast corner of the OMS building. Overhead electric lines intersect the southwest and southeast portion of the site and terminate near the entrance to the site near Holmes Road. The location of the subsurface utilities are illustrated in Figure 2.

C. SOIL INVESTIGATION

ATC completed a subsurface investigation during the assessment of this site. The subsurface investigation was required to define the extent of hydrocarbon impact in soil and groundwater. During April 1998, monitoring wells MW-1 through MW-5 were installed onsite.

C.1 Geology

a) The National Guard Armory OMS #15 is located in the Gulf Coastal Plain Physiographic Province. This area is characterized by gently rolling topography formed by crosion, and includes alluvial, fluvial, and sedimentary units from the Tertiary and Quaternary age geologic formations. The area is covered by a blanket of loess sediments (clayey and sandy silt) which make up the present land surface in most areas of the Mississippi River flood plain. Underlying the loess blanket is a sequence of elastic sedimentary units that range from low energy environmental sand and gravels.

b) Published Geologic maps of the southeast Memphis Quadrangle, Tennessee, currently are not available. According to the Soil Conservation District Map for Shelby County, the site is located within the Memphis-Grenada-Loring Association.

This association is common throughout the Shelby County. It is characterized by nearly level to sloping, well drained and moderately well drained, silty soils on broad uplands. The soils in this association formed in silt deposits 5 to 30 feet deep.

Memphis soils are on the narrower ridge tops and steeper hillsides and are well drained. Memphis soils have a surface layer of brown silt loam and a subsoil of brown to reddish-brown silty clay loam or silt loam.

Grenada soils are commonly on nearly level ridgetops and sloping hillsides. They have a surface layer of brown silt loam, a subsoil of yellowish-brown silt loam, and a fraginan at a depth of 15 to 30 inches.

Loring soils are on ridgetops and hillsides and are moderately well drained. They have a surface layer of brown silt loam, a subsoil of brown to dark-brown silt loam or heavy silt loam, and a weak fragipan at a depth of 12 to 30 inches.

c) The soils penetrated during drilling at this site consisted of three recognizable sections which are in descending order: 1) silty clay, 2) gravel, and 3) poorly sorted sands.

The uppermost section consists of light brown to reddish brown silty clay to an average depth of 15.34 feet below land surface (bls). This uppermost unit ranges from soft to stiff and slightly moist. Groundwater saturation is present in this section at an average depth of 12.5 feet bls.

The second section consist of a poorly sorted gravel layer ranging from an average depth of 15.34 feet bls to 15.88 feet bls. This unit sometimes contains coarse sand.

The underlying section penetrated consists of a poorly sorted sand ranging from an average depth of 15.88 feet to the terminal depths of the borings. This section is brown to reddish-brown.

- d) A bedrock contour map was not provided due to the absence of bedrock.
- e) No dip and strike measurements were made due to the absence of bedrock.

C.2 Soil Boring Results

On site wells MW-1 through MW-5 were drilled by Tri-State Drilling Services using a truck mounted drill rig equipped with 8.25 inch outside diameter (O.D.) hollow stem augers. A 5.0 foot length split spoon sampler was used to collect soil samples from ground surface to the approximate total depth of each boring.

All soil samples retrieved during each phase of the investigation were logged by the onsite geologist. Standard boring logs for each boring are included as Appendix A.

The drilling rig, sampling tools, and all downhole equipment were decontaminated prior to each use with a high pressure steam cleaner. All drilling

and sampling activities were completed in accordance with TDUST Environmental Assessment Guidelines (EAG, 1996).

The EAG protocols for selecting soil samples for laboratory analysis were followed during all sampling activities. Upon opening the soil sampler, the sample was split and one portion was placed in a laboratory container and immediately stored on ice for possible analysis. The remaining portion of the sample was placed in a sealable plastic bag, for headspace screening, and allowed to volatilize for a minimum of fifteen minutes. The onsite geologist then used a Foxboro Organic Vapor Analyzer (OVA) Flame Ionization Detector (FID) to measure and record relative levels of volatile organics which were present in the headspace portion. A minimum of two samples were selected from most of the borings for laboratory analysis; the sample with the highest OVA-FID reading, and the sample collected at the point of initial contact with groundwater. Proper chain-of-custody procedures were followed during sample collection and handling activities.

C.3 Analytical Results

- a) Soil samples collected during this investigation were submitted for analysis of benzene, toluene, ethyl-benzene, and xylenes (BTEX) with Methyl-tert-butyl ether (MTBE) by EPA method 5030/8020, and Total Petroleum Hydrocarbons Gasoline Range Organics (TPH-GRO) and total Petroleum Hydrocarbons Diesel Range Organics (TPH-DRO) by Tennessee standard method. Laboratory services were provided by Hygeia Laboratories, a subsidiary of ATC, located in Marietta, Georgia.
- b) The soil sample analytical results are summarized in Table 1. The laboratory reports and corresponding chain-of-custody forms are included as Appendix B.

TABLE 1 Soil Analytical Summary ARMY NATIONAL GUARD OMS # 15 TDUST Facility I.D. #0-790983

Boring	Interval	Date.		1-32% (1-4		Analytica	Parameter	9 1212	e e e	
Well	Sampled (feet bls)	Sampled	Benzene	Toluene	Xylenes	MTBE	Total BTX	TPH GRO	DRO	Total TPH
Metho	d Detection	Limits }	0.002	0.002	0.002	0,025		0.5	4.0	
MW-1	8-10	4-7-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-1	6-8	4-7-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	6-8	4-7-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	8-10	4-7-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-3	5-7	4-6-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-3	10-12	4-6-98	ND	ND	ND	ND	ND	DИ	ND	ND
MW-4	3-5	4-6-98	ND	ND	ND	ND	ND	ND	5.0	5.0
MW-4	10-12	4-6-98	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	5-7	4-6-98	ND	ND	ND	ND	ND"	ND	ND	ND
MW-5	10-12	4-6-98	ND	, ND	שא	ND	ND	ND	ND	ND

NOTES:

Results listed in parts-per-million (ppm)

Benzene clean-up level = 50 ppm

TPH clean-up level = 500 ppm

ND - None Detected

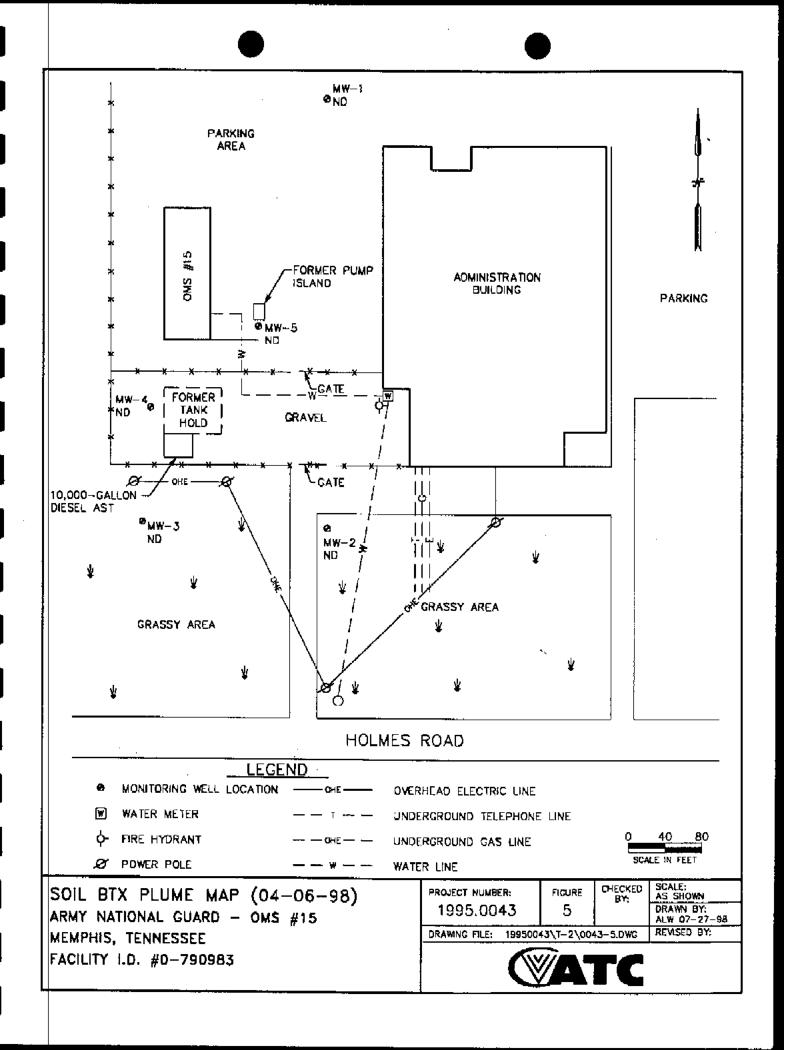
MW - Monitoring Well

Shaded areas exceed applicable clean-up levels

C.4 Soil Properties

- a) Two shelby tubes were collected from boring SB-5 at intervals of 9-11 feet bls to 11-13 feet bls. The 11 to 13 foot bls sample was collected as the most permeable zone and the zone just above the water table. The 9 to 11 foot bls sample was collected as the second most permeable zone.
- b) The samples were collected by direct-push shelby tube techniques. The soil boring was advanced to the top of a desired sample interval. A shelby

- tube was then lowered into the boring, and an undisturbed soil sample was collected by pushing the shelby tube through the desired interval.
- c) The shelby tube samples were tested in accordance with method 9100 of test methods for evaluating solid waste, Third Edition (SW-486) and in general accordance with ASTM D-5084. Fractional Organic Carbon was tested in accordance with ASTM D-2974-90 (Method C).
- d) Tri-State Testing Services, Inc. In Memphis, Tennessee, performed the analysis.
- e) Soil permeability data is summarized in Table 2.


C.5 Soil Containment Plume Maps

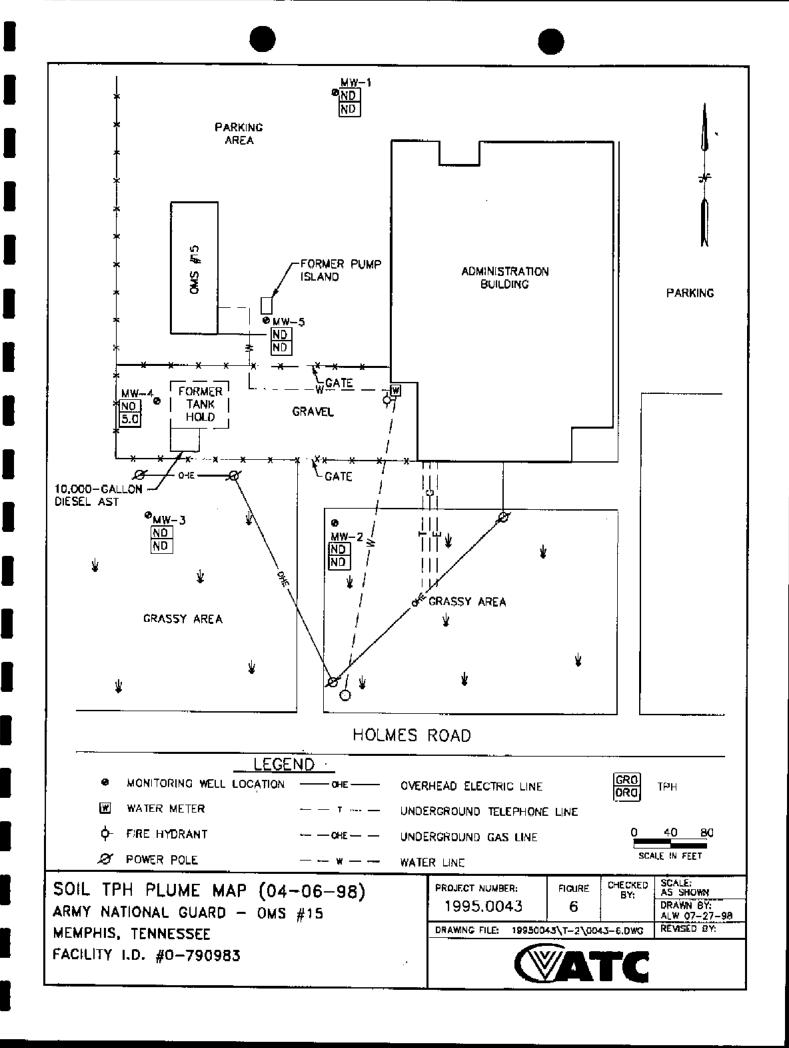

Plume maps depicting the estimated lateral extent and concentrations of BTEX and TPH in soil beneath the site are included as Figures 5 and 6, respectively. BTEX and TPH-GRO concentrations were not detected in the immediate vicinity of monitoring wells MW-1 through MW-5. The highest concentrations of TPH-DRO are present within the immediate vicinity of monitoring well MW-5 adjacent to the former dispenser island. TPH-DRO concentrations were not detected in the vicinity of monitoring wells MW-1 through MW-4. The containment area of the plume and general plume morphology, indicate that plume migration is minimal. Soil analytical results indicate TPH levels below site action limits.

TABLE 2 Soil Properties Summary NATIONAL GUARD ARMORY 0MS #15 TDUST Facility I.D. #0-790983

Boring Depth (b Zone	(1) PARMOND SINGACT OF THE RECEIPT OF T	SB5A-1 9-11 Vadose Zone	SB5A-2 #11-13 Capillary Fringe,
Parameters	units		
Permeability	cm/sec	2.3 X 10 ⁻⁷	4.1 X 10 ⁻⁶
Volumetric Air Content	cm ³ -air/cm ³ -soil	0.017	0.012
Volumetric Water Content	cm ³ -air/cm ³ -soil	0.334	0.316
Total Soil Porosity	cm³/cm³-soil	0.351	0.328
Soil Bulk Density (wet)	g-soil/cm³-soil	2.04	2.06
Fractional Organic Carbon	g-carbon/g-soil	0.009	0.009

f) Based on the most permeability sample of 4.1 X 10-6 and the groundwater classification of non-drinking water, the applicable clean-up levels were determined. The levels are 50 parts-per-million (ppm) benzene and 500 ppm TPH. Appendix C contains the soil properties report from Tri-State Testing Services, Inc.

D. GROUNDWATER INVESTIGATION

Five groundwater monitoring wells, MW-1 through MW-5, were installed during the investigation phase during April 1998, to assess conditions in the vicinity of and laterally from the suspected point of hydrocarbons release. Monitoring well MW-1 was located in an inferred upgradient position. Wells MW-2 and MW-3 were located in inferred downgradient and lateral directions. MW-4 was installed adjacent to the suspected point of release. MW-5 was installed adjacent to the former pump island.

Laboratory analysis of groundwater samples collected from groundwater monitoring wells MW-1 through MW-5 indicated that the groundwater contaminate plume had been adequately defined and that groundwater beneath the site had not been impacted. Analytical results indicated that BTEX, TPH-GRO, and TPH-DRO parameters were not detected in monitoring wells MW-1 through MW-5.

D.1 Hydrogeology

- a) Saturated conditions occur at an average depth of approximately 12.5 feet bls within the underlying silty clays. The inferred direction of groundwater flow is westerly. Primary aquifer recharge is believed to be from associated tributaries of Hurricane Creek, McKellar Lake, and from infiltrating meteoric water. Preferential pathways for infiltrating water were not identified.
- b) Free product was not observed during the site investigation.
- c) Historic water levels measured at the site area summarized in Table 3.

- d) Potentiometric maps for water levels measured in April 24, 1998, and June 11, 1998, are illustrated in Figures 7 and 8 respectively. The inferred direction of groundwater flow April 24 and June 11, 1998, was westerly.
- e) The hydraulic gradient (i) is defined as the loss of head (dh) over the linear distance (dl) dh/dl = di. The hydraulic gradient (i) was an average determined between wells MW-2 and MW-3 from the potentiometric data collected from April 24, 1998, and between wells MW-2 and MW-4 from the Potentiometric data collected from June 11, 1998.

4/24/98

6/11/98

319.998 (MW-2 static elevation) -318.60 (MW-3 static elevation) 1.39 (dh)

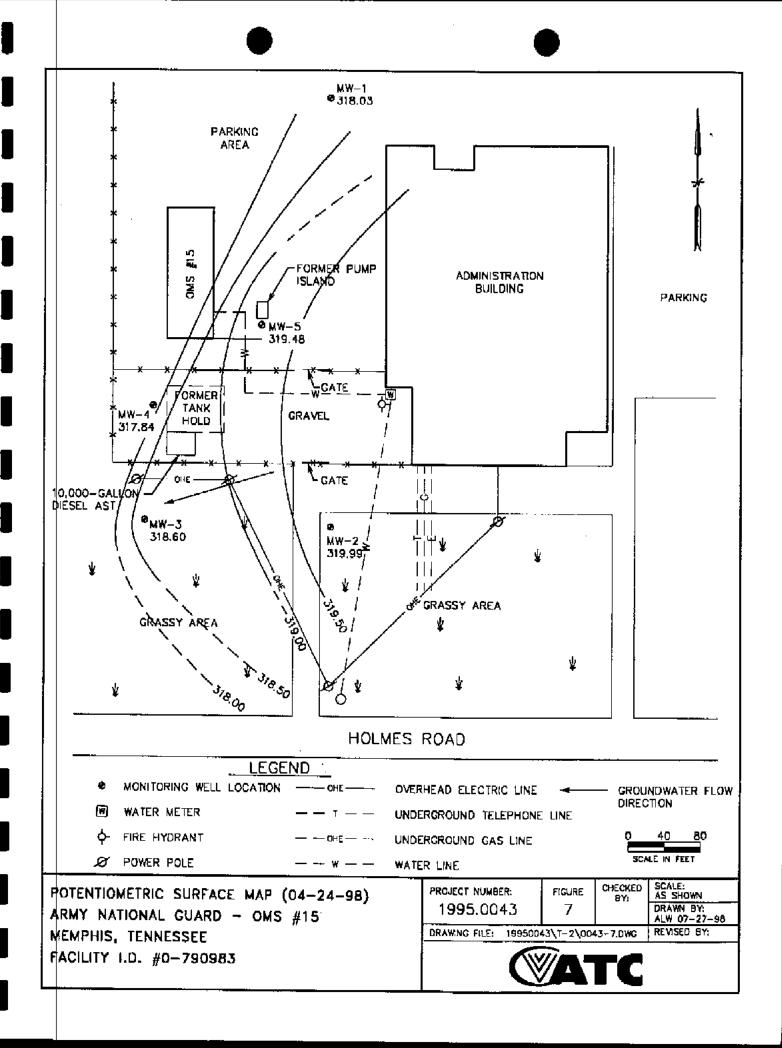
319.00 (MW-2 static elevation)
-316.76 (MW-4 static elevation)
2.24(dh)

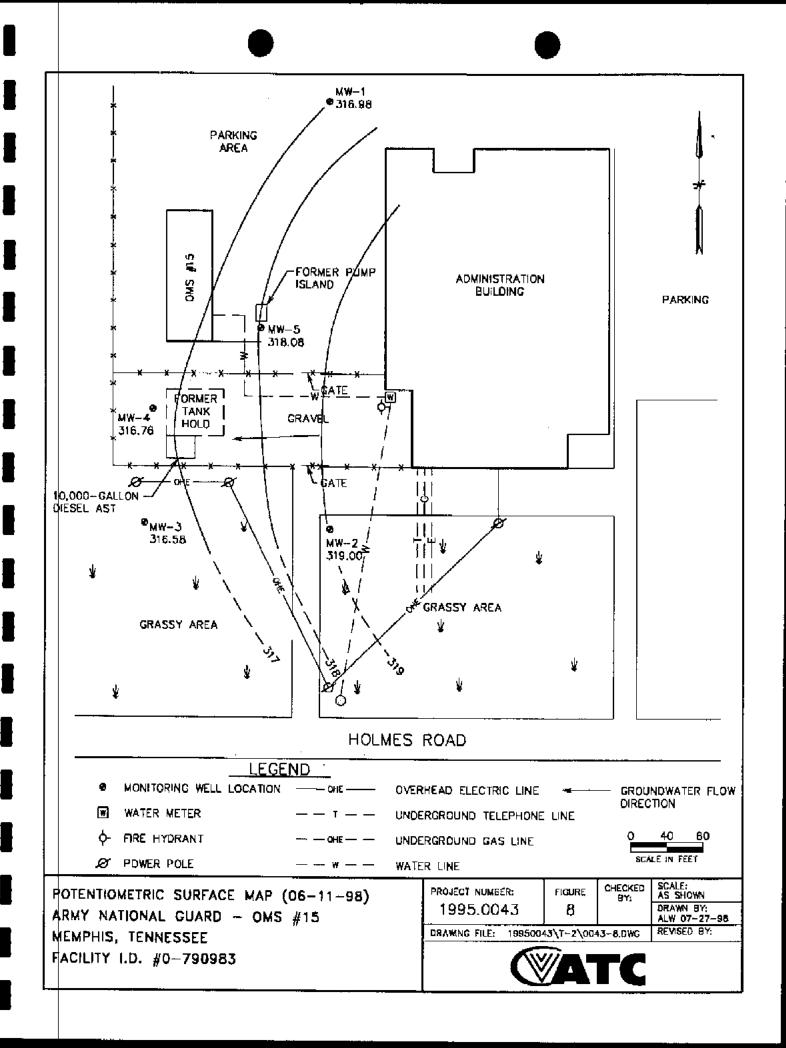
 $\frac{dh = 1.39 \text{ ft}}{dl = 150 \text{ ft}}$

dh = 2.24 ftdl = 172.5 ft

 $i = 9.26 \times 10^{-3}$

 $i = 1.29 \times 10^{-2}$


Average hydraulic gradient, (i $_{avg}$) = $(9.26 \times 10^{-3} + 1.29 \times 10^{-2}) / 2$ = 1.11×10^{-2}


TABLE 3 Water Level Data Summary NATIONAL GUARD ARMORY OMS #15 TDUST Facility I.D. #0-790983

Well	Well Well Depth	TOC	Date	Depth from	Depth from	Thickness of	Potentiometric	Adjusted
		Elevation	Measured	TOC to Free Product	TOC to	Free Product	Surface Elevation	Potentiometric Surface Elevation
MW-1	89'71	324.07	4-23-98	Ė	6.04	NP	318.03	318.03
MW-1	17.68	324.07	86-11-9	ďΖ	7.09	ď	316.98	316.98
MW-2	17.77	323,40	4-23-98	ďŽ	3.41	ď	319.99	319.99
MW-2	17.77	323.40	6-11-98	Ž	4.40	ďN	319.00	319.00
MW-3	17.45	321.18	4-23-98	AZ.	2.58	ΝP	318.60	318.60
MW-3	17.45	321.18	96-11-9	ďZ	4.60	æ	316.58	316.58
MW4	17.09	321.82	4-23-98	NP	3.98	ďN	317.84	317.84
MW-4	17.09	321.82	86-11-9	Νb	90'9	ďN	316.76	316.76
MW-5	17.52	322.77	4-23-98	NP	3.29	₽.	319.48	319.48
MW-5	17.52	322.77	86-11-9	NP	4.69	NP	318.08	318.08

NOTES:

All measurements in feet NP= No product encountered

f) Using Darcy's Law, the apparent groundwater velocity (v) in centimeters per second (cm/sec) is the hydraulic conductivity (K) times the hydraulic gradient (I) divided by the efficient porosity (Ne).

$$V = \underline{K(i)}$$

Ne


A 20 percent porosity was used in the equation. Using a published hydraulic conductivity for clayey sands of 1.0 X 10⁻³ cm/sec, and the hydraulic gradient of 1.11X 10⁻², the groundwater velocity is calculated as:

.001 cm/sec (.011) ft/ft

0.20

 $= 5.5 \times 10^{-5} \text{ cm/sec}$

Converted to a yearly rate, the anticipated groundwater flow based on the above calculation is approximately 1,734,48 cm/yr.

Well	Fill Sand	(lbs)	Bentonit	e (lbs)	Grout (gal)	Concrete
	Estimate	Used	Estimate	Used	Estimate	Used	Used (lbs)
MW-1	312.5	300	46	50	6.4	7.0	160
MW-2	312.5	300	46	50	6.4	7.0	160
MW-3	312.5	287.5	46	50	8.4	9.0	160
MW-4	312.5	300	46	50	8.2	8.0	160
MW-5	312.5	287.5	46	50	7.9	8.0	160

NOTES:

D.3 Well Development

Upon Completion of well installation activities, the wells were developed by removing water with a disposable bailer. Each well was bailed until relatively clear of sediment. Although relatively clear of visible sediment, the development water retained a reddish-brown color that is believed to be due to the high iron content of the host sediments. No odors were detected from wells MW-1 through MW-5.

D.4 Monitoring Well Sampling

Prior to sample collection, each monitoring well was opened, water was allowed to reach static levels, and the resulting depth to water was measured and recorded.

This information was then used to calculate the standing well volume, and a minimum of three well volumes were purged from the well prior to sampling.

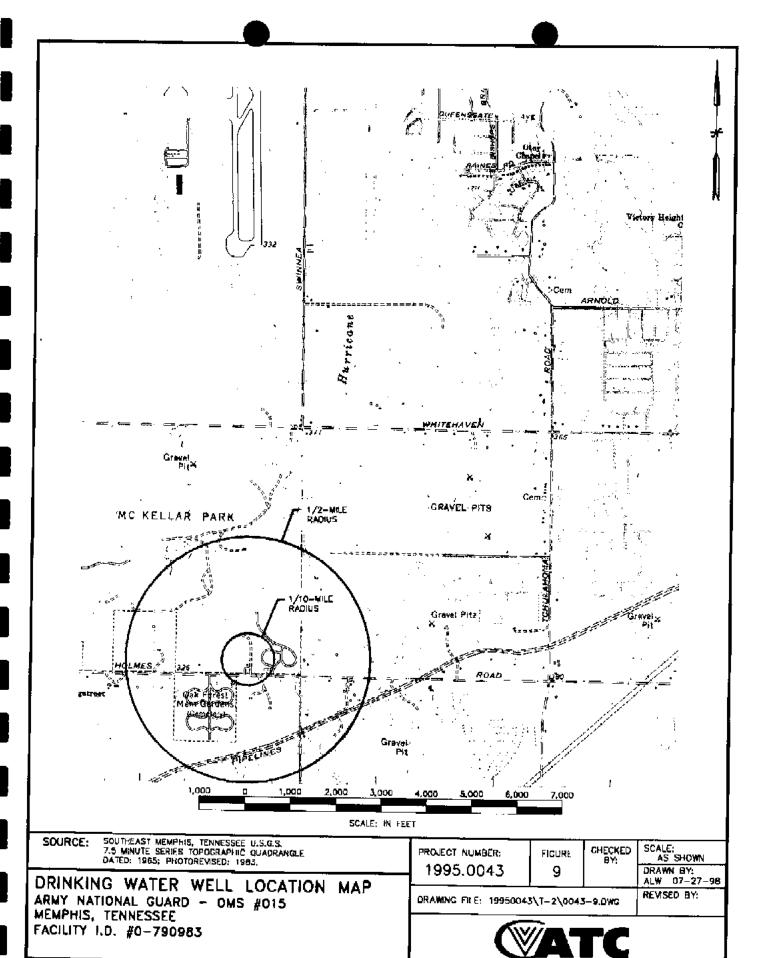
^{*} More grout required due to uneven annulus.

Groundwater samples were collected with single-use disposable bailers and new nylon string. Upon retrieval, the samples were placed in the appropriate laboratory sample containers, labeled, and placed on icc until delivery to the laboratory. Proper chain-of-custody procedures were followed during all sample collection and handling activities. Laboratory services were provided by Hygeia Laboratory of Marietta, Georgia. The groundwater samples were analyzed for BTEX, MTBE, TPH-GRO, and TPH-DRO.

D.5 Analytical Results

- a) Historical analytical results for groundwater samples collected at this site are summarized in Table 5. Benzene, TPH-GRO, and TPH-DRO were not detected for MW-1 through MW-5.
- b) Groundwater Analytical Reports are located in Appendix D.

TABLE 5 Groundwater Analytical Summary NATIONAL GUARD ARMORY OMS #15 DUST Facility I.D. #0-790983


Wall	Date		(4) (計模的形式)(4) (4) (4) (4) (4)	Analy	tical Parame	ters		HERMAN
Boring	Sampled	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MIBE	TPH- GRO	TPH- DRO
Method I	Detection	0.0004	0.0004	0.0004	0.0004	0.005	0.1	0.1
Lir	mit			l				
MW-1	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-2	4-24-98	ND	0.0045	ND	0.0006	ND	ND	ND
MW-3	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-4	4-24-98	ND	ND	ND	ND	ND	ND	ND
MW-5	4-24-98	ND	ND	ND	ND	ND	ND	ND

NOTES:

All results listed in parts-per-million (ppm)
Applicable benzene clean-up level = 0.07
Applicable TPH clean-up level = 1.0 ppm
Shaded areas exceed applicable clean-up levels

D.6 Groundwater Classification Procedure

- a) Data from the water use survey.
 - i. The location of wells and springs is illustrated in Figure 9.
 - No drinking water supplies were identified within a one-half mile radius of the site.

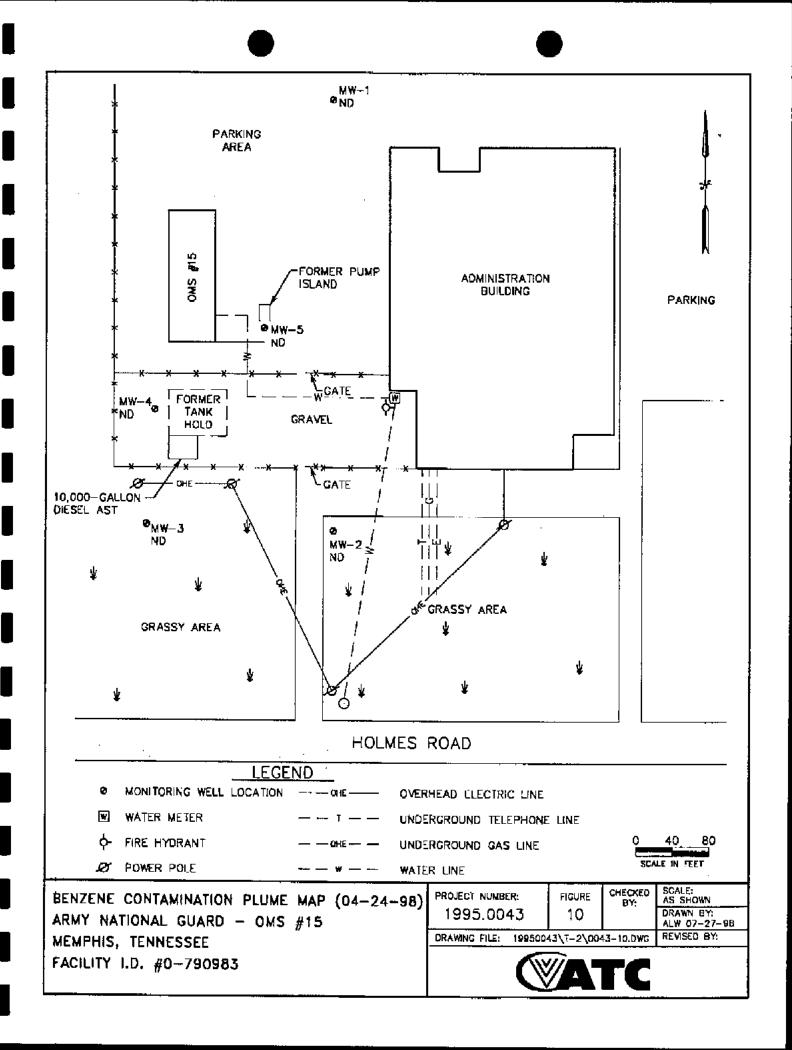
- iii iv. Completed water use survey forms for all water supplies (wells and springs) identified within a one-half mile radius of the tank hold are located in Appendix E.
- v. ATC personnel conducted a reconnaissance of the vicinity and located no private, domestic, or commercial drinking water wells. Drinking water supplies for the site and vicinity are publicly provided by the Memphis Light, Gas, and Water Utility Department.

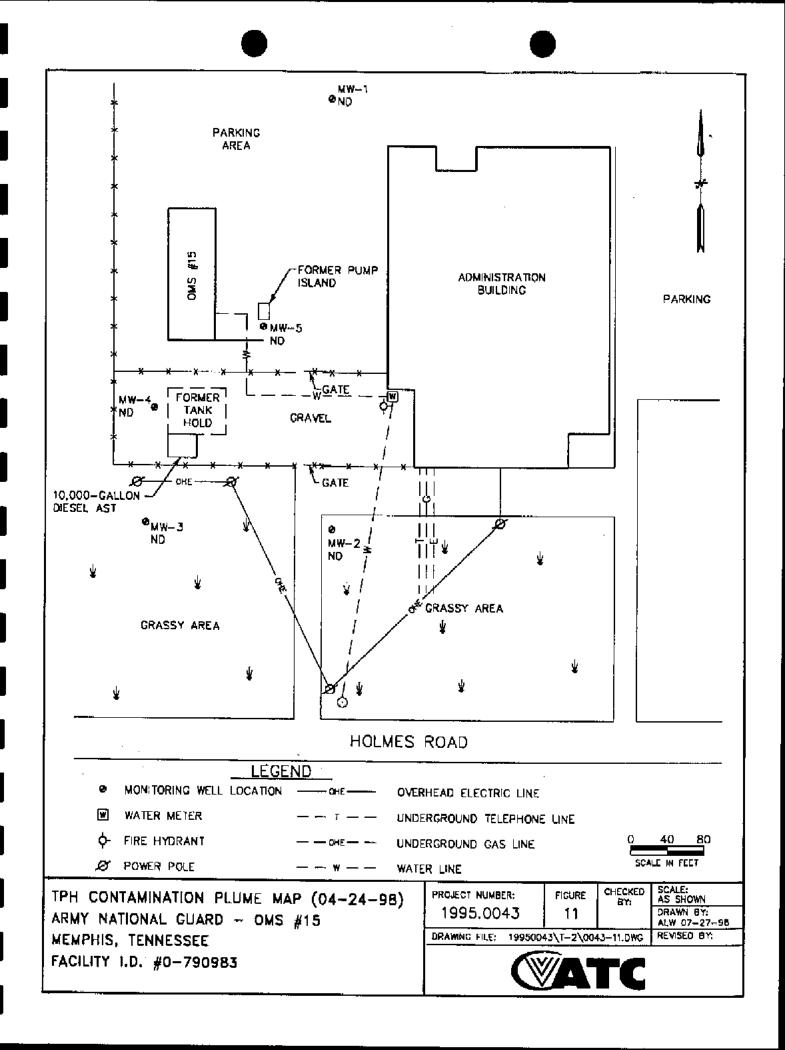
A water well database printout was obtained from the Tennessee Division of Water Supply. Based on recorded latitudes and longitudes, there are two drinking water production wells within an approximate one-half mile radius of the site. These drinking water wells include the Haisch residence located approximately three-tenths of a mile west of the site and the Anderson residence located approximately four-tenths of a mile east of the site. However, these residences have been abandoned due to the southward expansion of the Memphis International Airport. Therefore, a "non-drinking water" classification is applicable.

- vi. No alternative water supplies or systems are required.
- b) Data from Analytical Sampling

Since a drinking water supply was not located within a one-half mile of the site, no analytical sampling was performed.

c) Data from the Pump Test


Pump tests were not conducted during the investigation of this site.


d) Applicable Clean-up Levels

The data collected during the investigation indicates that a "non-drinking water" status is appropriate for the study aquifer. ATC recommends that groundwater clean-up levels of 0.07 ppm benzene and 1.0 TPH be applied for interpretation of the site data.

D.7 Groundwater Containment Plume Maps

Benzene, TPH-GRO, and TPH-DRO groundwater plume maps are depicted in Figures 10 and 11, respectively. Analytical results for all parameters indicate no detectable levels of hydrocarbons in the groundwater. Topography for the site slopes toward the west and north.

E. SITE RANKING

Appendix G contains the completed Site Ranking Form. The score for the site was 138.

F. PROPOSED ADDITIONAL MONITORING WELLS

No additional monitoring wells are warranted.

G. ASSESSMENT ACTIVITIES COST

Appendix H contains the completed cost forms for this investigation.

H. SIGNATURE PAGE

I certify under penalty of law, including but not limited to penalties for perjury, that the information contained in this report and on any attachments, is true, accurate and complete to the best of my knowledge, in formation, and belief. I am aware that there are significant penalties for submitting false information,

including the possibility of fine and imprison then for intentional violations. STATE OF TENNESSEE Steven L. Westerman Owner/Operator (Print) STATE OF <u>TENNESSEE</u> Sworn to and subscribed before me by Steven L. Westerman on this date My commission expires My Commission Expires MAY 26, 2002 Sharon S. Willis Notary Public - Print Name

John W. Hargraves P.E. or P.G. (Print)

TN Lic/Reg. #

STATE OF **TENNESSEE**

Sworn to, and subscribed before me by ______ John W. Hargrayes _____ on this date

My commission expireMy Commission Expires MAY 28, 2000

otary Public - Print Name

----- <u>†</u> -----

APPENDIX A

STANDARD BORING LOGS

O' 190983 STANCE MUNI 31 Army National Guard OHS#15 F45.0043 THAT DATE & THE 4.7-9 1003 Standard Boring Log Building State of Tennessea YKY TO HSA Underground Storage Tank Division OTA (NAT): Department of Environment and Conservation 014105 CONTUSTION CONTUSTION AN THE PENETRATEDA RATE ş (Color, Testure, Stourture, etc...) BORDHOLE OWNERED an es gravels 42 6 Sty Cl. Lt. Brn suft to Med Stell, Saturall, voyanics estyce, Han, ned Stiff + Staff , Setulisted , Sa, o. Fing grained. Fe Steining , root boles Styck, Sdy, Rdsh Ben Stiff, solutated, poorly Borred Sas, row hid to 1914 Seely-rounded sety they les know bon still wrater, poorly stipp water poorly 5.01 Debutes and SA (corse Sd. Robelly Wrn, poorly sorted 179 130H 17.9

N FIC. 104 0-140983 11 PROJECT 1: 1995, 0045 MULT HUZ 71 Arry National Buard OMS # 15 Building 0842 0940 Standard Boring Log HSLdge TRESINTE State of Tennessee TO HISA ITO HISA Underground Storage Tank Division Department of Environment and Conservation ⊕ Mwz COMMENTS HOLMES E COMES COMPLETION (MACHANI PONETRACION RATE GRAPHIC LITHOLOGY CENTRAL MONTHS att.) OEF-THE ¥9. BORDIOLE DANKETER on Stylloy HRdsh, Brn, 2005 Gradistrick, O. Moist State Organics (roots), blocky 1,3 45 of Styll Rash 13th, C. wist, organics, blocky, Still Site, Clay, gregish, is noist stiff, Fe staining, root 1.3 7.9 Styll gregish, stuff, who is to setwated, رون پري SJ Fine grained, Fe water 129 Sity Clay, quegich, Sdy, poorly south 20 Palment ESC , Rid Bro, 100th Sorted 17.9 BOH 17.9

Army Nation	nal Guera d	OKS # 15	······································				0-790983 15 HW3 1
CYTON BINT	**** (*********************************	START DATE	* THE 4-6-95°	125	15		PROJECT 1/995: 0043
1 ans A N		COMP. DATE	* THE LINE GIP	13	41		
1 215	3 	LLOSSED GAT.	TALLOS HEGICO	To UC	05	34	Standard Boring Log
	Building_	DATE L	oe TRI-	74T2	Ū		State of Tennessee
↑ 「		DRELING NO					Underground Storage Tank Oivision
\$ FAST 7	- -	ora (maj∑	10.	(AGL):		•	Department of Environment and Conservat
6		COMMUNIS.	· · · · · · · · · · · · · · · · · · ·				
Hm3							
Plus	mes Ka	7.					
COMPLETION					5N.5	PLES ORCS	
BORDIOLE DAMETER: N	ES POETRO	N DEPTH	CENTR-IC LITHUS LOGY	8	¥ 1	1	DESCRIPTION (Color, Techno, Streture, etc)
				╁	- 	4-	
	- , ,,,,	내	7 2 7 2	 	╅	 	
		<u> </u>	11/1/1/1/	ا، _ا	_/\	$/ \infty$	Fill Clay Brn/Rish Br
		. 3	1-1-1-1-1	3.4	[25]	[]	Sly Clay, et Bro, stiff.
		∰ <u>, </u>	111111	1	-V	V	Sty Clay, it Brn, stiff, Moist, very organic (soots)
	┩╏┼╬╟╏	₩ ^{3,} %4	11111	5.4	\Box	√ø.€	stiff wed sliff, u, noist
3.7 Day 1990	┩┡╅╢╬ ┪	111,40	7777	3.1	이/	<u>\</u>	STATE O MESSIVE , U. MOIST
	1-1-1-111-1	4.32	drap. history	9.1	[\		Wor of salar
٠٠٠ 🕮 🕬	- 1 1]]]		8.4	۱۱,	VB	- was still
	7 1 1 1 1 1 1 1 1 1	TIII : 7	7.7.7]	9	쌦	Sty Clay, golyich. - Med Stiff, v. kroist Sd, Fine grained, Fe stees
7.3	-	┼ _ ⁷ , -		1 I	7	/ \\\	1 30,112 3.2
	╌	7.8	-\\\\\-\-\-\-\-\-\-\-\-\-\-\	1	T	1	Setu Clay Say, Bral
	▼	₩ -		1	ا	Vľ	- Great Aux. Fine to med.
		Ш.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.2	لك	AL.	Sty Clay, Sdy, 13rn/ greysh xiix, Fine to used. grain sd, san peubles,
T - E				<u> </u>	_1	VSÝ SÝ	Fe staining
	1 H H	 		ξ ₂	l,	\ <i> </i> 44	Sty Clay, groush, stabb -50-pebbles, rounced, so pour
	1	† //-	The second second	רייל		Y	-So. be Polis Lunger 4 . Sy boar
	P	 ///5*-	COO C	3.8	1	M	Pebbles
		JJ 8			- k	1	
		Ш	<u> </u>	<u> </u>	الي	VĽ.	Sand, poorly sorted
			#14 ST()	7.0		X	Rounded water
	1 	∰ .		"`		\mathbb{N}	FROUNDER, water
	┥ ┠╂╂╬ ┥	17.		,		I	· ·
7.8		₩′%.		+	٣	╈	BOH 17.8
· [Щ.	<u>]</u>	1		1	F 15000
			-			\perp	
†		~~	=			T	
	- 	 		1			
	┥┞╉╫	 	┫- -	1			
	4 4 4 4 4 4 4 4 4 4	<u> </u>	녘 <i></i> -				-
			<u> </u>]			L
				1			<u> </u>
†	 	" -	<u> </u>	\top	口		
1	┩┡┼╬╬		릨····	.	ļļ		†
	- ↓	 	녈. <i></i> -	4			}-
			1				Ĺ
	1 1111		<u>ਬ</u>				
	┩┡╂╢	 	ਰੂ <i></i>	1			
<u> </u>		_ مر كنلنا	냭		1		

•

OMS # 15 | STAT DATE # THE 4-6-98 0-190983 Army National Guard 1995.0043 HUGIOP MUSTOS 34 Standard Boring Log Baukling State of Tennassee Underground Storage Tank Division Department of Environment and Conservation grassy area 914356 HOLMES RA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 COMPLETION CHARLES DESCRIPTION (Color, Tenture, Structure, etc...) POJETRATICK RATE DEPTH GRAPHS UTHOLOGY BORDICE DIMETER 811 Fill , 3m Cl ord Sety Chigrsh, stiff, organic, Fine st Sty Clay , gregish , organics (100ts) . Fine & Batevoled to wet greyish silty Clay to st (10) very werse , wet stoining espirith dark greyish silly Cl, Sd and polibles, rounded, poorly sorkd turge Assilves Sd, Coarse grained, rounted k.og $\Gamma\Gamma$ BOH M.T.

PACILITY	Army Nation	nal	Guaro	OM.	S#15					0.790983 15 MW 5 21
(incurron	a per			START DATE	76.77		90			PROJECT 1: 1990, 0043
100	15		_	1 '	JAMES Malabe	N U	00 4			Standard Boring Log
<u>'</u> _		Ba	والأأدان	OPLIES J	DE TRE-S	ΓΔΤ		53	Z	State of Yennessee
4€	##### ###############################	٠.		CHATTHE P	44 4CO F	15A				Underground Storage Tank Division
re.	uce."		^	ETS. (PMT)	1.5.	(rat):				Department of Environment and Conservation
			\ \ \	COMMENTAL						
	HOLAIC	3 /								
	COMPLETION COMPANY	S					£	COA	<u> </u>	
W3L	BONEHOLE OWNETER 27 11		PENETRATION PATE	DEPTH	ORNANO Uniquidady	8	Ĕ	į	¥	OCSCRPTON (Cales, Tanhon, Miryatura, ata)
	 	1-1	<u> </u>	1	<u> </u>			_		
-		+-1		п ° ⊤				-	-	L.S. ofwells
1		1	 			2.0	65	V	AUX)	Silty Clay, Lt Rash Brn/Brn Miv Satural Co. blk pooler, Fe shink
		<u> </u>	╌┼╂╫╌┼╂	₩		7.0		X		organics, blocky
	P'IN KA	₹ }	 	20.80			<u> </u>	7	Г	
	1	-{ }		₩		20		M	OHA.	- Saturated, Sd. Fine grained,
	地以關	+-1	 	₩ , -3	11111		3:	Υ,	H	Selty Clay, et RASH BTA, - Schwarch, Sd. Fine quained, FR. Stainey, and concretions Eupper 21), blocky
		┧ ╽	 	W - 5	and a second second	.,,		M	OVA BTX	- Coffee & F. Growing
1		┨ ┃	- - - -	 	americani professoria	4. λ		М	j. N	_
		.		1.8	and and and a feet		├-	\vdash	-	
	Ξ Ξ]	<u> </u>					M	Ąc	Sity Sty Cl, Lithah Brn, soft, - Fine grained St. St Staining, water
		Ш	<u> </u>	∭ "_	-4-4-4-4-1	,	2	V		ωtr'
1	Court E	H			+++	4.6		l A	61,1 61,1	
1	126 PM [] 1	v						/	ΔĄC	sety cl w/sd, gregish, fine grained
	2"px E	豆		13.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Ц	L	ting grained
	Susav - E	TI			4			Λ	ουA	Sondy Clay Rash Bon, med stiff, water, Pebbles
		11	<u> </u>	II	3 3 3 4 7 7	2.8	1	Ν		- and the season
	† []	$\dagger \dagger$	- - - - - -	13 -	1.4 1.	1.4	3	\Box	•	
		1 1	╅	H	OULD		1	1/	١.	Zavye Pebbles w/36
3		1	╌╂┈┼┤╬╇╌╂	17		4,0	١,	y		Earge Pebbles w/So -Sd, med to coarse gravies, rounced to sent-rounded, with
178		4 ¦	- 1-1111-1-1	17.7		-	╁		Τ'	130 H 17.8
•		-		+]	{		}		-
	+	╀	╼┾╃╫╌╂╌	# p -		 	╁	├	╫	
		4	╺╂╶╂╫╂╌╏	₩ -	-					-
		-	- 	₩ -	<u></u>	ł				-
		4	╌┸┼╫┸╂	₩ -	<u></u>				l	Ļ
		4		∭ -	1				ļ	<u> </u>
	1	<u></u>		∭ " _	<u> </u>	<u> </u>	↓_	_	L	
				║ .	1				-	
				<u> </u>	1					L
					1		1			
	1	1		1						
				╢ -]	1				
· L	<u> </u>	ш	1 1111	<u></u>		1		1	٠	· \

I

----- ‡ -----

APPENDIX B

SOIL ANALYTICAL REPORT

----- ‡ -----

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06/98

MATRIX: Soil

DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm)

DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.	D.		
		LAB:	182525	182526	182527
		STATION:	NW 5	NW 5	MW 4
			09:24	09:32	10:17
Benzene	0.002		ND	ND	ИД
Toluene	0.002		ND	ND	ND
Ethylbenzene	0.002		ND	ND	ND
Total Xylenes	0.002		ND	ND	ND
MTBE	0.024		ND	ND	ND
Surrogate Rece	overies %				
Fluorobenzene			100	104	102

ND-None Detected

Respectfully submitted,

Reviewed by: 🎶

CHEMISTRY LABORATORY DIVISION

Page 1 of 7

An ATC Group Services Inc. Company

HYGEIA LABORATORIES, INC. 1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Pac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06/98

MATRIX: Soil

DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm)

DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.	D.		
	-	LAB:	182528	182529	182530
		STATION:	MW 4	MM 3	NW 3
			10:24	13:01	13:10
Benzene	0.002		ND	ND	ND
Toluene	0.002		ND	ND	ND
Ethylbenzene	0.002		ND	ND	ND
Total Xylenes	0.002		ND	ND	ND
MTBE	0.024		ИD	ND	ND
Surrogate Rec	overies %				
Fluorobenzene			103	101	101

ND-None Detected

Respectfully submitted,

Reviewed by: 470.

LABORATORY DIVISION

Page 2 of 7

An ATC Group Services Inc. Company ------

HYGEIA LABORATORIES, INC. 1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933. FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil

DATE SAMPLE RECEIVED: 04/08/98

METHOD: 5W-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/10-13/98

UNITS: mg/kg (ppm)

DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.	D.		
	,	LAB: STATION:	182531 NW 2 09:00	182532 MW 2 09:07	182533 NW 1 10:15
Benzene	0.002		ND	ND	ND
Toluene	0.002		ND	ND	ND
Ethylbenzene	0.002		ND	ND	ND
Total Xylenes	0.002		ND	ND	ND
MTBE	0.024		ND	ИD	ND
Surrogate Rece	overies t				
Fluorobenzene			103	97	98

ND-None Detected

Respectfully submitted,

Reviewed by: pQ.

LABORATORY DIVISION

Page 3 of 7

An ATC Group Services Inc. Company

YGEIA LABORATORIES, INC. 1300 Williams Drive, Suite A - Marietta, Georgia 30066 6299 (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: SW-846 8020 (BTEX) DATE SAMPLE ANALYZED: 04/13/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER	EQL	SAMPLE I.D. LAB: 182534 STATION: MW 1 10:20
Benzene	0.002	ND
Toluene	0.002	ND ND
Ethylbenzene	0.002	ND
Total Xylenes	0.002	ND
MTBE	0.024	ND

Surrogate Recoveries &

Fluorobenzene 98

ND-None Detected

Respectfully submitted,

LABORATORY DIVISION

Page 4 of 7

Reviewed by: 34.

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 ~ OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11887

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: TPH-8015B (GRO) DATE SAMPLE ANALYZED: 04/10-13/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/9B

SAMPLE I.D.	STATION	EQL	PARAMETER
			TOTAL PETROLEUM HYDROCARBONS CONC. RANGE
182525	MW 5 (09:24)	0,5	ND
182526	MW 5 (09:32)	0.5	מא
182527	MW 4 (10:17)	0.5	ND
182528	MW 4 (10:24)	0.5	ND
182529	MW 3 (13:01)	0.5	ND
182530	MW 3 (13:10)	0.5	ND
182531	MW 2 (09:00)	0.5	ND
182532	MW 2 (09:07)	0.5	ND
182533	MW 1 (10:15)	0.5	ND
182534	MW 1 (10:20)	0.5	ND

ND-None Detected

Respectfully submitted,

Reviewed by: 92

HEMISTRY LABORATORY DIVISION

Page 5 of 7

HYGEIA LABORATORIES, INC.

1300 Williams Drive. Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

CLIENT: ATC Associates Inc. - Nashville, TN

ATTENTION: James McCabe

CLIENT PROJECT #: 1995.0043 - OMS # 15; Fac. I.D. # 0-790983

CLIENT I.D. #: 10-67-11997

LAB PROJECT #: 23317 DATE SAMPLED: 04/06-07/98

MATRIX: Soil DATE SAMPLE RECEIVED: 04/08/98

METHOD: TPH-8015B (DRO) DATE SAMPLE ANALYZED: 04/10/98

UNITS: mg/kg (ppm) DATE REPORT: 04/17/98

PARAMETER LEUM HYDROCARBONS L. DANGE
Diesel
524342

ND-None Detected

Respectfully submitted,

Reviewed by: 94.

HEMISTRY LABORATORY DIVISION

Page 6 of 7

HYGEIA LABORATORIES, INC. 1300 Williams Drive, Suite A - Marietta, Georgiu 30066-6299 - (770) 514-6933, PAX (770) 514-6966

CLIENT: ATC Associates Inc. - Nashville, TN LAB PROJECT #: 23317

CLIENT I.D. #: 10-67-11887

ANALYTICAL REPORT CASE NARRATIVE

- All holding times were met and no QA problems were encountered.
- The analytical results and EQL's for soil samples are based on wet weight. Dry weight calculations are available upon request.

NOTES:

- This "Analytical Report" may not be reproduced, except in full, without the written approval of the laboratory.
- Results relate only to the items tested as received (see chain-of-custody).
- EQL = Estimated Quantitation Limit
- ND = Not Detected within the calibration range of the test method down to the EQL

Respectfully submitted,

CHEMISTRY LABORATORY DIVISION

CERTIFICATIONS

A2LA - No. 0330-01; AIHA - Lab ID 09072; Alabama - Lab ID 40970; Arkansas; Connecticut - Lab ID PH-0208; Delaware; Plorida - No. 97056 (EW), No. 97258 (DW); Georgia - No. 804; Indiana - Lab ID C-GA-01; Kansas - E-10212 (SW); Kentucky - Lab ID 90053; Maryland - No. 251; Massachusetta - Lab ID M-GA040; North Carolina - No. 409; South Carolina - No. 98012; Tennessee - Lab ID 02827 (DW), UST Program; Virginia - Lab ID 0024

APPENDIX C

SOIL PERMEABILITY REPORT

----- ‡ -----

TESTING SERVICES, INC.

Measurement of Hydraulic Conductivity

Client: ATC Associates

Project No.: E-4-090

Date of Report: 04/30/98

Project Name: Army National Guard, 2610 East Holmes Road,

Memphis, Tennessee

Sample I.D.: Boring No.: SB5A1, Shelby tube, Depth: 9' - 11'

Soil Description: Brown Silty Clay

Test Media: City of Memphis Water

TN Facility I.D. No.: 0-790983

Volumetric Air Content

.017 cm3-air/cm3-soil

Volumetrio Water Content

.334 cm^3-H_20/cm^3-soil

Total Soil Porosity

.351 cm³/cm³-soil

Soil Bulk Density (wet)

2.04 g-soil/cm3-soil

Moisture Content

21.4 Percent

PERMEABILITY

Temperature Correction, $R_t = .925$

 $K_1 = 2.7 \times 10^{-7} \text{ cm/sec}$

 $K_2 = 2.0 \times 10^{-7} \text{ cm/sec}$ $K_3 = 2.1 \times 10^{-7} \text{ cm/sec}$ $K_4 = 2.2 \times 10^{-7} \text{ cm/sec}$

Coefficient of Permeability, $K_{20} \approx 2.3 \times 10^{-7} \text{ cm/sec}$

Test in accordance with Method 9100 of Test Methods for evaluating Solid Waste, Third Edition, (SW-846) and in general accordance with ASTM D-5084-90. Fractional Organic Carbon tested in accordance with ASTM D-2974-87 (Method C).

Lab No.: P-98-025

Reviewed By:

ESTING SERVICES, INC.

Measurement of Hydraulic Conductivity

Client: ATC Associates

Project No.: E-4-090

Date of Report: 04/30/98

Project Name: Army National Guard, 2610 East Holmes Road,

Memphis, Tennessee

Sample I.D.: Boring No.: 8B5A2, Shelby tube, Depth: 11' - 13'

Soil Description: Brown Silty Clay with trace of Fine Sand

Test Media: City of Memphis Water

TN Facility I.D. No.: 0-790983

Volumetric Air Content .012 cm³-air/cm³-soil

Volumetric Water Content .316 cm^3-H_20/cm^3-soil

Total Soil Porosity .328 cm3/cm3-soil

Soil Bulk Density (wet) 2.06 g-soil/cm3-soil

Moisture Content 18.1 Percent

PERMEABILITY

Temperature Correction, $R_{\rm c} = .979$

 $K_1 = 4.0 \times 10^{-6} \text{ cm/sec}$

 $K_2 = 3.9 \times 10^{-6} \text{ cm/seo}$

 $K_3 = 4.4 \times 10^{-6} \text{ cm/sec}$ $K_4 = 4.0 \times 10^{-6} \text{ cm/sec}$

Coefficient of Permeability, $K_{20} = 4.1 \times 10^{-6}$ cm/sec

Test in accordance with Method 9100 of Test Methods for evaluating Solid Waste, Third Edition, (SW-846) and in general accordance with ASTM D-5084-90. Fractional Organic Carbon tested in accordance with ASTM D-2974-87 (Method C).

Lab No.: P-98-026

Reviewed By:

TESTING SERVICES, INC.

Report of Fractional Organic Carbon

Client: ATC

Project No.: E-4-090

Project: Army National Guard

Date of Report: 28 April '98

2610 East Holmes Road Memphis, Tennessee

Sample I.D.: Jar sample, Boring No.: 1, Sample No.: 1

Fractional Organic Carbon .009 g-carbon/g-soil

Tested in accordance with ASTM D-2974-87 (Method C).

Lab No.: FOC-E4090

Reviewed By:

----- ‡ ------

APPENDIX D

GROUNDWATER ANALYTICAL REPORT

----- ‡ -----

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

Client:

ATC Associates - NASHVILLE, TN

5217 Linbar Drive

#306

Nashville, TN 37211-3662

Attention:

James McCabe

Project Name:

OMS #15 Facility ID # 0-790983

Project ID:

1995.0043

Received:

6/12/98

Lab Project No.

24061

Report Date: 7/1/98

CASE NARRATIVE

1 The holding times for each sample were met.

2 Where applicable, results & reporting limits are based on wet weight; dry weight calculations available.

Reviewed by: _________

Respectfully Submitted,

LAB ID CLIENT ID

188213 MW-1

188214 MW-4

MATRIX COLLECTED

WATER

6/11/98

WATER 6/11/98

YGELA LABORATOR**I**ES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

24061

Report Date: 7/1/98

Total Petroleum Hydrocarbons-Diesel

Matrix: Water

Units: mg/L (ppm)

Method: EPA 8015 B

Analysis Date:

6/23/98 Prep. Date:

6/19/98

Analyst: DBT

	Lab ID: Client ID: _	18821: MW-1	_	18821 MW-4	
	Analyte	Result	RL	Result	RL
	TPH-Diesel	ND	0.1	ND	0.1
Su	rogate Recovery (%)				
	PZ-49	41 %		64 %	ı

NOTES:

- Results relate only to the samples tested as received (see chain-of-custody).
- ND = "Not Detected" within the calibration range of the test method down to the reporting limit
- RL = "Reporting Limit"
- Dates are presented in the format "month/day/year"

Certifications

American Association for Laboratory Accreditation (A2LA) - No. 0330-01; American Industrial Hygiene Association (AIHA) - Lab ID 09072 Alebama - Lab ID 40970; Arkensas; Connecticut - Lab ID PH-0208; Delewers; Florida - No. 97058 (EW), No. 97258 (DW); Georgia - No. 804; Indiana - Lab ID C-GA-01; Kaneau - E-10212 (SW); Kentucky - Lab ID 90053; Maryland - No. 251; Measachusetts - Lab ID M-GA040; North Carolina - No. 409; South Carolina - No. 98012; Tennessee - Lab (D 02827 (DW), UST Program; Virginia - Lab (D 0024

This report may not be reproduced, except in full, without the written permission of Hygeia Laboratories, Inc.

HYGEIA LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

ANALYTICAL REPORT

Client:

ATC Associates - NASHVILLE, TN

5217 Linbar Drive

#306

Nashville, TN 37211-3662

Attention:

Ken Johnson

Project Name:

Memphis OMS #15/ Fac ID# 0-790983

Project ID:

1995.0043

Received:

4/27/98

Lab Project No.

23512

Report Date (m/d/y): 5/22/98

LAB ID CLIENT ID

183802 MW-1

183803 MW-2

183804 MW-3

183805 MW-4

183806 MW-5

COLLECTED

4/24/98

4/24/98

4/24/98

4/24/98

4/24/98

CASE NARRATIVE

- The holding times for each sample were met.
- 2. Where applicable, results & reporting limits are based on wet weight; dry weight calculations available.
- 3. Samples MW-1 (183802) and MW-4 (183805) 1 Liter Amber bottles for Diesel Range Organics were broken in transit. Ken Johnson was notified 4/27/98.

Respectfully Submitted,

Hygeia Laboratories, inc.

Page 1 of 3

An ATC Group Services Inc. Company

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

23512

Report Date (m/d/y): 5/22/98

Volatile Organi Matrix: \			Analysis Date:	Units: u g 5/5/98	g/L (ppb) Prep. Date:		EPA 602 Analyst:	MZ
Lab ID: Client ID: _	18380 MVV-1		18380 MVV-2		18380 MW-3		18380 MW-4	
Analyte	Result	RL	Result		Result	RL	Result	RL
Benzene	ND	0.4	ND	0.4	ND	0.4	ND	0.4
Ethylbenzene	ND	0.4	ND	0.4	ND	0.4	ND	0.4
Taluene	ND	0.4	4.5	0.4	ND	0.4	ND	0.4
Total Xylenes	ND	0,4	0.6	0.4	ND	0.4	ND	0.4
MTBE	ND	5	ND	5	ND	5	ND	5
Surrogate Recoveries (%)			•					

Volatile Organics (BTEX)

Fluorobenzene

Matrix: Water

Analysis Date:

102%

Units: ug/L (ppb) 5/5/98

Prep. Date:

104 %

Method: EPA 602

5/5/98

Analyst: MZ

101 %

Lab ID:	18380	8
Client ID: _	MW-5	<u> </u>
Analyte	Result	RL
Benzene	ND	0.4
Ethylbenzene	ND	0.4
Toluene	ND	0.4
Total Xylenes	ND	0.4
MTBE	ND	5

Surrogate Recoveries (%)

Fluorobenzene

101 %

101 %

Total Petroleum Hydrocarbone-Gasoline Matrix: Water Analysis Date:					ıg/L (ppm)		Method: EPA 8015B		
matnx: v	rvater		Analysis Date:	5/5/98	Prep. Date:	5/5/98	Analyst:	: MZ	
Lab ID: Client ID:_	18380 MW-1		18380 MVV-2	-	18380 MW-3	-	18380 MW-4		
Analyte TPH-Gasoline	Result ND	RL 0.1	Result ND	RL 0.1	Result ND	RL 0.1	Result ND	RL 0.1	
Surrogate Recovery (%) Isopropyltoluene	116 %		110 %	ı	118 %		108 %		

Y**GELA** LABORATORIES, INC.

1300 Williams Drive, Suite A - Marietta, Georgia 30066-6299 - (770) 514-6933, FAX (770) 514-6966

Lab Project No.

23512

Report Date (m/d/y): 5/22/98

Total Petroleum Hydrocarbons-Gasoline

Matrix: Water

Analysis Date:

Units: mg/L (ppm) 5/5/98

5/5/98

Method: EPA 8015B

Analyst: MZ

Lab ID:

183806

MW-5

Client ID:

Analyte

Result

TPH-Gasoline

ND

RL 0.1

Surrogate Recovery (%)

sopropyltoluene

110 %

Total Petroleum Hydrocarbons-Diesel

Units: mg/L (ppm)

Method: EPA 8015B

Matrix: Water

Analysis Date:

5/6/98

Prep. Date:

Prep. Date:

4/28/98

Analyst: DBT

	Lab ID: Client ID:_	183803 MW-2	_	18380 MW-3		183806 MW-5	
	Analyte TPH-Diesel	Result ND	R L 0.1	Result ND	RL 0.1	Result ND	RL 0.1
Sur	rogale Recovery (%) PZ-49	38 %		47 %		65 %	•

NOTES:

- Results relate only to the samples tested as received (see chain-of-custody).
- ND = "Not Detected" within the calibration range of the test method down to the reporting limit
- RL = "Reporting Limit"

Certifications

American Association for Laboratory Accreditation (A2LA) - No. 0330-01; American Industrial Hygiene Association (AIHA) - Lab ID 09072 Alabama - Lab ID 40970; Arkansas; Connecticut - Lab ID PH-0206; Delaware; Florida - No. 97056 (EW), No. 97268 (DW); Georgia - No. 804; Indiana - Lab (D.C-GA-D1; Kanasa - E-10212 (SW); Kentucky - Lab (D.90053; Maryland - No. 251; Messachusetts - Lab (D.M-GA040; North Carolina - No. 409; South Carolina - No. 98012; Tennessea - Lab ID 02827 (DW), UST Program; Virginia - Lab ID 0024

This report may not be reproduced, except in full, without the written permission of Hygeis Laboratories, Inc.

------ ‡ -------

APPENDIX E

GROUNDWATER CLASSIFICATION PROCEDURES

----- ‡ -----

TENNESSEE DEPARTMENT OF ENVIACIMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS IN SELECTED AREAS OF DENNESSEE

EXPLANATION OF COLUMN HEADINGS

Designation by number, Quadrant and minth of the 2.5 - minute quadrangle area in which the Well is located. The	leading numbers identify the 15-minute guadrangle, the next two letters identify the 7.5-minute guadrant and the	last digit identifies the one-pinth subdivision of the latter.
QUAD/NTR -		

CCUNIT = County in which the well is located.

WELL NUM = Identification number assigned to the well by the State.

An inspection number assigned to the well at the time of inspection by the State. TAG NUM

OWNER'S NAME = Name of person or organization for whom the well was drilled.

LOCATION ROAD = Name of street or road from which to access the well. Blank if unknown

COMP DATE * Month, day and year the well was completed.

Blank if well has not been inspected. day and year the well was inspected by IDHE. Month, INSPT DATE

TOT DEPTH = Total depth of the well in feet.

below land surface to the top of the shallowest aquifer or water-bearing zone tapped by the well. in feet, NO DEPTH

Yields less than one-half gom reported as zero. = Total yield of the well in gallons per minute (gpm). TOT YIELD

= Static water-level: depth, in feet, from the land surface to the surface of the water standing in an idle well. STAT LEVEL

Casing depth: depth, in feet, to the bottom of the water tight casing installed in the well. CSE DEPTH

Casing type: PLAST = Plactic, STEEL = Steel; CTHER = any other material such as concrete, fiberglass or tile: CSE TYPE

Construction of the well in the interval supplying water to the well: OPEN = Uncased or open hole: SLOT = Hand perforated or slotted pipe; SCREN = Manufactured device designed to maintain the wall of the borehole and allow ground water to enter the well. WELL FINISH

The depth, in feet, from the top to the bottom of the interval that is open to the well. THTERVAL

Water Quality: a word to describe the relative quality of the well water such as GOOD, FAIR, BAD, LIME, IRON SULFUR, SALT, OIL, GAS, OTHER. WAT QUAL

Name of the geologic formation tapped by the well (not generally reported) GEO FORK

LATITUDE - Letitude of well site in degrees, minutes, and seconds. . .

CONGITUDE = Longitude of well site in degrees, minutes, and seconds.

Accuracy Code for latitude and longitude: 8 = Nearest second; F = nearest 15 seconds; T = nearest 30 seconds; M = nearest minute, Black = nearest 2.5 minutes.S/C

LOG selets to availability of drillers log: Y = yes; N = no.

Names provided upon request. License number of driller who supervised construction of the well. DRILLER

m Purpose for which the well was constructed: FOME = residential; COMM = commercial; etc. USE

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MEMPHIS QUADRANGLE (0409SW) TN.

QUAE / NTH COUNTY	H KELL NOW REG NUM	LOCATION ROAD	COMP DATE TO: INSPT DATE AQ	T DEPTH DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INCERVAL	HSI	WAT QUAL TAG NUM	LATITUDE LGMGITUDE	A/C LOG	DRILLER USE
04095W I SHELBY	15700218	LEHMA-RCBERTS CO EXPRESSMAY LAMAR	05/29/1964	233	W	F	200 +	233		55-05-30 09-58-c0	€	001CB INE
C409SK 1 SHELBY	15700514	KID-SWREFIGERATED	02,21,1967	6 6.	154	459 STESL	459 -	499		35-06-54 89-58-56	ស្ម	00108 INE
0409SM 1 SHELBY	15700553	MID SOUTH HEER WHS	10/29/1971	496 460	23 155	460 STEEL	463 ~	767	UNIX	35-06-52 89-58-57	co.	00108 COMM
0409 SM 1 SHELBY	15709010	PRISCO ERR SH K-9K-	06/00/1927	371 311	500 65	1	311	371		35-05-39 89-59-10	ξή	INC
O4C9SH 1 SHBLBY	15709011	PRISCO ER SH X-10-1	06,0071927	386	3.6	‡	336 -	385	0000	15-05-38 89-59-14	ស	IND
0409SW 1 SHELBY	15709012	MEMPHIS OC SKEK-111	00/00/1920	3.92	;;	1	}	}	UNE	35-06-57 89-57-44	ro.	MUN
04095W 1 Syelby	15709013	MEMPHIS C C SHRK-12	00/00/1941	376	290 119	1	330 1	376	0000	35-06-57 89-57-36	es.	25
04095W 1 SHELBY	15709014	15709014 RAILWAYS ICE SH:K-1	00,00/1928	380 355	118	330 STEEL	(A)	383		35-05-41 89-58-58	Ŋ	OTHR
04095W 1 SHELBY	15709015	RALLWAYS ICE SH:K-1	03/06/1947	390	107	1		l	0000	35-05-40 85-58-58	cą.	IND
0409SW 1 SHELBY	15709016	15709016 RAINBOH LAKE SK:K-1	06/00/1935	다 다 다 다 다 다	750	403 SPEEL	1 637	464		35-05-23 89-57-59	cη	KON
04095W 1 Shelby	15709017	RAINBOW LAKE SH:K-1	05/30/1937 / /	458 408	1 1	4C7 3TESL	- 407	459		35-05-24 65-57-59	ιη	MON
0439SW 1 SHELBY	15709018	MD.S.REFRIG SH:X-1	00/00/1921	554	500	l	}	1	3000	35-06-54 85-58-57	10	OTHR
04395W 1 SHELBY	15709019	MID S REPRIC SH:K-1	/ /19	200	1	1996 1996	1	. !	5005	35-06-55 85-58-56	εq	OTHR
04395¥ 1 SHELBY	15709020	SWIFT & CC SHSK-191	1 139	443 391	18	391 STEEL	t 	į.	3000	35-06-17 89-59-23	ø	OTHR
04095W 1 Shelby	15709021	SWIFT & CC SHSK-202	, ,19	220	121	1			0000	25-06-16 89-59-23	ល	i E
04095W 1 SHELDY	15709022	15709022 SWIFT & CC SHSK-212	03/00/1951	95.	1720 115	ł	1	. 1	0000	35-06-16 89-59-24	ca	00029 INC

:

TERMESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVESSON OF WATER SUPPLY RECORDS OF WAITER WELLS ON THE SOUTHERST-MEMPHIS QUADRANGEE (0409SW) TN.

CONTY COUNTY		NELL NUM GWNER'S NAME RES NUM LOCATION ROAD	COMP DATE TINSPI DATE A	TOC DEPTH AQ DESTH	TOT YIELD STAT LEVEL	CSE DEPTH	Well Pinish Interval	E	WAT CURL TAG NUM	1ATITUDE 10MGITUDE	553	DRILLER USE
04095W 1 Sheley	15709033	KBLLOGG CC SHSK-233	£1.4 %	389	100	;	1	1	CCOD	35-05-45 89-59-24	(N	JNI.
04095W 1 SHELBY	90002302	WASSON CHAR	08/11/16/80 / /	126	0 (N	60 PLAST	200E 60 -	11.6	0000	1 1 1 J	~	CO036 EONE
04099W 1 SHELBY	92002187	LOCT DRVI	01/30/1992	150	0 6 6	140 PLAST	SCREEK 140 ~	150	COOD	1 (×	00296 FOME
C4098W 2 SHELBY	15700119	MEMPHIS COUNTRY CLD	03/03/1564	356 295	600 136	295 STEEL	300 -	350		35-07-16 89-57-25	ca	00029 XUN
04095W 2 SHELBY	15700857	MEMPHIS LG & W normanl	05/15/1970 / /	4 9 1	1000 124	365 STSEL	350 -	450	0000	1 1		10029 XUN
04095W 2 Skeløy	15701081	NEMPHIS LG & W GETWELL/RHODES	10/23/1974	798		685 STEE	SCREEN 692 -	792	0000	35-05-45 89-55-45	нъ	30029
D409SW Z SEELBY	15761084	MEMPAIS LG & W ZH CURLIN ST	11/15/1974	7.06	; ;	539 STEEL	SCREEN 600 -	700	OTHR	35-07-00 89-56-00	H >+	30C 29 KUN
D4095W 2 SEELBY	15701085	MEMPHIS LS & W RHODES/GETWELL	12/20/1974	796 	ΙĻ	684 STEE	SCREEN 690 -	790	2000	35-05-45 89-55-45	₽₩	30029 MUN
0409SW 2 SHELBY	15701086	15701086 MEMPHIS LS & W POPLAR AVE	11/27/1974	757		745 STEE	SCREEN 651 -	751	OTHR	35-07-30 89-56-15	H >	30029 MUN
3409SW 2 SHELBY	15701102	15701102 MEMPHIS LG & W GETWELL & PARK	01/23/1975	883 777	101	774 STEEL	- 222	223	3000) i		30029 MUN
34058W 2 SHELBY	15701445	15701445 MEMPHIS LG & W PARK & CEIWELL	06/01/1987	594	1200 117	485 STEEL	SCREEN 491 -	165	3000	35-10-00 89-50-00	so be	20632 MUN
3409SW 2 SHELBY	15701473	COODEST IN AUD	09/25/ 19 87 / /	574 470	1400 138	464 STEEL	SCHEEN 470	573	COOS	35-05-00 89-55-00	c: H	30632 MUN
O409SM 2 Shelby	15701465	MEMPHIS LG & W SOUTHERN IN AUD	/ / / / / / / / / / / / / / / / / / /	623	1400 130	515 STEE 5	SCREEN 520 -	620	3 00 0	35-05-00 89-55-00	so >-	30632 XUN
O4098W 2 Shelby	15701510	MEMPHIS IG & W LOEB ST	12/14/1987	1	1400	350 STBEL	SCREEN 355 -	455	000	35-05-00 89-55-00	so >-	00158 XGN
O409SW 2 SHELBY	15709002	MCALEXANDER JINH:K-	33/11/1982 / /	100	15 60	92 PLAS:		;		35-07-11 89-56-19	ca .	DDCOS
0409SW 2 Shelby	15709004	15709004 MSU SH K-3 SH:K-	/ /15	461	1.1		1	. !	3000	35-07-12 89-56-19	Ø	

TEMMESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHERST-MEMPHIS QUADARNELE (0409SW) IN.

DOUGE / NEED COUNTY	HELL NUM	GANER'S NAME LOCATION ROAD	COMP DATE TO: INSPT DATE AO	TOT DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	ж <u>я</u>	WAT COAL TAG NOM	LOWGITUDE	28 1884	DAILLER USE
0409SW 2 SHELBY	15709623	WALLS ESSOSH K-22-2	/ /19	; ;	237	STEST	1	1		35-06-57 89-56-44	¢ò.	CTAR
04095% 2 Shelby	15709037	15709037 MEMPHIS IG & W SB:K (03/10/1932	1310 1288		STEEL			UNIX	35-07-21 89-56-00	¢3	MOK
O4CSSW 2 SHELBY	15709036	Mins were lead to we will	02/11/1932 / /	5. 1. 1. 1. 1.	1.1	471 STEEL	466 -	547		35-C7-21 89-56-00	c n	<u> </u>
O4095W 2 Sheley	15709039	Membris LG & W SH:K	, /19 , /	540	11			!		35-07-13 89-56-01	to.	NO
04095W 2 Shelby	15709043	MEAPHIS LG & W SHAW	01/03/1932	1313 1251	200	TEES	! !	1		35-07-12 89-56-01	£0	NO.
04095W 2 Sheləy	15709041	15709041 Memphis dg & W shik (01/26/1932	442	450 67	1		}	0000	35-07-07 89-56-01	رم رم	NO.
C4095W 2 SHELBY	15709042	15709042 MEMPHIS EG & W SH:X (05/31/1940 / /	409 382	450 81	382 STEEL	378	919	COOR	35-07-06 89-56-01	100	15
0409SW Z Sheliby	15709642 MEMPHIS	A: KS W & DC	00/00/1933	465	450	407 STEEL	- 107	4 85	COCE	35-06-59 89-56-01	os .	MCIN
040954 2 Shelby	15709644 MEMPRIS	JG & W SHIK	04/12/1943 / /	485 415	4. I	415 STEEL	415 -	년 년	3000	35~06~58 89 56.01	ω .	NON
04095W 2 Shelby	15709045 MEMPHIS	HEMPHIS LG & W SE:K	, ,115	1370			1	ţ	0000	35-06-58 89-56-00	to	00029 EDN
04095W 2 Shelby	15709046	15709046 NEMPHIS LG & W SEIK	/ /19	142	1 1	1	! }	1		35-06-58 89-55-53	w	KG.
0409SW 2 Shelby	15709047 WEMPHIS	MEMPHIS LO & W SHIK	1 / 19	420 359	1,1	1	i	1		15-06-58 89-55-54	6	00029 MUN
04098W 2 Shelby	15709048 MEMPHIS	LG & W SH:K	03/00/50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	i	: 	.		15-06-59 89-55-54	rv .	00029 MUN
0409SW 2 Sheley	15709049 MEMPHIS	LG & W SB:K	11/00/1961	4 49 369	125	 15678	1 696	449	doos	35-06-58 89-55-54	ey	KUN
04095W 2 SHBLRY	STHEMEM 05060751	LG & W SB:K	00/00/1933	Ch CO Tip	. 883 833	1	386	489	dcop	15-06-58 89-55-51	u,	KOX
04095W 3 Sheley	15709051	15709051 MEMPHIS LG & W S9:K D	03/21/1935	366 303	115	STEEL	1	1		35-06-58 89-55-40	o –	KON

7.5

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MEMPHIS QUADRANGLE (64095W) IN.

., .																
DRILLER JUSE	MON	NO.	MUM	00029 MDM	00029 MUN	00029 XUN	XOX.	NOW	E GN	KUN	KUN	N 5 X	KOX	жn	MCN.	MUN
×8	တ	₩.	m	co.	C C:	ø	co.	c o	c o	C)	co.	Ø	00	m	Ø	
LATITUDE	35-06-58 85-55-41	35-66-58 89-55-34	35-06-59 85-55-33	35+07-02 89-55-36	35-07-02 89-55-40	35-C7-06 85-56-00	35-07-02 89-55-41	35-07-16 89-56-09	35-C7-16 89-56-04	35-C7-17 89-55-47	35-07-17 89-55-58	35-07-26 85-56-06	35-07-25 89-55-48	35-67-19 85-55-38	35-07-23 89-55-52	1 1
WAT CUAL TAG NUM	GCOD		GCOD				UNE	0000	0000	0000		GCOD	G000.			
HS HS	1303	1	375	ŧ	ţ	;	1305	508	362	17.2		514	47.0	;	;	1
WELL FINISH INTERVAL	224 -		- *1:	! !	1 1	i ;	- 052	447 -	21.9	4 29 -		1997 1997	421 -	1	!	1
CSE DEPTH CSE TYPE	7 33 18	ł	1	STEEL	 STEEL	1	STEELS	STEE	519 STEEL	425 STEEL		451. STEE	STEEL	STEE		;
TOF YIELD STAT LEVEL	11	:	450 117	450 54	.925	905 96	112	92	104	1 8	: :	125	1 55	<u>p</u>	,1-1	1 1
TOT DEPCH 3	1305 1225	595	375	1301 1223	428 308	1307	1305	5¢8 447	362 315	47.2 5.24 8.25	580	514 451	470 416	474	459 436	525
COMP DATE	, /19	/ /19	06/00/1944	04/08/1932	, 713	06/30/1941 / /	12/00/1941	08/13/1943 / /	08/03/1943 / /	11/00/1943	67/ /	07/01/1944 / /	07/15/1944 / /	10/00/1943	7 / 1	6T/ /
NELL NOW OWNER'S NAME RES NOW LOCATION ROAD	15709052 MEMPHIS LG & W SB:K	15709053 MEMPHIS LG R W SH.K	15709054 MEMPHIS LG & W SH:K O	15709055 MEMPHIS LG & W SH.3. O	15709056 MEMPHIS LG & W	15709057 MEMPHIS IG & W SK:K 0	15709058 MEMPHIS 16 & W SH:K 1	15709059 MEMPHIS 3G & W SH:K 0	15709060 MEMPHIS 3G & W SE:K 0	15709061 MEMPHIS 3G & W SE:K 1	15709062 MEMPHIS IG & W SHIK	15709063 MEMPHIS IG & W SHIK O	15709064 MEMPHIS 3G & W SELK O	15709065 MEMPHIS 15 & W SH:K 1	15709066 MEMPRIS 3G & W SH:K	15709067 MEMPHIS 1G & W SE:K
QUAD / NTH COUNTY	D4055W 2 SPELBY	D409SW 2 SHELLEY	3409SW 2 SEBLBY	3409SW 2 SEBLBY	3409SW 2 SHELBY	0409SW 2 Shelby	04095W 2 SHELBY	0409SW 2 SHELBY	04096W 2 SHELDY	0409SW 2 SHELEY	0409sw 2 SHELBY	0409sw 2 Sheley	04095W 2 SHELEY	04095W 2 SHELEY	0409SW 2 SHELBY	04095W 2 SHELEY

TENNESSEE DEPARTMENT OF ENVIRONMENT AND COMBENATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-NEWERLS QUADRANGLE (04059W) IN,

QUAD / NED	COUNTY REG NUM	OWNER'S NAME LOCATION RCAD	COMP DATE	TOT DEPTH	H TOT YIELD H STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	ES	WAT QUAL	CATITUDE	A/C 1.0G	DRIJLER USE
04095W 2 SHELBY	15709058	15709058 NEMPHIS 2G & W SHIK	7 719	965	11	}	! 	ł		1 1		TEST
04095W 2 Skelby	15709069	15709069 MEMPHIS LG & W SH:X	07/21/1947	388 328	1425	 STEEL	523 -	388 8	GOOD	35-05-42 89-55-41	w	MON
0409SM 2 SEELBY	15709070 HEMPHIS	IG & W SPiK	05/00/1947 , ,	301 235	285	 STEEL	235 -	301		35-05-33 85-55-52	υy	MUN
04095W 2 SHELBY	15709071	MEMORIES LG & W SEEK	09/12/1946	350 250	1530	1	260 -	563	doop	35-05-23 89-55-53	(C)	MCIA
0409SW 2 SHELBY	15709072	MEMPHIS LG & W SHAK	, ,119	66 F	1450	1	212 -	293	0000	35-05-14 89-55-53	to.	XCX
0409SW 2 SHELEY	15709073	MEMPHIS LG & W SB:K	11/13/1946	915 273	1550	1	!			35-05-18 89-55-44	Łη	XQX
0409SW 2 SHELBY	15709074	MEMPHIS LG & W SHAK	11,04/1946	273 213	1603.	STEEL	213 -	273	300	35-05-14 89-55-36	_ا	20%
0409SW 2 Shelby	15709075	MEMPHIS LG & W SH:X	8561/00/00	16	61. 14°	STEEL	;	1	g000	35-05-13 89-55-36	es.	E 23
0409sw 2 Shelby	15709076 MEMPHIS	X:16 4 4 51	12/18/1950 / /	374	101	1	;	1		35-07-12 39-55-47	on	ACA.
04095W 2 SHSLBY	15709077 NEMPHIS	JG & W SH:X	11/02/1950	9.14 9.14	450 124	STEBL	419 -	479		35-07-12 89-55-43	os.	X O X
04399W 2 SHELBY	15709082 MEMBHIS	16 E # SH:X	1961/00/90	450 430	122	1	420 -	480	goop	35-07-24 89-55-47	o,	MON
04095W 2 SHSLBY	80060251	5709088 NEXPHIS LG & W SHIX (06/25/1963	0 1 6 1	11	1	·	1	GOOD	35-07-25 89-56-06	ø	MON
C4095W 2 SHELBY	68060257	MEMPHIS LG & W SH:X	08/02/1963	540		}	1	1	GCOD	35-07-19 89-55-39	တ	HON
C4095W 2 SHELBY	15709090	5709090 NEMPHIS LG & W SHIK (09/25/1963	3:2	+ (! !	1	dcop	35-07-05 89-55-56	တ	NO.
C4099W 2 SHELBY	15709703	NEMPHIS LG & W SB:K	03/03/1965	350		1	1	1		35-07-12 89-56-00	ES	NO.
C4095W 2 SHELBY	15709704	15709704 NEMPHIS LG & W SH:K :	19/18/1966	372 .	1166 129	305 STRE	536 -	366	·	35-07-12 89-55-47	Ø	MCM.

TENHESSEE DEPARTMENT OF ENVIRONMENT AND COMSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHERST-MEMPHIS QUADRANGLE (C469SM) IN.

COUNTY	REG NUM	LOCATION ROAD		INSPT DATE A	№ 2 ОЕР Т Н	STAT LEVEL	CSE TYPE	INTERVAL		THE NOT	TCNGITODE	ğ	1000
0409SW 2 SHELBY	15709705	V A HOSP	SH:K-9	61.6	94	ر ا د		1	1		35-06-17 89-55-26	ຫ	OTHR
04095W 2 Shelby	15709706 MEMPHIS	ង ន	M SHIK	09/24/1969	613	1 :	}	! {	1		35-06-53 89-55-30	co	TEST
DACSSW 2 SMELBY	15709708 MEMPHIS	3	M SH:K	03/00/1969	8,1 1,9	11	l				35-06-27 8955 33	ស	1081
0409SW 2 SHELBY	15709709	W & DO SINGHEM	SH:K	09/18/1965	520		1				35-07-02 89-55-35	w	() () ()
O4C9SW 2 SHELBY	15709710	MEMPHIS LG & W	A: #2	07/21/1972	428 380	; ;	ŀ				35-05-33 89-55-54	£0	Z Z
0409SW 2 SHBLBY	15709750	MEMPHIS LG & W	SH:R	00/00/1570	530	;	}	1	1		35-07-07 89-56-00	ល	00029 TEST
04095W 2 SHELBY	\$4001160 D0006276	MLCM 3824 POPLAR AVE	E.	03/11/1994	530 526	1400 147	406 7.4SI	SCREEN 411 -	526	3000	1 1	₩	00674 NUN
0409 SW 2 SHELBY	95002033 D0004036	PATTON & TAYL GERHANTOWN	80	05/03/1995 / /	210	09	190 PLAST	SLOT 190 -	210	GOOD	1 1	₩	00565 IRR
04095W 2 Shelby	95002034 D0004037	PATTON & TAYL GERHANIOWN	Ę.	05/04/1995	310	40 30	190 PLAST	SLOT 190 -	210	good	1 I	>-	00565 IRR
04095W 3 SHELBY	15709024	COLONIAL CC	SHR-23	1 /19	385	115	3735	1		good	35-06-47 89-54-19	w	00030 OTKR
0409 5W 3 Shelby	15709025	COLOKIAL CC S	HEK-24	03/00/1942	410	300	387 STESI	349 -	410		35-06-45 89-54-19	to	MON
0409SW 3 Syelby	15709030	MEMP PARK	C.SHEK-30	00/00/1959	308	113	.		1	COCE	35-06-37 89-54-47	o	00000
04095W 3 Sheley	15709086	SOUTHERN BIT	SE:K-8	, /15	270		1		.	COGS	35~06~52 89~53~ 44	ဟ	2
O4095M 3 SHELBY	15709707	MEMPHIS LG & W	SH; K	09/08/1969 / /	619	1 1	1	! !	ŀ		35-06-35 39-64-39	50	TEST
0409SW 3 Syelby	51000953	MEMPELS LG & W PARK		10/17/1990	4 4 4 5 5	2000	335 STEEL	SCREEN 339 -	445	Coop	1 1 1 1	*	30574 XJX
O&CSSW 3 SHBLBY	97002:36 D0023073	DIXON GALLERY PARK AVE 4339		05/28/1997	283	130	253 OTHER	5.02 253 -	283	GOOD	1 1 1 1	>	30565 188

TERNESSIE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF MATER SUPPLY RECORDS OF MATER WELLS ON THE SOUTHEAST-MEMPHS CUADRANGLE (04095W) IN.

1500 1500	COUNTY	REG NUM LOCATION ROAD	INSPE DATE A	A2 DEPTH	STAT LEVEL	CSB TYPE	INTERVAL		TAG NUM	LONGITUDE		LOG USE
15709023 NONREIS SH K-25K-2		METAL BIDGS	07/08/1564 / /	53		1		52		35-03-37 85-59-57	w	00108 CTHR
15709003 WANREE SH K-23K-2 / /15		15700871 CATFISH MOTEL	02/20/1569 / /	210 165	295 42	18C STEEL		ł	C006	35-04-34 89-57-40	ហ	00036 MUN
15700000 CONNELLY B		W NORRIS SH	~ • •	406	1 1			}	CDOS	10.00	w	33108
1570013 CONNELLY B 7 19 10 10 10 10 10 10 10		MEKP MON AIR		76	1 }	(F)		-		35-03-D8 89-58-36	တ	TEST
15700131 MCCALL E 35/11/1565 106		CONNELLY		105	93	105 STEEL	0.5	109		-32-4 -56-1	œ	SMOE
5 15701378 MCCLNY MCCNN MCCLNY MCCNN MCCLNY MCCNN MCCN		MCCALL	05/11/1965 / /	108	92	104 STEEL		108		35-32-50 89-56-16	sy.	30180 30MB
5 15701378 MCCLAY PICALAY	BUISE	36/21/1568 / /	101	1 50	TEELS .		101		35-03-12 89-55-13	ഗ	00108 30MB	
5 15709005 OAKVILLE HGEP SHirk		HILE RD		176	1.6 83	158 PLAST	SCREEN 158 -	178	CDOS		>	ODOS2 Farm
5 15709006 OAKVILLE HGEP SH.K.		OAKVILLE HOSP		202	109	ŀ		}	0000	-03-2 -56-1	w	XUE
5 15709007 J CARAVELLI SHSK-6 20/00/1534 101 275 GOOD 35-03-07 8 89-55-42		ASOR		413	. 83	†		.	GGGO	35-03-25 8956-14	w	PARM
\$ 15709008 J GARAVELLI SHSK-7- JD/00/1535 109 325 GOOD 35-02-05 8 93-55-41 \$ 15709002 L VAOCAGID SHSK-252 10/01/1953 229 41			. 00/00/1534	101	275 285	1		. {	9000	35-03-07 89-55-42	·ec	CDC29 COMM
\$ 15709026 L VAOCAKID SHSK-252 10/01/1953 229 41 200 20C - 229 GGOOD 35-04-39 S		J GARAVELLE	30,000/153	109	325			}	goop	35-03-05 89-55-41	t)	COC29 COMM
S 15709035 S D ODELL SH K-35-3 / /19 279 50		L VACCARID		229	41	200		623	GOOD	.35-04-39 89-55-42	w	00108 FARM
S 90000222 MEMCHIS LG & W 11/30/1989 1340 133 1255 SCREEN GOOD Y 1250 HICKORY HI / / 1257 13 STREL 1340 Y 35-02-52 8		S D ODELL SH	* *	279	050	TESES		279		35-04-26 39-56-52	Ø	HOME
6 15700043 S RELL TELEPHONE CO 11/04/1963 140 20 83		MEMPHIS LG & 3890 HICKORY	11/30/1989	1340 1257 ·	133 13	1255 STEEL		1340	gocs		bн	00614 CTHR
		S Bell		140	0.25	. 68		139		35-02-52 89-54:10	60	0.3029 IND

TEMNESSEE DEPARTMENT OF ENVIRONMENT AME CONSERVACION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MEMBHS QUADRANGLE (04095W) TN.

13 13 13 13 13 13 13 13	QUAD / NTP COUNTY	H WELL NUM REG NUN	NTH WELL NOW OWNER'S NAME FEG NON LOCATION NOAD	COMP DATE TO INSPE DATE AO	H	DEPTH TOT YIELD DEPTH STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	HS.	WAT QUAL TAG NUM	LATITUDE LONGITUDE	28	DRILLER USE	
STATEST STAT		15700417		33/11/1966	8 1	11	92 PLAST		32	UNK			10047 THR	
6 910C1350 PROPERZIE TINE 35/21/1990 240 C		90000659		04/20/1989 / /	479	756	410 STESL	SCREEN 415 -	475	goop	1 1		0674 DEN	
15700010 NEZHRISON HANDERSON D		90001550	PROPERTIE 2166 S PERKINS		140	မယ	140 PLAST		. !	OTHR	1 1		10686 JTHR	
15700210 NJCHSKN N		91001002	DELTA	02/04/1990	240	250 50	200 PLAST		246	goog		5 H	10441 .RR	
15700210 ANJEHSON D 09/D1/1964 318		15700069	Mexphis is &	13/28/1963	E (g	1	ιń	51				0108 TER	
1570013 MEXPHIS PARK COMM 07/21/1564 255 146 156		15700210	ANDERSON	09/01/1964	89 L	- 1 -	l		99 99		-03-21 -53-07		0108 V	
15700249 VISCONI V 17/07/1564 255 76 246 - 255 35 35 35 35 35 35 3		15700213	MEXPHIS PARK	97/21/1964	347	t un t 💝	ł	ø.	34.7				, 80 TO	
1570362 BROWN T	04195W 7 SHELBY	15700249		13/07/1564	S 1	1 99 1 F	ł		255		•	j	101 03 YTER	
7 15700367 RAPTIST HOSPITAL 09/31/1565 286 157 </td <td></td> <td>15700262</td> <td>BROWN</td> <td>11/02/1565</td> <td>66 45</td> <td>E. 4</td> <td>60 STESL</td> <td></td> <td>99</td> <td>GCOD</td> <td>i</td> <td>١.</td> <td>0285 CME</td> <td></td>		15700262	BROWN	11/02/1565	66 45	E. 4	60 STESL		99	GCOD	i	١.	0285 CME	
7 15700453 ALLENBERG CTL CO 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15700367	BAPTIST HOSPIOAL	08/31/1965	286	157	!		286		თით		0108 Ov	
7 15700464 AIRWAYS EQUIPMENT C 10/01/1966 302 200 85 8TEEL 276 296 35 GOOD 35-08-41 S000159 INC 15700501 KJOKEN C SF.K-11 07/25/1967 44 2 40 GOOD 35 GOOD 35-08-41 S000158 GOOD 35-08-41 S0		15700433	ALLENBERG CIL CO	34/20/1966 / /	310	8	1		310			'	10108 IND	
7 15700577 OAK PORES C SE:K-13 07/25/1967 44 2 46 5 33 - 43 GOOD 35-CO-22 S 00198 7 15700561 KJUGEN C 07/31/1969 32 51 61 61 FLAST 72 82 600D 35-CO-00 S 69-59-24 HOME 7 15700703 HAISCH L 1C/18/1969 313 305 72 72 82 82 89-58-56 3000		15700464			900 730 730	2C0 85	.27c STEEL		296	GOOL	\	· V	185 28 185 28	
7 15700703 HAISCH L 7 15700705 FALSE W 7 15700705 FALS W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FALSE W 7 15700705 FA		15700577	บ	07/25/1967	89 20 7	100	PLAST		60	300p			7 88 LOI 10 MB	•
7 15700703 HALSCH L	34098W 7 SHELBY	15700581		07/31/1967	ಕೇ ಬ ಕೇ ಬ	ପାର ଅ	40 PLAST		ゼ 박	g000		:	0286 OME	
7 15700751 FASP W 02/26/1969 313 $$ 305 $-$ 313 89·59-21.		15700703	нагосн	1C/18/1969 / /	82 51.	ю 1	72 PLAST		85	good				
		15700751	FASP W	02/26/1969	313	 1 4 8	305		818			•	10%E	

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHEAST-MEMPHIS QUADRANGLE (04095W) TN.

A/C DRILLER LOG USE	G0108 MOOM	MOCW		00030 KON	FARM	00C30 Farm	00674 KON	00193 HOME	CO1 08 EUN		00108 HOME	00156 HOMB	00108 HOME	00029 MOM	00029 MCM	
	25 60 80 60 80 60	28 S		23 5	29 S	Si Si		8 11	32 8	2. 2. 1. S. 2. S.	F 000	-15 -16 -3	-25 9) 	> 1	
SATITUDE LONGITUDE	35-00-25 89-57-39	35-00-28 89-57-49	1 1	35-00-23 89-58-28	35 02 09 89-59-29	35-00-24 89-58-26	1 1	35-02-1 89-56-1	35-00-1 89-55-3	35-00-15 89-57-19	35-32-00 89-55-00	35-00-25 89-57-16	35-00-25 89-55-31	E E		
WAT QUAL TAG NUN	. goop	goop					0000					. GOOD.		OTHR	отнх	
HST	338	38		370	1	}	540	190	296	1	S.	76	268	140	135	
DSPTH WSLL FINISH TYPE , INTERVAL	81.6 1	- 09		360 -	 	1	SCREEN 530 -	173 -	25B -	1	47 -	9 7	261 -	SCREEN 130 -	SCREEN 125 -	
CSS	319	89 CSMIN	1	STEEL	STEEL	STEEL	525 STEEL	172 STEEL	1	1	ļ	94 PLAST	261 STEBL	130 FLAST	125 PLAST	
TOT YIELS STAT LEVEL	52.5	23	1 9	65	1 5	40C 134	125 .	55 88	136	:	1 ci	10	155	; ;	. 1 1	
POT DEPTH	33.8	80 27	31.8	370 360	360	1 1	570 530	180	296		Es	7-6 80	268 	140	135	
COMP DATE	05/25/1973	09/24/1971	61/ /	12/00/1961	/ /19	61/ /	11/14/1991	11/12/1963	06/10/1964 / /	/ /19 / /	05/29/1964	07/14/1967	02/15/1968	06/03/1985 / /	06/05/1985 / /	
N HOAD	EST B CHURCH	or god	N D SH: X-2	K COM SH:K-7	AIRY SH:K-30	C COM SHIK-B	LG & W	ம <u>சூ</u>	CONTRY CLUB	ııs	acox o	, ,	4	BROWNING_FERRIS HCLMES RD	BROWNING_FERRIS HOLMES RD	
OWNER'S NAME LOCATION ROAD	RIDGECE	снився	e ar rison	MEN PARK	SMITH DAIRY	NEW PARK	MEMPHIS LG & 4869 Alfways	ин!Тасе	o kulis e	JOS BWNIS	CLIFFORD AIRWAYS	DAVENPORT	HOLMES	BROWNING HOLMES RD	BROWNIN HOLMES	
NTH WELL HUK (15700872 RIDGECREST	15700963 CHURCH OF GOD	15709028]	157090731	15709080	15709087	91003851 1	15700039 WHITAKER	15700182 BELLA COUNTRY	157002:1	15700252	15700573	15700612 HOLMES	15701367	15701368	
DUAD / NTH	04095W 7 SHELBY	04095W 7 SHEEBY	04095W 7	04095W 7 Shelby	04095W 7 Shelby	04095W 7 SHELBY	04095W 7 SHELBY	04095W B SHELBY	04095W B SHELBY	04095W B	04093W B	04095W 8 SMELBY	04095K 8 SHELEY	04095% 8 SHELEY	04095W 8 SHELBY	

TENNESSEE DEPARTMENT OF ENVIRONMENT AND COMBENVATION - DIVISION OF WATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHBAST-NEMPHIS QUADRANGLE (1409SH) IN.

題						_										
DRILLER USE	DD:029	00029 Mon	00029 MON	0 00 29 MON	00029 MON	00138 HOME	ROME	00212 HDOM	TEST	: XC	OCO 37 HOME	00198 IND	OCID8 IND	BCIDB IND	00052 COMPK	ac400 ROME
A/C	3 -1	3 -1	> +	> +	*	۱ >-	ø	w	61	0)	>-	67	co;	S	co.	U)
LATITUDE	1 1	1 I 1 J	1 1	1 1		35-00-00 89-50-00	35-01-02 89-57-18	35-00-48 89-55-10	35-07-34 89-56-04	35-07-31 89-55-51	1 i	35-02-09 89-54-02	35-60-12 89-54-51	35~00-11 85~54~51	35-00-31 89-54-05	35~02~03 85~53~22
WAT CUAL TAG NUM	DIHR	OTHR	OIBR	OTHE	OCHR	609		0000			0000				9000	0000
SE	9	(A	2	25	N N	190	5 1.8	ļ	į		C4 F-	251	233	264	227	166
WELL FINESE INTERVAL	SCREEN 26 -	SCREEN 15 -	SCAEEN 12 -	SCREEN 15 -	SCREEN 12 -	SCREEN 150 -	308 -	‡ [1	1	SCREEN 62 -	230 -	229 -	222 -	207 -	156 -
CSE DEPTH	26 PLAST	18 Plast	12 FLAST	15 PLAST	12 PLAST	150 PLAST	STEEL	1	ŀ	}	62 Flast	1	229 STEEL	222 STEEL	207 FLAST	166 FLAST
TOT YIELD STAT LEVEL	11	11	1.1	11		25 25 35	; ;		1 1	11	or to d ₩	1 60	132	130	120	110 000
COC DEPTH	36	1 18	55	2, I 2, I	23 1	06t 06t	30 e 30 e	155	551	ກ ເທີ່ ເທີ່	.1 35	251	55 T	264	227 200	166 100
COMP DATE	6/10/1985	05/12/1985	06/13/1985	06/14/1985	06/14/1985	C6/22/1988	02/20/1962	00/00/1963 / /	05/08/1964	09/30/1964 / /	10/15/1991	06/29/1965	11/29/1969	11/29/1969	02/23/1970	05/13/1974
OWNER'S NAME LOCATION ROAD	BROWNING_FERRIS HOUMES RO	BECKNING_FERRIS HOLKES RO	BROWNING_FERRIS HOLMES RD	BROWNING_FERRIS HOLMBS RD	BROWNING_FERRIS HOLMES RD	ZETLARS HAFK FOLMES DAK DR	PARRISH SH:K-81-8	BURDETTE CH SHIK-91	XEES N & DT STHAKEN	XIHS H 3	LASR OKA RD	DELTA IRRIGATION CO	FISHER CONCRETS CO	FISCHERCONCRETE CO	FULLIAM NURSERY	SH:K-13
NELL NON PEG HOW	15701370 3H	15701371 BF	15701372 BF	15701373 BB	15701374 BB	15701523 ZE EC	N 18709081 W	15709091 EU	15709092 ME	15709093 KEMPHIS LG	92000495 JACKSON CCHULAH	15700452 DE	15700715 FI	15700716 FI	15700346 FC	15700945 MAYLE.D.
COUNTY COUNTY	04095W B SHELBY	04095W 8 SKEJBY	C4093W 8. Shelay	SHETBY SHETBY	C4095W 8 Shelby	0409SW 8 SPELBY	D409SW 8 SEBLBY	34055W 8 SHELDY	0409SW 8 SHELBY	04095W 8 SHELBY	04095W 8 SHELEY	04095W 9 SHELBY	04095W 9 SHELEY	04095W 9 SHELBY	0409SW 9 SHELBY	0409SW 9

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - LIVISION OF MATER SUPPLY RECORDS OF WATER WELLS ON THE SOUTHERST-MEMPHIS COADPRANCE (0409SM) IN.

QUAD / NTH COUNTY	WELL NOW REG NOW	DWARTS NAME LOCATION ROAD	a Ge	COMP DATE 1	AQ DEPTH	STAT LEVE	CSE TVIE	WELL FINISS INTERVAL	Eq.	TAC NOR	LONGITUCE	100	USE
C409SW 9 SHELEY	15700946	J SCHL BR	SR:X:10	07,721,1971	489 500	1001 93	390 STEEL	403 +	463	GOOD	35-C1-56 89-55-21	S	00000 IND
S MS6070	15700947	SCHIITE	\$B:K-10	07/21/1971	485 500	1001 84	390 STEEL	 ଜନ୍ମ	479	3000	35-01-50 85-53-27	ယ	00030 IXD
C4095W S SHELBY	15700948	J SCEL BREW	SH:K-10	07/21/1971	495 503	1001 91	404 STEEL	412 -	257	3000	35-01-50 85-53-38	တ	00030 IND
C409SW 9 SHELBY	15700949	SCHIITZ	SH:K-10	1161/12/70	473 500	1001 93	.381 STEEL	 (၅ (၅)	467	300D	35-01-58 85-53-37	ယ	00030 IXD
G409SW 9 EKELBY	15700989	15700989 RALSCON PURINA	INA K-10	06/02/1972	477	1 1	410 STEEL	419	469	3000	35-01-55 89-53-00	Vs	62000
04095W 9	15700990 RALSTON	HALSOON PURINA	INA K-10	07/19/1972	473	600	410 STEEL	- 217	467		35±01±53 89±53±00	so	00029 MEN
0405SW 9 SKELEY	15700996	PALSTIN PURINA	INA TEST	/ /19	192	11	;	1	}	goco	1 I		00029 IND
0405SW 9 SPELBY	15701076	ALDEN MATERIALS HUNGERFORD	IALS	6/ 7/1974 / /	180 156	10 87	156 STBEL	SCREEN 156 -	087	IRON	35-01-00 89-53-00	6 >>	00108 IND
0409SN 9 Shelay	15701073	JAS.SCHLITZ RAIMES ADAD	BREJOSE	08/23/1974 / /	. 797	1 1	275 STBEL	SCREEN 244 +	324	goos	35-02-00 89-58-30	6- >-	00029 IND
0405 SN 9 Seelby	15701082	PACSTON PURINA MENDENHALL	4 21	11/06/1974	797	.	400 STEEL	SCREEN 405 +	456	GOCE	35-02-00 89-58+00	E+ >+	00029
0405SW 9	15701268	HHITEHEAD PROPERTIE	ROPERTIE	11/24/1981	265 203	143	210 PLAST	213 -	263	coce	35-03-39 89-53-55	s	00573 HOME
C409SW 9	15701568	NEWPHIS LG & 1899 HICKORY	6 W 4У НІ	04/03/1989	787 680	1400 118	678 STEEL	SCREEN - 680 -	783	0000	35-00-00 89-52-30	o ≻	00029 MUN
C4D9SW 9 SHELBY	15701569	MEMPHIS LG & 3911 HICKORY	£ W ХУ НІ	02/09/1989 / /	475	1400.	368 STEELS	SCREEN 369 -	471	8	.35-00-cc 89-52-30	o ⊱	00025 MUN
C409SW 9 SHELLBY	15701570	HEMPRIS LG & 3901 HECKORY	у н. 14 т	03/08/1989		[OTHER	1	ţ		35-30-00 89-52-30-	σz	00025 OTHR
С409 SM 5 SHELBY	15701584	15701584 MEMPHIS LG 4 4269 CRUMP	38	06/12/1989 / /	5.75 5.68	148	463 STEEL	SCREEN 468	568	COOD	35-00-00 89-52-30	ω ≱4	00025 MUN
0409SW 9	15705031	15705031 FRISCO ER SH	н к-31-3	, /19	176	9	STREL	. ¦	. :	GOCD	3.00 - 0.00 5.00 - 0.00 5.00 - 0.00 5.00 - 0.00	u	

TENHESSER DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPELY RECORDS OF WATER WELLS ON THE SOCIATION-MEMPHIS QUADRANGLE (C409SM).IN.

QUAD / RTS COUNTY	FEG NUM	QUAD / NTH WELL MUM OWNER'S NAME COUNTY REG NUM LOCATION ROAD	COMP DATE TOT INSPT DATE AD	DEPTH	TOT DESTH TOT YIELD AQ DESTH STAT LEVEL	CSE DEPIE CSE TYPE	CSE DEPIK WELL SINISH CSE TYPE INTERVAL		WAT QUAL TAG MUM	LATITUDE LONGITUDE	A/C DRI LOG USB	A/C DRILLER LOS USE
C409SW 9 SHELBY	15709078	15709078 R C CAN CO SH:K-787	SH:K-787 00/00/1958	11	1	1	! !		ONNX	35-01-06 85-53-13	۶a عد	00109 IND
C409SW 9 SHELBY	15709083	15709083 WHICE STONE SH:K-8	SR:X-8 04/23/1962	169	. 1 99	STEEL		;		35-01-26 89-53-05	52	C0108 IND
SHELBY	15709084	15709084 R W WOOD SM:K-84K-B 08/00/1961		214	08	FLAST	200 -	214	000	35-01-25 89-53-05	eq.	HOME
04095W 9 Shelby	15709085	15709085 C E BOWE	1 /19	1 24	1.5	1		:	C	35-01-15 89-54-36	ц	EOME
04095W 9 SHELBY	97002672 D0025144	97002872 APAC IN INC D0025144 TUTTLES	06/27/1897	085	250 90	140 Flast	SCREEN 140 -	180	0000	1 I 1 I	*	COS 70

----- ‡ ------

APPENDIX F

WATER QUALITY LABORATORY REPORTS

----- ‡ -----

NO DRINKING WATER ANALYTICAL WAS PERFORMED

----- ‡ -------

APPENDIX G

UST SITE RANKING FORM

----- ‡ ------

UST SITE ANKING FORM

Facility ID Number: 0-790983

Facilty Name:

Army National Guard OMS #015

Facility Address:

Memphis, TN

Date Ranking Form Completed:

7/16/98

Geologic and Hydrogeologic Factors

Minimum depth to the water table		
<5.0 Feet	X 50	
5.1 to 10.0 Feet	45	
10.1 to 15.0 Feet	40	
15.1 to 30.0 Feet	35	
30.1 to 50.0 Feet	25	
50.1 to 75.0 Feet	15	
75.1 to 100.0 Feet	10	
> 100.0 Feet	5	
ISCR, 07/29/98, p. 19, Table 3	Score	50

Minimum distance between water table & contaminated	soil
<5.0 Feet	50
5.1 to 10.0 Feet	45
10.1 to 15.0 Feet	40
15.1 to 30.0 Feet	35
30.1 to 50.0 Feet	25
50.1 to 75.0 Feet	15
75.1 to 100.0 Feet	10
> 100.0 Feet	5
No soil contamination	X 0
I\$CR, 07/29/98, p. 12, Table 1	Score

3 Soil Permeability		
Undetermined	30]
> 10^-4 cm/sec	30	1
10^2-4 to 10^-6 cm/sec	X 20]
<10^-6 cm/sec	. 10	1
I\$CR, 07/29/98, p. 14, Table 2	Score	20

Calculated Groundwater Flow Rate		
<10 Feet/day	X 3	
10 to 40 feet/day	6	
40 to 90 Feet /day	12	
90 to 130 Feet /day	18	
130 to 260 Feet/day	24	
> 260 Feet/day	30	
KARST	30	
I\$CR, 07/29/98, p. 18	Score	

Receptor Factors 5 | Basements/Crawl Spaces/Utility Vaults <50.0 Feet from known contamination 150 50.1 to 100.0 Feet from known contamination 75 100.1 to 200.0 Feet from known contamination 50 25 200.1 to 300.0 Feet from known contamination 300.1 Feet 0 ISCR, 07/29/98, p. 8 Score 0 6 | \$anitary sewer mains and service lines 75 50.1 to 100.0 Feet from known contamination 40 20 100.1 to 200.0 Feet from known contamination 200.1 to 300.0 Feet from known contamination 10 Х > 300.1 Feet from known contamination ō ISCR, 07/29/98, p. 8 and Figure 2 on p. 5 Score 10 7 Storm Water Sewers k50.0 Feet from known contamination 50 50.1 to 100.0 Feet from known contamination 30 100.1 to 200.0 Feet from known contamination 10 200.1 to 300.0 Feet from known contamination 5 > 300.1 Feet 0 ISCR, 07/29/98, p. 8 and Figure 2 on p. 5 Score Ô 8 Other Subsurface Utilities (I.e. natural gas, water, electric, telephone, etc.) <50.0 Feet from known contamination 75 50.1 to 100.0 Feet from known contamination 40 Х 100.1 to 200.0 Feet from known contamination 20 10 200.1 to 300.0 Feet from known contamination > 300.1 Feet from known contamination 0 SCR, 07/29/98, p. 8 and Figure 2 on p. 5 Score 40 9 Public Water Supply Source <0.1 miles 300 0.1 to 0.25 miles 200 0.25 to 0.5 miles 100 >0.51 miles SCR, 07/28/98, p. 26-28 Score 0 10 Private Water Supply Source <0.1 miles 200 0.1 to 0.25 miles 150 0.25 to 0.5 miles 100 >0.51 miles SCR, 07/28/98, p. 26-28 Score 11 Distance to Surface Water <.1 miles 25 0.1 to 0.25 miles X 15 0.25 to 0.5 miles 5

Score

15

>0.51 miles

SCR, 07/28/95, p. 27, Figure 9

Contaminant Factors

17 Total site score

		A. Max.	B. App.		C. Cont.	
		Contam.	Cleanup		Conc.	
	Contaminant Concentration	Levels	Levels		Ratio A/B	
-	Benzene In ground water	0.00	0.07	_	0.0	
	TPH in ground water	0.0	1.00		0.0	
	BTX in Soil	0.000	50.00		0.0	
	TPH in Soil	5.0	500.00	.,,,,	0.0	
	ISCR, 07/28/98, Table 1, p. 12 (SOIL)					
	ISCR, 07/28/98, Table 5, p. 26 (GW)					
12	Benzene in ground water					
	<1.0		1	Х	0	
	1.1 to 10.0				25	
	10.1 to 50.0				50	
	50,1 to 100.0				100	
	100.1 to 500.0				200	
	> 500.1	-			300	
					Score	0
13	TPH on groundwater					
	<1.0			Х	0	
	1.1 to 10.0				20	
	10.1 to 50.0				40	
	50.1 to 100.0				80	
	100.1 to 500.0				120	
	> 500.1				200	
					Score	0
14	Benzene in soil					
	<1.0			_X		
	1.1 to 5.0				25	
	5.1 to 10.0				50	•
	10.1 to 50.0				100	
	>50.1				200	<u> </u>
					Score	0
				ı		
15	TPH in soil					ı
	<1.0			X		
	1.1 to 5.0				20	
	5.1 to 10.0				40	
	10.1 to 50.0				80	
	>50.1		-		100	0
					Score	U

138

----- ‡ -----

APPENDIX II

TN UST COST ESTIMATE COVER SHEET

AND

REPORT PREPARATION COST ESTIMATE FORM

----- ‡ ------

INITIAL SITE CHARACTERIZATION REPORT COST FORM

Submit with ISCR	Estimated Costs	Actual Costs
Site Check		N/A
Initial Abatement/Emergency Response		N/A
Free Product Recovery		N/A
Initial Site Characterization	\$26,001.00	\$17,389.00
Monitoring (per event)	N/A	
Additional Assessment Activities	N/A	a la la la la la la la la la la la la la
Environmental Assessment	N/A	

ASSESSMENT ACTIVITIES COST ESTIMATE FORM

Provide a brief description of the tasks included in this estimate. (Expand this form as necessary)

1.	No new	work is	planned,	except for	well	abandonment

2. 3. 4. 5.

, , , , , , , , , , , , , , , , , , ,		onal Services	
Personnel (List Below)	Hours	Cost Per Hour	TOTAL
			, ,
			
		GRAND TOTAL	

	and the second s	ASSOCIATED	CHARGES	·
Drilling				
Excavation				
Trucking				
Surveying				
Analytical Sa	mples	\$/Sample		
Rentals (List Below	v)			
Disposal - Free Pro	iduct			
	Water			
5	Soil	, , , , , , , , , , , , , , , , , , ,		
Capital Expenditur	es (List Belov	*)		

Permitting							
Lodging and	Per Diem	Da	ıys x S				
Mileage	Miles	\$	/mile				
Miscellaneou	ıs (List Below)	l					
						•	
		-				· · · · ·	
				GRAND TOTA	r		

· .

ENVIRONMENTAL ASSISTANCE CENTER TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

SUITE E-645, PERIMETER PARK 2510 MT. MORIAH ROAD

MEMPHIS, TENNESSEE 38115-1520 PHONE (901) 368-7939 STATEWIDE 1-888-691-8332 FAX (901) 368-7979

May 6, 1999

Mr. Steve Westerman
Tennessee Department of Finance and Administration
Capital Projects Management
312 Eighth Avenue, North Suite 2200
Nashville, Tennessee 37243-0300

DECELVE

UNDERGROUND STORAGE TANK PROGRAM

RE: Case Closure
National Guard Armory OMS # 15
2610 E. Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

TECHNICAL FILE

Dear Mr. Westerman;

The Division of Underground Storage Tanks has reviewed the Well Abandonment/Site Closure letter dated April 15, 1999 for the above referenced facility. Based on the information available, this case is considered closed. However, the Division reserves the right to require additional action if necessary.

If you have questions concerning this correspondence, call me at (901) 368-7971.

Sincercly,

Cynthia J. Patton

Division of Underground Storage Tanks

nthia Patton

UST Memphis Environmental Assistance Center (a)
Debbie Mann - UST Nashville Central Office - Technical Review Section

ENVIRONMENTAL ASSISTANCE CENTER UNDERGROUND STORTENESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

TANK PROGRAM

2510 MT. MORIAH ROAD MEMPHIS, TENNESSEE 38115-1520

PHONE (901) 368-7939 STATEWIDE 1-888-891-8332 FAX (901) 368-7979

January 26, 1999

Mr. Steve Westerman Tennessee Department of Finance and Administration Capital Projects Management 312 Eighth Avenue, North Suite 2200 Nashville, Tennessee 37243-0300

TECHNICAL FILE

RE: Monitoring Well Abandonment National Guard Armory OMS # 15 2610 E. Holmes Road, Memphis, Shelby County, TN Facility ID # 0-790983

Dear Mr. Westerman:

The Division of Underground Storage Tanks has reviewed the file for the referenced facility. Based upon the submitted data, additional monitoring and corrective action are not required.

The Tennessee Department of Finance and Administration, Capital Projects Management is required to properly abandon all of the monitoring wells in accordance with Section II N. of the Environmental Assessment Guidelines. Before this case can be considered closed, a report documenting the well abandonment procedures shall be submitted to this office by March 26, 1999.

If the wells have already been properly abandoned, a report documenting the procedure shall be submitted to the Division by February 26, 1999. A clean closure letter will then be issued to the Department of Finance and Administration.

If site conditions change and petroleum vapors, free product or other public health and/or environmental problems arise, then corrective action shall be immediately initiated and the Division notified within 72 hours. If you have questions concerning this correspondence, call me at (901) 368-7974.

Sincerely, Cynthia Patton

Cynthia J. Patton

Division of Underground Storage Tanks

UST Memphis Environmental Assistance Center (a) Debbic Mann - UST Nashville Central Office - Technical Review Section

STATE OF TENNESSEE Department of Finance and Administration

TECHNICAL FILE

Telephone 615-741-1563

615-

Facsimile

615-741-2335

Division of Capital Projects Management / Real Property Management

Capital Projects Management Tennessee Tower, Suite 1300 312 Eighth Avenue, North Nashville, TN 37243-0300 Real Property Management Tennessee Tower, Suite 1500 312 Eighth Avenue, North Nashville, TN 37243-029

RECEIVE

December 23, 1997

Mr. John Hargraves ATC Associates, Inc. 5217 Linbar Drive, Suite 306 Nashville, TN 37211

UNDERGROUND STORAGE TANK PROGRAM

RE:

REQUEST FOR SERVICES

OMS #15 - Memphis Fac. I.D. #0-790983

John:

As a result of the removal of the UST at the above facility, the analytical results provided readings which exceed the most stringent clean-up levels. Consequently, the DUST Memphis Field Office directs that an Initial Site Characterization Report (ISCR) be submitted per DUST guidelines. I request your firm proceed with this work as defined in your UST Regional Consultant Contract (including providing to me the customary task/budget letter.)

Please find enclosed a copy of the Permanent Closure Report filed for the site, which includes site maps and a summary report of analyses; and, a copy of the letter (N.O.V.) from Cynthia Patton with the Memphis Field Office, dated December 12, 1997; which states in part that the ISCR is due by February 27, 1998. If you require anything further, please do not hesitate to contact me.

Sincerely

Steven'L. Westerman

Environmental Program Administrator

DC:

Ralph Harder, Tenn. Dept. of Military

Curtis Hopper, DUST Central Office, Nashville Cynthia Patton, DUST, Memphis Field Office

TECHNICAL FILE

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE

SUITE E-645, PERIMETER PARK 2510 MT. MORIAH MEMPHIS, TENNESSEE 38115-1520 '97 JUM 5 AM 10 42 TN DEPT. ENV. C. COA. US T PROCESS

June 3, 1997

CERTIFIED MAIL P 182 143 780

Mr. Ralph S. Harder C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41052 Nashville, Tennessee 37204-1502

RE: Release Response
OMS # 15 - Memphis
2610 East Holmes Road, Memphis, Shelby County, TN
Facility ID # 0-790983

Dear Mr. Harder:

The Division of Underground Storage Tanks (the Division) has reviewed the Permanent Closure Report dated May 15, 1997 for the referenced facility. According to the report water in the tank pit recharged within 24 hours. The water was sampled on February 12, 1997. The level of total petroleum hydrocarbons (TPH), diesel range organics (DRO) was 595 parts per million (ppm). This level is above the 1.0 ppm clean up level for non-drinking water.

Rule 1200-1-15-.06 of the Tennessee Petroleum Underground Storage Tank Regulations requires that Tennessee Army National Guard take immediate action to prevent any further release of petroleum into the environment and to identify and mitigate fire, explosion, and vapor hazards.

Rule 1200-1-15-.06 requires that the Responsible Party, in response to a confirmed release from an underground storage tank system, perform initial abatement measures.

Since the underground storage tanks have been removed at this site, it will not be necessary to submit an Initial Abatement Report (IAR).

The Tennessee Army National Guard shall submit an Initial Site Characterization Report (ISCR) to this office by September 8, 1997 following the ISCR Guidelines. This report must contain all data gathered during the field activities and identify the applicable cleanup levels. One well closest to the release shall be installed, instead of four wells as stated in the ISCR Guidelines.

Environmental assessment activities and evaluation of the subsurface investigation shall be directed by a registered professional geologist under the Tennessee Geologist Act (T.C.A. 62-36-101 et seq.) or a registered professional engineer under the Tennessee Architects, Engineers, Landscape Architects, and Interior Designers Law and Rules (T.C.A. 62-2-101 et seq.). All assessment activities shall be conducted in accordance with the 1996 UST Reference Handbook.

Mr. Ralph Harder June 3, 1997 Page 2

All fund eligible work must be conducted and/or overseen by an UST Approved Corrective Action Contractor to be eligible for reimbursement from the Tennessee Petroleum Underground Storage Tank Fund. The current list of approved contractors is enclosed. To determine if a site is Fund eligible, the enclosed Authorization for Fund Eligibility Form must be completed and submitted to the Nashville Central office.

T.C.A. 68-215-121(a)(1) states:

Any person who violates or fails to comply with any provision of this chapter, any order of the commissioner or board, any rule, regulation, or standard pursuant to this chapter shall be subject to a civil penalty not to exceed ten thousand dollars (\$10,000) per day for each day of violation. This civil penalty may be assessed by the commissioner, the board or the court. Each day such violation continues shall constitute a separate punishable offense, and such person shall also be liable for any damages to the state resulting therefrom.

Rule 1200-1-15-.09(11) states that a fund eligible owner or operator conducting UST corrective action is entitled to fund coverage for reasonable costs; subject to certain provisions. The owner or operator must comply with the requirements in rule 1200-1-15-.06 as outlined in this letter. If this facility is Fund eligible, failure to comply with these requirements may result in the loss of fund coverage of the release investigation and/or corrective action costs associated with this release.

This office must be notified at least one working day in advance of any major field activities.

Send one copy of all correspondence, including reports, to this office and one copy to:

Division of Underground Storage Tanks
4th Floor, L & C Tower
401 Church Street
Tennessee Department of Environment and Conservation
Nashville, Tennessee 37243-1541

If you have any questions concerning this correspondence, call me at (901)368-7974.

Sincerely,

Cytithia J. Patton

Division of Underground Storage Tanks

ynthia J. Patton

Enclosures: UST Approved CAC List

Authorization For Fund Eligibility

Memphis UST Field Office (active file)
Curtis Hopper - Nashville UST Central Office - Technical Review Section

fo-004h

C:

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE E-645, PERIMETER PARK 2510 MT, MORIAH

MEMPHIS, TENNESSEE 38115-1520

'96 NOU 1 AM 10 05 TN DEPT. ENV. & CON. UST PROGRAM

.

October 30, 1996

Mr. Ralph S. Harder, C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41502 Nashville, TN 37204-1502

RE: Permanent Closure Application - Approved OMS # 15 - Memphis 2610 East Holmes Road, Memphis, TN Facility ID #0-790983, Shelby County

Dear Mr. Harder:

The Division of Underground Storage Tanks has approved your application for Permanent Closure of Underground Storage Tank Systems dated October 14, 1996 for the above referenced facility. Enclosed is a copy of the approved application. This copy must be kept at the site during all closure activities.

This office must be notified at least one working day in advance of any major field activities.

If a release is identified during closure procedures, then the following initial response actions must be performed by Tennessee Army National Guard as required by Rule 1200-1-15-.06(2):

- (a) Report the release to the Division within 72 hours (e.q., by telephone or electronic mail);
- (b) Take immediate action to prevent any further releases of the petroleum into the environment; and
- (c) Take immediate action to identify and mitigate fire, explosion, and vapor hazards.

All Fund eligible work shall be conducted and/or overseen by an UST Approved Corrective Action Contractor. The current list of approved contractors is enclosed. Also refer to the Authorization for Fund Eligibility form.

Mr. Ralph S. Harder October 30, 1996 Page 2

Tennessee Army National Guard must comply with all applicable federal, state, and local requirements during tank closure activities, including treatment and disposal of contaminated soil and/or groundwater. For information regarding the treatment of petroleum contaminated soils, refer to the enclosed Technical Guidance Document 009.

Enclosed is a copy of the Permanent Closure Report Form, Technical Guidance Document 005 and Technical Guidance Document 009. The Permanent Closure Report Form must be completed and submitted with original or carbon copies of the analytical results. Photocopies will NOT be accepted.

Before the closure of your UST system can be considered complete, an amended UST Notification Form must be completed, signed, and submitted to the UST Central Office in Nashville. Failure to properly submit the form may result in the assessment of additional UST fees. To assist you in properly completing the Notification Form, the following instructions should be followed:

- 1. If tanks are being removed and no additional tanks are being installed, then complete only sections I, II, VIII, and X. The tank identification numbers should correspond with the numbers for these tanks on the previous Notification Form.
- 2. If additional tanks are to be installed at this facility, then sections IX and XI must also be completed. The identification numbers for the new tanks must be different from the numbers of the tanks which were removed (e.g., Tanks 1, 2, and 3 were removed, Tanks 4, 5, and 6 are to be installed).

If you have any questions concerning this correspondence, contact me at (901) 368-7974.

Sincerely,

Cynthia J. Patton

Centhia J. Pattor

Division of Underground Storage Tanks

CJP\79016304\aq

Mr. Ralph S. Harder October 30, 1996 Page 3

Enclosure:

Approved Closure Application (copy)
Permanent Closure Report Form (1/94)
Technical Guidance Document 005 (1/94)
Technical Guidance Document 009 (1/94).
Authorization For Fund Eligibility

c: Nashville UST Central Office - Fee & Notification

Section

Memphis UST Field Office

UNDERGROUND STORAGE DEPARTMENT OF ENVIRONMENT AND CONSERVATION TANK PROGRAM

MEMPHIS ENVIRONMENTAL FIELD OFFICE SUITE E-845, PERIMETER PARK 2510 MT. MORIAH

STATE OF TENNESSEE

MEMPHIS, TENNESSEE 38115-1520

December 12, 1997

CERTIFIED MAIL P 612 846 973

Mr. Ralph S. Harder C.P.E. Tennessee Army National Guard (STARC) Houston Barracks, P.O. Box 41052 Nashville, Tennessee 37204-1502

NOTICE OF VIOLATION

RE: Failure to Meet Compliance Deadline OMS # 15 - Memphis 2610 East Holmes Road, Memphis, Shelby County, TN Facility ID # 0-790983

Dear Mr. Harder:

On June 3, 1997, the Division of Underground Storage Tanks notified the Tennessee Army National Guard by certified letter that the Initial Site Characterization Report (ISCR) for the referenced facility was to have been submitted to this office by September 8, 1997. To date, the document has not been received. The failure to submit the document is a violation of the Tennessee Petroleum Underground Storage Tank Regulations.

Rule 1200-1-15-.03(5) states:

Owners and/or operators of UST systems must cooperate with inspections, monitoring, and testing conducted by the Division, as well as, requests for document submission, testing, and monitoring by the owner or operator pursuant to the Tennessee Petroleum Underground Storage Tank Act Tennessee Code Annotated Section 68-215-107.

T.C.A. Section 68-215-121(a)(1) states:

Any person who violates or fails to comply with any provision of this chapter, any order of the commissioner or board, any rule, regulation, or standard pursuant to this chapter shall be subject to a civil penalty not to exceed ten thousand dollars (\$10,000) per day for each day of violation. This civil penalty may be assessed by the commissioner, the board, or the court. Each day such violation continues shall constitute a separate punishable offense, and such person shall be liable for any damages to the state resulting therefrom.

Rule 1200-1-15-.09(11)(a) and (j) state:

An eligible owner or operator conducting UST corrective actions is entitled to coverage of reasonable costs from the Fund, subject to the following provisions:

- (a) Upon confirmation of a release in accordance with Rule 1200-1-15-.05(3) or after a release from the UST system is identified in any other manner, owners and operators must perform initial response actions required in Rule 1200-1-15-.06(2), initial abatement measures required in Rule 1200-1-15-.06(3)(a)1 through 4 and Rule 1200-1-15-.06(3)(b), and initial free product removal according to Rule 1200-1-15-.06(5) and Rule 1200-1-15-.06(3)(a)6 necessary to properly stabilize a site and to prevent significant continuing damage to the environment or risk to human health.
- (j) Any corrective action which is carried out in response to any discharge, release, or threatened release of petroleum from an UST must be conducted in accordance with the requirements of Rules 1200-1-15-.06(1) through 1200-1-15-.06(7) and subparagraphs (a) through (d) of this paragraph.

The Tennessee Army National Guard shall submit the ISCR by February 27, 1998. Send one copy of all documents to this office and one copy to:

Division of Underground Storage Tanks
4th Floor, L & C Tower
401 Church Street
Tennessee Department of Environment and Conservation
Nashville, TN 37243-1541

If you have any questions concerning this correspondence, call me at (901)368-7974.

Sincerely,

Cynthia J. Patton

Division of Underground Storage Tanks

Cynthia J. Palton

Mcmphis UST Field Office (active file)
Curtis Hopper - Nashville UST Central Office - Technical Review Section

fb-084h

		H
		i
		•
		1
		1
1806 - 4 gran (1804) ilma san ilma dia manon san ar-manaha n-mata dia san ar-manaha n-manaha na manaha na mana 1804 - 1806 na ara-manaha na manaha n-manaha n-manaha n-manaha n-manaha n-manaha n-manaha na manaha na manaha 1804 - 1806 na manaha na manaha na manaha n-manaha n-manaha n-manaha n-manaha na manaha na manaha na manaha n		
		·
		:
4.0 - 4.0 - 4.7 - 4.0 -		i
		i
		Ξ,
		÷
000 - V-dim. d'addidh brobatou dhibirra brobatou dhibirra 4 V-dan dhibirra - Canada dha ba ba ba ba ba ba ba an an an an an an an an an an an an an	MEIR	=
		ij
### ##################################		•
10-1 avr	in Carrie	ij
		÷
		:
Marie de la companya del companya de la companya del companya de la companya de l		ij
1		ij
		ä
		:
		:
<u> </u>		ij
Haigh - 1904 Ar Haigh - 1944 Ar Ann an Air ann an Air an Air an Air an Air an Air an Air an Air an Air an Air a Bhaigh - 1904 Ar Air an		Ë
** DP-000 Detailed Date of Article (Detailed Control of Article (Detailed		:
		+;;
74 B vB vA vA vA vA vA vA vA vA vA vA vA vA vA		#
il Billia ili ili ili ili ili ili ili ili il		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
		**
		**
		**
		**
		**
		マー・「中央できないのは、こうないものでありますできます。中のでは、中のでは、アンマーのでは、アンマーのでは、アンマー・「ある」です。
		マー・「中国の「日本のでは関す」「中国でも国であるマネマ」「中です」を出てる日本でもですが、マアマーの中、カマ・・・・のも、カマ・・・・・のから、マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		マ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		て、「はは、日はもでは出て、子供でも出てるキャチャー・チャー・子供でもはチャータでする。 マンケーカー カマ・・・・カカ・チャッ・マー そもは、カマ・カチトト・マ・・サード・ア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		ので、「中国の関連ので国際での自然でも関係を受けていているできないを受ける。」では、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国のでは、「中国
		・ ・ のは、 生物のは はまい でき かんし マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		・ 「一年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
		の「「「中国の「東京の大学」とは、「中国の「中国の大学」というでは、「中国の大学」というでは、「中国の大学」というでは、「中国の大学」というでは、「中国の大学」というできます。「中国の大学」という
		・ 「中央の一角の一角のでは、「中央の一角の一角の一角の一角の一角の一角の一角の一角の一角の一角の一角の一角の一角の
		・ 「一年の日本の日本の「一年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
		・ 「中央の大学のでは、「中央の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		て、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、「中央の大学では、
		・ 「中央の大学では、
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		・ 「一年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
		・ 「一年の日本のでは、「一年の日本のでは、「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		TO THE PROPERTY OF THE PROPERT

		:				(\$750.00)				:	(\$250.00)		·	,		(\$250.00)
	\$125.00 Payment	\$125.00 Payment	\$125.00 Payment	\$125.00 Payment	\$125.00 Payment		Base Fee	Base Fee	\$125.00 Payment	\$125.00 Payment		(\$125.00) Base Fee	Base Fee	\$125.00 Payment	\$125.00 Payment	
	\$125.00	\$125.00	\$125.00	\$125.00	\$125.00		(\$125.00) Base Fee	(\$125.00) Base Fee	\$125.00	\$125.00		(\$125.00)	(\$125.00) Base Fee	\$125.00	\$125.00	
	JV193779	JV193779	JV193779	JV193779	1997 JV193779				1997 JV193779	1997 JV193779			·	1997 JV193779	1997 JV193779	
	1997	1997	1997	1997	1997		1997	1997	1997	1997		1997	1997	1997	1997	
	TN 37167	37167	37167	37167	37167		38118	38118	38118	38118	·	38237	38237	38237	38237	
an and all	TN	N_	N	¥	Y.		Z	Z	Z	Z		% ⊢	Z	2	₹	
	Smyrna	Smyrna	S myrna	Smyrna	Smyrna		Memphis	Memphis	Memphis	Memphis		Martin	Wartin	Martin	Martin	
	03 GRUBBS	B CD 603 GRUBBS KYLE TNG CTR	B CD 603 GRUBBS KYLE TNG CTR	B CD 603 GRUBBS KYLE TNG CTR	B CD 603 GRUBBS KYLE TNG CTR		2610 E HOLMES RD	2610 E HOLMES RD	2610 E HOLMES RD	2610 E HOLMES RD		100 VOLUNTEER DRIVE	100 VOLUNTEER DRIVE	100 VOLUNTEER DRIVE	100 VOLUNTEER DRIVE	
	ARMY AVIATION	ARMY AVIATION	ARMY AVIATION	ARMY AVIATION	ARMY AVIATION		190963 12491 OMS #15	12491 OMS #15	12491 OMS #15	12491 OMS #15		12491 OMS #11	12491 OMS #11	12491 OMS #11	12491 OMS #11	
	12491	12491 ARMY AVIAT	12491 ARMY AVIAT	12491 ARMY AVIAT	12491 ARMY AVIAT		12491	12491	12491	12491		12491	12491	12491	12491	
Access of the second	750336 12491 ARMY AVIAT	750336	750336	750336	750336	,	190983	790983	790983	790983		920097	920097	920097	920097	`.

Doc 185007 Batch 227 Dec 95

	1		
PAGE 1	•	14:27:54	22 NOV 1995
FE23	О⊌пег	Location Name	Registration
	10	and Address	Fee. Total
		<i></i>	
0090081*1995	1249	UNIT TRAINING EQUIP SITE #1	475 45
	, _ ,	RT 1 TN HWY 220	#50.00
		LAVINIA , TN 30346	
0120019*1995	1249	COMS #14 (HHC 4-117TH IN 9HO)	\$25.00
		HWY 100 EAST	
0160084*1995	4545	HENDERSON, TN 38340	
0.1000004,1332	1249	1045 #07	\$25.00
		1202 E CARROLL ST TULLAHOMA, TN 37388	
0260093*1995	1749	10ELARORA, (N 3/300	475 44
	• • • • • • • • • • • • • • • • • • • •	FAYETTEVILLE HWY US 64	*25.00
		WINCHESTER, TN 37396	
0270160*1995	12491	OMS #12	#25.00
		ARMORY ST	725,40
222222		TRENTON, TN 38382	
0330094=1995	1249 (OMS 405	\$75.00
		1801 HOLTZCLAW AVE	
0370104*1995	12491	CHATTANOOGA, TN 37404 OMS #17	
00,0104-1333	12451	4401 W STONE STREET	\$25.00
		KINGSPORT, TN 37662-1429	
0540101*1995	12491	0H5 #03	475 56
		HWY 30 EAST	\$25.DO
		ATHENS, TN 37303	
0570213*1995	12491	0M9 #13	#50.00
		AMERICAN DR	
0600130*1005		JACKSON, TN 36302	
0600130*1995	1249 [OMS #10	#50.00
		INDUSTRIAL PARK RD COLUMBIA, TN 38401	
0710181*1995	12491	OMS #04	
	,	505 GOULD DRIVE	#50.0Q
		COOKEVILLE, TN 38502	
0750010#1995	12491	AASF 41	\$75.00
		SMYRNA AIRBASE	473.00
075076544004		SMYRNA, TN 37167	
0750265*1995	12491	OMS #16	●50.QQ
		GRUBBS/KYLE TRAINING CENTER	
0750336=1995	12491	SMYRNA, TN 37167 ARMY AVIATION SUPPORT FACILITY	
	1471	B CD 603 GRUBBS KYLE THE CTR	*7 5.00
		SMYRNA, TN 37167	
0790983*1995	12451	OMS #15	\$50.00
		2610 E HOLMES RD	430.00
000000000		HEMPHIS, TN 38118	
0900287*1995	12491	OHS #01	\$50.00
		2117 W MARKET ST	
0920097*1995	1249+	JOHNSON CITY, TN 37601 OMS #11	
	* F 43 7	100 VOLUNTEER DRIVE	#50.00
		P.O. BOX 147	
		MART(N, TN 38237	
0950139*1995	12491	OM5 #06	\$25.00
		604 ¥ ADAMS	-20.00

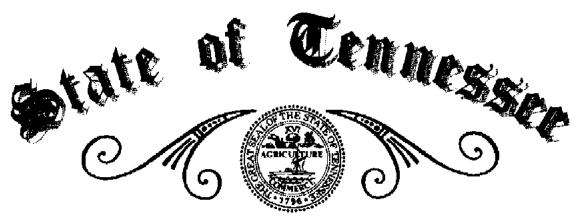
14:27:38 29 NOV 1995			I D	Location Name and Address	Registration Fee. Total	n
----------------------	--	--	-----	------------------------------	-------------------------	---

LEBANON, TN 37087

* * *

1	2	that the case others	함된		8	}												÷				_	3				뚝	è		PAY	
4 .		the grade	transcot :		COMMERTS			•		A.	٠.	• -		!	(1) (1)**	<u>ं</u>		4 <u>0</u>	:,			ķ	ត			1	EFFBCTTVE	ACCOUNT NAME	1	PAYING DEPT	Į Į
		that the interest with	ede of the							_	_		_		3		1.				, ,	75	ì					Z		Ă.	l,
Payer	7	THE SE	is form:	-	1995 Under	-	•	<u> </u>					<u>.</u>		ď,	,	191	, G	<u>: </u>			를 :	.a. ו		i Se		DATE	- 1		Hitrary	ELYO LOUN
Paying Department	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	actions and	is pus a		Dergrad	-	,				_	<u>. </u>	<u></u>	<u>·</u>			• •	34 74			11 ja	*** * X	i i	_	1		12/1/95		IN Arms/Net Guard	LTL.	199
Em Budges	To the second	The the p	in the De	1	81 2491 81 92491		, :							-	·			1		• : '		341.07	NET TON				95		5 1		AIGVLABO
3/3	ent Head	ondition	ad signor		078ge		,											Ţ			i • i.	11650	CENTER		e 1975						3
200	300	I certify that the impus described above were received and inappored by me; hall the quantitate were as staired; and the the condition was satisfuctory except to otherwise noted.	The NUMB tide of this form is to be prepared and signed by the Billing Department and sent to the Department will then prepare and sign the Debht adds and forward to the Division of Accounts	- u	1995 Inderground Storage Tank Registration Fees]		•	: '.					.• .			. 					, i	BARANOBA	BURNALHWUB	DEBIT		-				BATCH NO.
	Ø.	only excel	to the D	11150	13803						- ,,,				.:	ŕ		e je	,	. ;		980	1 4	CBLINGY						-4.2 -4.9	Ď
1	ł	. <u>A</u> v	Umeni au Nysion o		stion					1	<u> </u>	-		. ·				<u>:</u>	."				E/A/GY H	ία _ν	4		· -	<u>ئ</u>	7	\leq	16.
			and sease to the		2							<u> </u>		:						. 44 ()	1 1 = 1 No.		3,0					`	A.	9	
			its (3 cop				•					_			•		2	i	•	7 .	4,	ц () .									<u>.</u>
Comm			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:			. •									•						800.00	E	:		· ·		(5	, a	Depen
Commissioner Finance and Administration	DIRECTOR OF ACCOUNTS	¥	CESSED AND AND AND AND AND AND AND AND AND AN		. :						٠.	` _:	: . :. ·		٠.	•	·					8	HOUNT				H		DIBNAL VOIICHER		Department of Fluides and Administration of Teatment State of Teatment
Finance	위	JAW 2 3 1996	CES	···						•	· _				: . :	٠.	j d			•	, 1,1 , 1,1 , 1,1			ř			Curre) 	<u> </u>		of Phases and Ad
and Ad		_ ĕ					_	-					·					•	i ja,	÷.		9	ğ	•	V	, . :	DOCUMENT No. 185007	. (₫.		
màchtca	[공				-	L					<u>. </u>	٠.			•	_			•			147 9	a		÷ .		231		2		d Administration
.						Ŀ					_	;	· 		- <u> </u>			· ,	.;			96 20	7 J	_	;		8	5	Ü	1	<u>.</u>
		_				-		• •										٠,	1 · · ·	<u></u> 	. ;		65	-4		ļ.		Ā			
ļ		- COP MAN POO	- Landy a				· ·					•	•	· .			. ·		· ·	1	· -:	32741	+		,	Ω				• •	
			alify that		:	,			`		_	_			٠.	• :	1	•				9	DEVIEW			MATACE		>	•	#	H.1
		by were indicated and trust the price charged are proper.	hardy earlify that the items listed shows were furnished to the organiza-								7.0	. 1		- 4										BUSTALAB	CREDIT	CONTACT PERSON: Wends Taylor (532-0301)	BFFECTIVE.	POCOCAL NAME AND		BILLING DEPT Environment	DOC. TYPE
		D. C.	i i				<u> </u>	-		_	•						<u>-</u>					38	-		1	Vend	DAT	. Z > 25.		19 '8' 18'	
		nder Office	E WEST		٠																	£15	3	DEMAN:	: :,	s Tayl	DATE 12/1/95	100	<u>.</u>	ATL OF	DATE TUTIN
Plat Copy - 1	White Copy—Accessed File Cross Copy—Resum to Physiq Dept. Capary Copy—Resum to Billing Dest.	The Table	uralimed to t			:	 : 1,v. •		•		. ! !	H r:	211				,						5			or (532-	5			P .	E DEPTON
		• 1	M COTO	::			:		ţ	η	7	7				lo L'					· ·	800.00	j.:/	á		(1050		.		Conservation	Ald
Period Dept. Pile Cold.	o Pijá		ė.	. (: .					٠										8	Ancum		. 216.					Lion	BATC:
A Pile Copy		Ż			10		:					- ;-				•					:		5	:	,] :		:		BATCH NO
3																						٠.						1	E(#7	 	ا ۲

 $(4i\frac{\pi}{2}(\pi)x^2x^2)^{\frac{1}{2}}(x^2)$


PAGE 1 FEES	Registration Fee, Total		8:59:26 28 Total Due Amount	B DEC 1994 Balance Due	
0030078*1994	0.00	#.00	8.00	#.00 #50.00√	•
0090081*1994	#50.00	#,00 #.00	#50.00 #25.00		
0120019=1994	●25,00	■.00 ■.00	\$25.00 \$25.00		ould be Ø
0160084*1994	#25.00	1.00			-0001-1 /
0190743*1994	●.00 ●.00	●.00	●.00		
0260073*1994	\$25.00	₹.00		,	
0260093*1994 0270160*1994	\$25.00				•
0270160-1994	≢75.00			/	
0370104*1994			_	,	
0470484*1994					
0540101*1994				\$25.00V	
0570213-1994	· 				
0600130*1994					
0710181*1994			#50.00	*50.00 ✓	
0710182*1994		_	\$.00		
0750010=1994		\$.00	\$75.00		
0750265×1994	u.k.k.	\$.00	\$50.00		
0750336*1994		■.00	€75.00		
0790983*1994	£50.00	*.00			
0900287#1994	\$50.00	\$ _00		\$50.00	
0920097*1994	\$50.00				Acal not
0950139#1994	\$25.0 0	#. 00	\$25.00	25.001	pay for this
3 2 2	\$800.00) \$. 00	90,008≉	\$750.00	Facility

¹³ Records Processed

doct 157283

) / DEPTINY BATCH NO.	DIVESION OF ACCOUNTS Department of Energy and Admitstration Subsections:	COUNTS Administration per	DOC. TYPE	2E ≈	Conservation
9	JOURN	· •	ACCOUNT NAME UST ACCOUNT NAME UST EFFECTIVE DATE 1/6/95 CONTACT PERSON: Wands Taylor (5		11
			CREDIT		
DEBIT COOL GRANTSSUR OBJAGY	OHE AND AND AND AND AND AND AND AND AND AND	SUB FFY FO ACET	COST GRANTSASUR DEPLICIV CENTER PROJUSUS	OBUNOY ARE. NO.	AMCINT
SOURCEIAGY M			┿┈		750 00
		147 95 20	32741 07	295 613	
				Table Sak	•
) \}		`. . .
			γ 	3 > h	¥ +
	<u>-</u>			Maket 95	
	. · · <u>-</u>			,	
COMMENTS: .co. II. According Storage Registration Fees					
	4		:		
OWNER 1. U. FILCH SI. Owner 1. U. FILCH SI. Owner 1. U. FILCH SI. Owner 1. Line And Signed Dry the Billing Department and sent to the Paying Department (4 copies). The Paying	Paying Department (4 copies). To copies).	The Paying	I hereby certify that the liens i	I hereby certify that the liens listed above were furnished to the organiza-	geniza-
The Licens state in this property and sign the Debit side and forward to the brygon of property Department with then prepare and sign the Debit side and inspected by me. I certify that the items described above were received and inspected by me. I had the quantities were as stated, and the the condition was partifactory except as otherwise noted.			don unit indicated fight for the properties of the parties of the properties of the	HERING Department Budges Officer Chem. Copy—Accounts File Chem. Copy—Return to File Connery Copy—Return to Dis	White Copy—Accounts File Green Copy—Return to Paylon Dept. Canary Copy—Return to Billing Dept.
Paying Department Head	Consequence Finance and Administration	and Administration	,	Pink Copy—Pay Colder red Copy-	Pink Copy—Paying Dept.File Copy Coldented Copy—Billing Dept. File Copy
Paying Department Budget Officer					

FACILITY NO.

DEPARTMENT OF ENVIRONMENT AND CONSERVATION

UNDERGROUND STORAGE TANK REGISTRATION CERTIFICATE

THIS CERTIFICATE MUST BE POSTED AT THE FACILITY

This certifies that the facility listed below has been duly registered with the State of Tennessee.

Facility Address:

- Constanting - Made Transport (1997) - Section (1997) - Made Made Transport (1997) - Section (1997)

COMPRISONER

This certificate effective with the second and expires with the second and the second

This certificate may be revoked if the Owner/Operator violates any of the lawful rules or regulations promulgated under Tennessee Code Annotated Section 68-53-101 et seq.

The following tanks have been duly registered at the above facility:

Tank Number

Description

Substance Stored

er komunika di kabupatèn di Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn K Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn

Appendix F Miscellaneous Supporting Documents

Melvin Burgess Assessor Of Property Shelby County Government

Property Location and Owner Information

Parcel ID 094400 00129

Property Address 0 HOLMES RD

Municipal Jurisdiction MEMPHIS

Neighborhood Number 00808B00

Tax Map Page 227

Land Square Footage 174240

Acres 4

Lot Dimensions 4AC 50/368.05X460+350/510IRR

Subdivision Name

Subdivision Lot Number

Plat Book and Page

Number of Improvements 0

Owner Name MEMPHIS SHELBY COUNTY

AIRPORT AUTHORITY

In Care Of Owner Address 2491 WINCHESTER

Owner City/State/Zip MEMPHIS TN 38116

Appraisal and Assessment Information

Class	EXEMPT
Land Appraisal	\$50,300
Building Appraisal	\$0
Total Appraisal	\$50,300
Total Assessment	\$0
Greenbelt Land Appraisal	\$0
Homesite Land Appraisal	\$0
Homesite Building Appraisal	\$0
Greenbelt Appraisal	\$0
Greenbelt Assessment	\$0

Improvement/Commercial Details

Stories	
Exterior Walls	
Land Use	- VACANT LAND
Year Built	
Total Rooms	
Bedrooms	
Bathrooms	
Half Baths	
Heat	
Fuel	
Heating System	
Fireplace Masonry	
Fireplace Pre-Fab	
Ground Floor Area	
Total Living Area	
Car Parking	

Permits

Date of Permi	t Amount of Permit	Permit Number	Reason	
09/02/1989	\$0	250061		
10/12/1981	\$7,000	15370		

Sales

Date of Sale	Sales Price	Deed Number	Instrument Type
09/23/1988	\$0	AS4457	WD
09/24/1981	\$0	S79383	QC

Melvin Burgess Assessor Of Property Shelby County Government

Property Location and Owner Information

Parcel ID 094400 00128

Property Address 0 HOLMES RD

Municipal Jurisdiction MEMPHIS

Neighborhood Number 00808B00

Tax Map Page 227

Land Square Footage 6359760

Acres 146

Lot Dimensions 146AC

Subdivision Name

Subdivision Lot Number

Plat Book and Page

Number of Improvements 0

Owner Name MEMPHIS SHELBY COUNTY

AIRPORT AUTHORITY

In Care Of Owner Address 2491 WINCHESTER

Owner City/State/Zip MEMPHIS TN 38116

Appraisal and Assessment Information

Class **EXEMPT** Land Appraisal \$100 **Building Appraisal** \$0 **Total Appraisal** \$100 **Total Assessment** \$0 **Greenbelt Land Appraisal** \$0 Homesite Land Appraisal \$0 Homesite Building Appraisal \$0 **Greenbelt Appraisal** \$0 **Greenbelt Assessment** \$0

Improvement/Commercial Details

Stories	
Exterior Walls	
Land Use	- VACANT LAND
Year Built	
Total Rooms	
Bedrooms	
Bathrooms	
Half Baths	
Heat	
Fuel	
Heating System	
Fireplace Masonry	
Fireplace Pre-Fab	
Ground Floor Area	
Total Living Area	

Car Parking

Permits

Date of Perm	it Amount of Permit	Permit Number	Reason	
09/07/1989	\$0	250060		

Sales

Date of Sale	Sales Price	Deed Number	Instrument Type
06/27/1988	\$0	AM7860	WD
09/24/1981	\$0	S79383	QC

Melvin Burgess Assessor Of Property Shelby County Government

Property Location and Owner Information

Parcel ID 094400 00107

Property Address 5478 SWINNEA RD

Municipal Jurisdiction MEMPHIS

Neighborhood Number 00808B00

Tax Map Page 227

Land Square Footage 4356000

Acres 100

Lot Dimensions

Subdivision Name

Subdivision Lot Number

Plat Book and Page

Number of Improvements 0

Owner Name MEMPHIS SHELBY COUNTY

AIRPORT AUTHORITY

In Care Of Owner Address 2491 WINCHESTER

Owner City/State/Zip MEMPHIS TN 38116

Appraisal and Assessment Information

Class **EXEMPT** Land Appraisal \$727,800 **Building Appraisal** \$0 **Total Appraisal** \$727,800 **Total Assessment** \$0 **Greenbelt Land Appraisal** \$0 Homesite Land Appraisal \$0 Homesite Building Appraisal \$0 **Greenbelt Appraisal** \$0 Greenbelt Assessment \$0

Improvement/Commercial Details

	Sto	ries
--	-----	------

Exterior Walls

Land Use

- VACANT LAND

Year Built

Total Rooms

Bedrooms

Bathrooms

Half Baths

Heat

Fuel

Heating System

Fireplace Masonry

Fireplace Pre-Fab

Ground Floor Area

Total Living Area

Car Parking

Sales

Date of Sale	Sales Price	Deed Number	Instrument Type
10/25/1995	\$0	FK6971	WD
09/14/1995	\$0	FK6970	CD
07/21/1994	\$0	EN2864	QC
07/20/1994	\$0	EN2172	QC
10/14/1993	\$0	290-676	PC
10/16/1990	\$0	CM0533	QC
05/18/1988	\$0	AM7518	QC

Appendix G
Photo Log

Photo 1: View of metal roofing observed on the ground within the southwest portion of the subject property.

Photo 2: View of the broken concrete presumed to be from a former building structure in the north-central portion of the subject property.

Photo 3: Partial view of the former gravel pit area in the northeast portion of the subject property.

Photo 4: View of used tires observed along the west portion of the subject property.

Photo 5: View of livestock feeding trough/ring observed in the northwest portion of the subject property.

Photo 6: View of trash and debris observed in the north-central portion of the property. Materials observed suggest a residential building may have been located in the area.

Photo 7: View of north utility easement looking west toward Swinnea Road.

SOLID WASTE CAPACITY INFORMTION SHELBY COUNTY, TN

Active Solid Waste Facilites in Shelby County, Tennessee as of April 17, 2020

Facility	Permit Number	Permit Type	Status	Permittee	Location	City	County	Issuance
1 South Shelby Landfill	SNL790000135	CLASS I	Active	BFI WASTE SYSTEMS OF NORTH AMERICA LLC	5494 Malone Road	Memphis	Shelby	JAN-01-1978
2 North Shelby Landfill Class I	SNL790000224	CLASS I	Active	BFI WASTE SYSTEMS OF NORTH AMERICA LLC	7111 Old Millington Rd	Millington	Shelby	JAN-01-1988
3 North Shelby Landfill Class III	DML790000122	CLASS III	Active	BFI WASTE SYSTEMS OF NORTH AMERICA LLC	7111 Old Millington Rd	Millington	Shelby	JUN-29-2009
4 Frayser Business Development Center Demolition Landfill	DML790000123	CLASS III	Active	Steven L. Williamson and Carol Williamson	2948 Thomas Street	Memphis	Shelby	JUL-02-2009
5 Blaylock Brown Construction, Inc.	DML790000050	CLASS III	Active	BLAYLOCK & BROWN CONSTRUCTION, INC.	10636 Shelton Road	Collierville	Shelby	JUN-09-1997
6 North Memphis Landfill, Inc.	DML790000109	CLASS III	Active	NORTH MEMPHIS LANDFILL, INC.	382 Klinke Rd	Memphis	Shelby	MAR-11-2002
7 Chandler Demolition Company, Inc.	DML790000074	CLASS IV	Active	CHANDLER DEMOLITION COMPANY, INC.	1223 North Watkins Street (Office) 955 Levee Road (Site)	Memphis	Shelby	SEP-26-1997
8 Shelby County Recycle Center	CCC790001522	CONVENIENCE	Active	SHELBY COUNTY GOVERNMENT	1075 Mullins Station Road	Memphis	Shelby	JUL-27-2005
9 South Shelby Landfill Processing Facility	SWP790001430	PROCESSING	Active	BFI WASTE SYSTEMS OF NORTH AMERICA LLC	5494 Malone Road	Memphis	Shelby	-
10 Combs Industrial Services DBA Onsite Environmental	SWP790001528	PROCESSING	Active	Combs Industrial Services, Inc. dba Onsite Enviror	2605 Chelsea & 2730 Mathews	Memphis	Shelby	APR-13-2018
11 Switch Medical Waste Services, LLC	SWP790001537	PROCESSING	Active	Switch Medical Waste Services, LLC	2706 Huntley Drive	Memphis	Shelby	MAY-08-2017
12 Stericycle, Inc.	SWP790000213	PROCESSING	Active	STERICYCLE, INC.	540 Rivergate Drive	Memphis	Shelby	JUL-12-1990
13 North 2Nd Street Incinerator	SWP790001036	PROCESSING	Active	CITY OF MEMPHIS	2401 North Second Street	Memphis	Shelby	DEC-03-1990
14 Earth Complex City of Memphis	SWP790001168	PROCESSING	Active	CITY OF MEMPHIS	2389 Hennington Avenue	Memphis	Shelby	SEP-13-1994
15 Blaylock & Brown Construction	SWP790001178	PROCESSING	Active	BLAYLOCK & BROWN CONSTRUCTION	10636 Shelton Road	Collierville	Shelby	MAY-03-1994
16 North Shelby Solidification Facility	SWP790001358	PROCESSING	Active	BFI WASTE SYSTEMS OF NORTH AMERICA LLC	7111 Old Millington Rd	Millington	Shelby	MAY-05-2003
17 City Of Bartlett Solid Waste Complex-Incinerator	SWP790001402	PROCESSING	Active	CITY OF BARTLETT	5250 Shelter Run Lane	Bartlett	Shelby	NOV-21-2006
18 Aftermath Services LLC - TN	TRF790001504	TRANSFER	Active	Aftermath Services LLC	3086 Summer Avenue	Memphis	Shelby	JUL-23-2015
19 Trilogy MedWaste Southeast - Memphis TN	TRF790001539	TRANSFER	Active	MedSafe Waste, LLC	5565 E. Raines Road	Memphis	Shelby	JUN-30-2017
20 Medical Waste Services, LLC	TRF790001543	TRANSFER	Active	Medical Waste Services, LLC	129 W. Trigg Avenue	Memphis	Shelby	JUN-22-2017
21 Bellevue Transfer Station	TRF790000099	TRANSFER	Active	CITY OF MEMPHIS	1500 North Bellevue	Memphis	Shelby	JAN-01-1973
22 Collierville Transfer Station	TRF790000231	TRANSFER	Active	TOWN OF COLLIERVILLE	450 East South Street	Collierville	Shelby	JUL-12-1990
23 Waste Connections Of Tenn.Inc. Transfer Station	TRF790001022	TRANSFER	Active	WASTE CONNECTIONS OF TENNESSEE, INC.	621 East Brooks Road	Memphis	Shelby	OCT-29-1990
24 Scott Street Transfer Station	TRF790001024	TRANSFER	Active	CITY OF MEMPHIS	309 Scott St.	Memphis	Shelby	OCT-29-1990
25 Waste Management Of Tennessee Transfer Station	TRF790001072	TRANSFER	Active	WASTE MANAGEMENT INC. OF TENNESSEE	3750 Hatcher Circle	Memphis	Shelby	JUL-03-1991
26 Liberty Tire Recycling, LLC	TRF790001397	TRANSFER	Active	Liberty Tire Recycling, LLC	3000 Elvis Presley Blvd	Memphis	Shelby	SEP-26-2006
27 City Of Bartlett Solid Waste Complex	TRF790001400	TRANSFER	Active	CITY OF BARTLETT	5250 Shelter Run Lane	Bartlett	Shelby	AUG-30-2006
28 City Of Memphis Farrisview Transfer Station	TRF790001403	TRANSFER	Active	CITY OF MEMPHIS	3211 Farrisview Blvd.	Memphis	Shelby	NOV-09-2006

Source:

https://www.tn.gov/environment/program-areas/solid-waste/maps.html

CLASS I disposal facility accepts non-hazardous municipal solid wastes such as household wastes, approved special wastes, and commercial wastes.

CLASS II disposal facility accepts non-hazardous industrial wastes, commercial wastes and fill.

CLASS III disposal facility accepts Class IV wastes plus landscaping, land clearing and farming wastes.

CLASS IV disposal facility accepts construction/demolition wastes, shredded tires and waste with similar characteristics.

AGENDA ITEM:

CASE NUMBER: ZTA 18-001 L.U.C.B. MEETING: April 12, 2018

APPLICANT: Memphis and Shelby County Office of Planning and Development

REPRESENTATIVE: Josh Whitehead, Planning Director/Administrator

REQUEST: Adopt Amendments to the Memphis and Shelby County

Unified Development Code

EXECUTIVE SUMMARY

- 1. Items 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16 and 19 are relatively minor in nature and further explained in this staff report.
- 2. Item 1 will require construction debris landfills in the Heavy Industrial zoning districts to obtain a Special Use Permit from the Memphis City Council or Shelby County Board of Commissioners rather than be permitted by right. It will also require a 500-foot separation between landfills and schools and parks.
- 3. Item 4 will require a public hearing for any change in the controlling interest in ownership of a used car lot that has received a Special Use Permit from the Memphis City Council or Shelby County Board of Commissioners.
- 4. Item 9 will amend the opening paragraph of the Medical, University and Midtown Overlay Districts to clearly stipulate that the use tables of these districts apply, regardless if there is any new construction.
- 5. Item 14 will require signs to be posted along the portions of a street subject to a Residential Corridor Deletion application.
- 6. Item 17 provides that the Planning Director, rather than the Building Official, shall issue written interpretations of the Zoning Code (the UDC). The latter's focus is primarily on the Building Code.
- 7. Item 18 will allow an up to 10% increase to a building setback to be processed administratively; currently, only *decreases* of up to 10% are permitted.

RECOMMENDATION

Approval

Staff Writer: Josh Whitehead E-mail: josh.whitehead@memphistn.gov

Proposed language is indicated in **bold**, **underline**; deleted language is indicated in strikethrough.

1. 2.5.2 and 2.6.4D(2)(c) (new section): Landfills

During the deliberations for the expansion of a construction debris landfill at the corner of Thomas and Stage in Frayser earlier this year (OPD Case No. PD 17-14 for Memphis Wrecking Co.), the applicant's agent stated he would investigate sites zoned Heavy Industrial in an effort to locate a property that would permit a construction debris landfill "by right" without the need to obtain a zoning entitlement through a public hearing process. This culminated with a public meeting held by the applicant in Hickory Hill where several "by right" sites within that neighborhood were allegedly discussed. This, in turn, resulted in a six-month moratorium passed by both the Memphis City Council and the Shelby County Board of Commissioners that affects any construction debris landfills that would be permitted by right in the Heavy Industrial zoning districts. When the Board of Commissioners passed its version of the moratorium, its members asked for several pieces of information to accompany any ordinance that would be promulgated pursuant to the moratorium. As this zoning text amendment is the ordinance resulting from that moratorium, responses to those inquiries are listed below.

a. History of the Zoning Code.

During its deliberations on the landfill moratorium on January 22, 2018, the Board of Commissioners asked for a history of how the zoning code has treated construction debris landfills over the years. See table below; the 1972 Zoning Code made no distinction between construction debris and sanitary landfills and required a Special Use Permit for both in both industrial zoning districts unless operated by a municipal government. In 1981, the Zoning Code was amended to reflect a new type of landfills, construction debris landfills, and permitted them by right in both industrial zoning districts. This was further changed with the current Zoning Code, which allows construction debris landfills by right in only the Heavy Industrial zoning district.

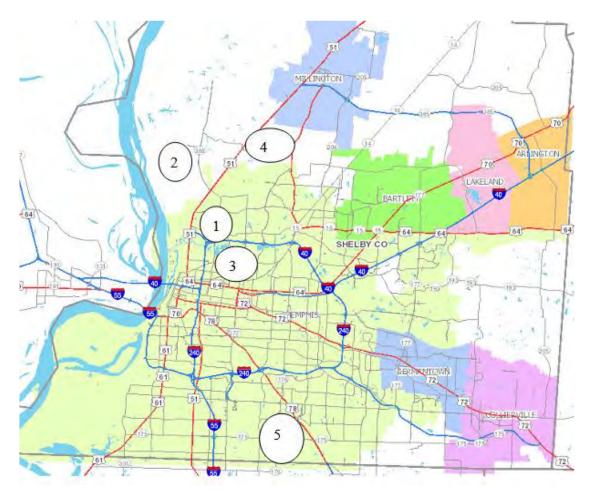
Code	Type of Landfill	Light Industrial Zoning District	Heavy Industrial Zoning District
1972 Code	All Landfills*	Not permitted unless operated by a municipality	Special Use Permit
1981 Code	Construction Debris Landfills	By Right	By Right
1981 Code	Sanitary landfills	Special Use Permit	Special Use Permit
2018 Code	Construction Debris Landfills	Special Use Permit	By Right
2018 Code	Sanitary Landfills	Special Use Permit	Special Use Permit

^{*}The 1972 Zoning Code made no distinction between construction debris landfills and sanitary landfills.

b. Location of Heavy Industrial Zoning Districts

The areas shown in red in the map below indicate the location of the Heavy Industrial zoning district in Memphis and unincorporated Shelby County. The significant vacant parcels within these red areas are as follows:

- i. Woodstock, just south of the Millington City Limits
- ii. Woodstock at Fite Road and US 51
- iii. Cordova, Macon and Berryhill Roads
- iv. Cordova, near and around Fisher Steel Road
- v. Frank Pidgeon Industrial Park



c. Hazardous Waste

The Unified Development Code highlights several hazardous uses that require review under the Special Use Permit process, such as radioactive waste storage, waste incineration and others, but the Tennessee Department of Environment and Conservation (TDEC) is the primary government agency that regulates hazardous waste. TDEC has a tiered system for landfills based on the toxicity of the materials being stored at the landfill.

d. Capacity of Existing Landfills

The map below shows the landfills that fall under the jurisdiction of the Office of Planning and Development, the Unified Development Code, the Memphis City Council and the Shelby County Board of Commissioners. Below is a list of the names of the landfill, as well as the date they are expected to reach capacity.

- 1. Memphis Wrecking Co., Class III: capacity date: ca. 2025
- 2. North Memphis Landfill Fullen Dock, Class III: capacity date: ca. 2030
- 3. Chandler Demolition, Class III: currently only open to Chandler
- 4. Republic (formerly BFI) North Shelby Landfill, Class I capacity date: ca. 2140
- 5. Republic (formerly BFI) South Shelby Landfill, Class I: capacity date: ca. 2055

The recommendation below would be to require a Special Use Permit for construction debris landfills in both the Light and Heavy Industrial zoning districts, which is the current requirement for sanitary landfills under the UDC. This will involve changing the symbol for Construction Debris Landfills in the EMP, Light Industrial, zoning district in the Use Table from a solid box (" \blacksquare ") to a hollow box (" \blacksquare "). This recommendation also proposes to change the use known as "Construction Debris Landfill" to "Construction <u>and Organic</u> Debris Landfill" since both are regulated similarly by the State.

In addition, a new section of the Code is recommended that would mandate a 500-foot separation between all types of landfills and schools and parks, a requirement that the Code currently contains for buffers between landfills and residential areas (which is found in Item 2.6.4D(2)(b)). This would involve the addition of a new Item, 2.6.4D(2)(c), which would read:

2.6.4D(2)(c): Landfill excavation or filling shall not be located within a minimum of 500 feet of any school or park, as measured from the property line of the landfill excavation or filling site to the property line of the school or park.

2. 2.5.2: Other Items related to the Use Table

Sub-Section 2.9.3I and Section 12.3.1 (the definitions section) includes solar farms in the list of items that fall under the definition of "major utilities." However, under the Use Table in Section 2.5.2, solar farms are listed as separate uses and permitted by right in many more districts than major utilities. The following corrective action will address this:

Minor utilities, except as listed below Major utilities, except as listed below

Also, "message therapy" under "retail sales and service" needs to read "massage therapy:"

Hair, nail, tanning, message massage therapy and personal care service, barber shop or beauty salon

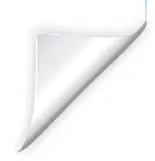
3. 2.6.1 and 12.3.1: Manufactured, Modular and Mobile Homes

Sub-Sections 2.6.1C and 2.6.1D contain use standards related to manufactured, modular and mobile homes. Section 12.3.1 contains definitions of these terms. There is some inconsistency between these three sections, particularly with regards to mobile homes, which are described as structures built after 1976 in Sub-Section 2.6.1D and as structures built before 1976 in Section 12.3.1. The following language addresses this inconsistency:

2.6.1C(8) (new section): See Section 12.3.1 for distinctions between manufactured and modular homes.

12.3.1: MOBILE HOME, CONFORMING: see Sub-Section 2.6.1D.

12.3.1: MOBILE HOME, NONCONFORMING: A structure manufactured before June 15, 1976, that is not constructed in accordance with the National Manufactured Home Construction and Safety Standards Act of 1974, (42 U.S.C. § 5401 et seq.). It is a structure that is transportable in one or more sections that in the traveling mode is eight body feet or more in width and 40 body-feet or more in length, or, when erected on site, is 320 or more square feet and that is built on a chassis and designed to be used as a dwelling with or without a permanent foundation when connected to the required utilities and includes any plumbing, heating, air conditioning and electrical systems contained in the structure.


4. 2.6.3P(3)(h) (new section): Ownership of used car lots

Under the current ordinance, any new car lot requires the issuance of a Special Use Permit outside of the industrial zoning districts. However, one concern that the City Council has expressed during its last few reviews of used car lots is the efficacy of the conditions placed on the Special Use Permit when a change in ownership occurs. The language proposed below would require the approval of a Major Modification for any change in ownership of a used car lot:

ATTACHMENT 6 Historical

PANAMERICAN CONSULTANTS, INC.

PHASE I CULTURAL RESOURCES SURVEY FOR THE MEMPHIS SHELBY COUNTY AIRPORT AUTHORITY HOLMES ROAD ENVIRONMENTAL ASSESSMENT SHELBY COUNTY, TENNESSEE

PREPARED FOR:

ENSAFE, INC. 5724 SUMMER TREES DRIVE MEMPHIS, TENNESSEE 38134 PREPARED BY:

PANAMERICAN CONSULTANTS, INC. 91 TILLMAN STREET MEMPHIS, TENNESSEE 38111

DRAFT REPORT
MAY 2020

DRAFT REPORT

PHASE I CULTURAL RESOURCES SURVEY FOR THE MEMPHIS SHELBY COUNTY AIRPORT AUTHORITY HOLMES ROAD ENVIRONMENTAL ASSESSMENT SHELBY COUNTY, TENNESSEE

Lead Agency:
Federal Aviation Administration

Prepared for:
Ensafe, Inc.
5724 Summer Tree Drive
Memphis, Tennessee 38134

Panamerican Consultants, Inc. 91 Tillman Street Memphis, Tennessee 38111 Panamerican Report No. 40035

C. Andrew Buchner, RPA
Principal Investigator

C Andrew Buchner

MAY 2020

ABSTRACT

At the request of Ensafe, Inc. and the Memphis Shelby County Airport Authority, Panamerican Consultants, Inc. performed a Phase I cultural resources survey of a 244. ac. (98.74 ha, or 0.38125 mi.²) tract located southeast of the intersection of Holmes Road and Swinnea Road. Except for three energy transmission corridors, the property is wooded and the terrain is hilly to rolling, and dissected and typical of the west Tennessee loess region. Review of TDOA records revealed that there are no previously archaeological sites within the tract, but THC has recorded two ca. 1935-1940 one-story plain traditional residences on Swinnea Road within the tract (SY-31708A and SY-31607A). Inspection of various archival sources revealed that the tract was likely not occupied until after Holmes Road and Swinnea Road were constructed ca. 1888-1927, and that at least five residences were once within the tract along these roads. A four-person crew conducted the fieldwork from April 7 to 21, 2020 using shovel testing at 30 m intervals as the primary site detection method. During the course of the survey 937 shovel test locations were documented within the tract, including two positive, 768 negative, and 167 "no-test" locations were planned tests were not excavated due to principally due to slope, water and past disturbances. The survey resulted in the identification of five twentieth-century Historic loci; four former house or farmstead sites and a breached earthen dam. Site forms were completed for these and submitted to the TDOA; however they declined to assign them site numbers (i.e., trinomials).

All five identified cultural resources are recommended as not eligible for the NRHP. As there are no NRHP listed, eligible or potentially eligible properties within the MSCAA Holmes Road tract, no further cultural resources work is recommended.

ACKNOWLEDGEMENTS

Panamerican Consultants, Inc. appreciates the opportunity to have provided the Ensafe, Inc. with our archaeological services. Kristin Lehman, CHMM was the Senior Project Manager.

Panamerican Consultants, Inc. personnel who contributed to the project include the following individuals. Mitch Childress, RPA coordinated the Tennessee Division of Archaeology research. Andrew Saatkamp, RPA served as Field Director, with Alex Derrera, Jacob Mabray, and Savanna Moore being the Archaeological Technicians. Kate Gilow provided administrative support during all phases of the project, and prepared some of the report graphics.

TABLE OF CONTENTS

MANAGEMENT SUMMARY	i
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	vi
LIST OF TABLES	viii
I. INTRODUCTION	1
PROJECT BACKGROUND	
PROJECT LOCATION	1
II. ENVIRONMENTAL SETTING	5
GEOLOGY	5
Soils	5
Drainage	8
Flora	8
Fauna	9
PALEOCLIMATE/VEGETATION	9
Modern Climate	
III. CULTURAL BACKGROUND	11
PREHISTORIC SEQUENCE	11
Paleoindian Period	11
Dalton Period	
Archaic Period	
Poverty Point	
Woodland Period	
Mississippian Period	
Protohistoric Period	
Historic Aboriginal Period	
HISTORIC ERA	17
Colonial Period	
Antebellum Period	
Civil War and Reconstruction	
Tenant Period	
MEMPHIS AIRPORT HISTORY	21
IV. LITERATURE & RECORDS SEARCH	23
ARCHAEOLOGICAL SITES	23
PREVIOUS INVESTIGATIONS	23
Memphis Archaeological and Geological Society	
Memphis State University	
Malfunction Junction Survey	
Nonconnah Creek Basin Reconnaissance	

Nonconnah Creek Survey	25
Hurricane Creek Survey	26
FedEx Burials Discovery	26
Hildebrand House Phase II and III	26
Light Rail Corridor Alternates Analysis	26
Providence Baptist Cemetery Removal	
Holmes Road Survey	27
Tchulahoma Road Survey	27
Shelby & Tchulahoma Cell Tower	27
TVA Emission Control Project Survey	27
TVA Laydown Yards Survey	28
Copart Tract Survey	28
Rosenwald Fund Thematic Study	28
Meltech Survey	28
National Guard Readiness Center Survey	29
Airport Tree Obstruction Survey	29
TENNESSEE HISTORICAL COMMISSION	
NRHP LISTINGS	30
BLM LAND PATENTS	31
CARTOGRAPHIC REVIEW	31
1835 GLO Plat Map	31
1888 W.T. Williamson Map of Shelby County	
1927 Shelby County Commissioner's Map	
1939 Highway and Transportation Map	
1956 County Engineering Department Map of Shelby County	
1961 Bartlett 15-min. Quad	
1965 & 1997 Southeast Memphis 7.5-min. Quads	
1982 & 1996 Pleasant Hill 7.5-min. quad	
1975 Earth Explorer Air Photo	
1990 Earth Explorer Air Photo	
Google Earth Historical Imagery	
SURVEY EXPECTATIONS	
V. FIELD INVESTIGATIONS	43
Methods	43
Objective	
Standard Shovel Test	
Site Sampling/Delineation	
Survey Documentation	
GPS Data Collection	
RESULTS	
Locus 1	
Locus 2	
Locus 3	
Locus 4—THC Structures SY-31607A & SY-31708A	
Locus 5	

DISCUSSION	63
VI. SUMMARY & RECOMMENDATIONS	67
SUMMARY	67
RECOMMENDATIONS	67
VII. REFERENCES CITED	69
APPENDIX A: SHOVEL TEST INVENTORY	

LIST OF FIGURES

Figure 1-01. Quad map locator for the MCSAA Holmes Road study area (2016 Southeast Memphis, TN 7 quad. and 2016 Pleasant Hill, MS-TN 7.5-min. quad)	
Figure 1-02. Google Earth imagery showing the MCSAA Holmes Road study area.	4
Figure 2-01. Project location shown on an ecoregions map of Tennessee (Griffith et al. 2004)	5
Figure 2-02. Soil map for the MSCAA Holmes Road tract	7
Figure 4-01. Previously recorded archaeological sites in Tennessee within 2 km of the study tract (map so Southeast Memphis, TN and Pleasant Hill, MS-TN 7.5-min. quads)	
Figure 4-02. Screen shot of the Tennessee Historical Commission viewer with the MSCAA Holmes Road added.	
Figure 4-03. The 1835 GLO plant map for T1N R7W with the MSCAA Holmes Road tract highlighted in 17 (map courtesy: BLM web page)	
Figure 4-04. A portion of the 1888 W.T. Williamson Map of Shelby County with the MSCAA Holmes Rooverlaid (map courtesy: Library of Congress).	
Figure 4-05. A portion of the 1927 revised 1932 "Map of Shelby County, Tenn." by the Shelby County Commissioner's and engraved by H.V. Patton Co. with the MSCAA Holmes Road tract highlighted courtesy: Memphis Room, Benjamin L. Hooks Central Library)	
Figure 4-06. A portion of the 1939 Tennessee State Highway Department "General Highway and Transpo Map, Shelby County, Tennessee" with the MSCAA Holmes Road tract highlighted (map courtesy: Noom, Benjamin L. Hooks Central Library)	Memphis
Figure 4-07. A portion of the 1956 "Map of Shelby County, Tennessee" prepared by the County Engineer Department with the MSCAA Holmes Road tract highlighted (map courtesy: Memphis Room, Benja Hooks Central Library).	amin L.
Figure 4-08. An enlarged portion of the 1961 Bartlett 15-min. quad with the MSCAA Holmes Road tract highlighted	37
Figure 4-09. An enlarged portion of the 1965 Southeast Memphis, TN 7.5-min. quad with the MSCAA He Road tract highlighted.	
Figure 4-10. An enlarged portion of the 1982 Pleasant Hill, MS-TN 7.5-min. quad with the MSCAA Holr tract highlighted	
Figure 4-11. A portion of the 1975 air photo with the MSCAA Holmes Road tract highlighted	40
Figure 4-12. A portion of the 1990 air photo with the MSCAA Holmes Road tract highlighted	41
Figure 5-01. Aerial image of the MSCAA Holmes Road tract with the shovel tests superimposed	45
Figure 5-02. Identified archaeological loci shown Southeast Memphis, TN 7.5-min. and 2016 Pleasant Hi 7.5-min. quads.	
Figure 5-03. Locus 1 sketch map.	47
Figure 5-04. Photograph of Locus 1, view north across locus (DSCN2567).	48
Figure 5-05. Pile of brick at Locus 1, view north (DSCN2568)	48
Figure 5-06. Locus 2 sketch map.	50
Figure 5-07. Photograph of Locus 2, view east across locus (DSCN2574).	51
Figure 5-08. Chimney fall at Locus 2, view north (DSCN2572)	51
Figure 5-09. Locus 3 sketch map.	53
Figure 5-10. Photograph of Locus 3, view north-northeast across locus (DSCN2580).	54
Figure 5-11. Concrete pile at Locus 3, view southeast (DSCN2579)	54

Figure 5-12. Locus 4 sketch map.	56
Figure 5-13. Locus 4 foundation and free standing chimney, view southwest (DSCN2594).	57
Figure 5-14. Locus 4 southeast corner of foundation, view southwest (P409641)	57
Figure 5-15. Flagstone veneer on south portion of the foundation, view northwest (DSCN2592)	58
Figure 5-16. An example of the corrugated metal roofing found scattered across the MSCAA Holmes Road tract (DSCN2586)	
Figure 5-17. Locus 5 sketch map.	61
Figure 5-18. Photograph of Locus 5, view south (DSCN2614).	62
Figure 5-19. Locus 5, view southeast (DSCN2613).	62
Figure 5-20. Texas Gas corridor, view northeast toward Holmes Road (P4094663)	64
Figure 5-21. MLGW high-voltage corridor, view east (P4094679).	64
Figure 5-22. Valero petroleum corridor, view south (P4094678).	65

LIST OF TABLES

Table 2-01.	Soils represented within the study tract.	6
	Antebellum Census Data for Shelby and Fayette counties.	
Table 4-01.	Previously recorded archaeological sites within a 2-km radius.	.23
Table 5-01.	Locus 4 artifact recovery.	.59

I. INTRODUCTION

At the request of Ensafe, Inc. and the Memphis Shelby County Airport Authority (MSCAA), Panamerican Consultants, Inc. (Panamerican) performed a Phase I cultural resources survey of a 244. ac. tract located southeast of the intersection of Holmes Road and Swinnea Road. The purpose of the survey was to identify any archaeological sites or historic properties that are listed on, eligible for, or potentially eligible for the National Register of Historic Places (NRHP) present within the area of potential effect (APE), and to provide appropriate management recommendations for any such resources identified.

The fieldwork was conducted from April 7 to 21, 2020 under the direction of Andrew Saatkamp, RPA with a crew of three Archaeological Technicians including Alex Derrera, Jacob Mabray, and Savanna Moore. The principal field method consisted of shovel testing at 30 m intervals.

PROJECT BACKGROUND

The MSCAA proposes to conduct site preparations within a 244 ac. tract located southeast of the intersection of Holmes Road and Swinnea Road in southeast Memphis. The tract will be prepared for potential future lease to a distribution warehouse or a light industrial tenant.

PROJECT LOCATION

The study tract is a rectangular 244 ac. (98.74 ha, or 0.38125 mi.²) wooded parcel located 1.6 km south of Runway 36 R at the Memphis International Airport. The tract is bounded by Holmes Road on the north, Swinnea Road on the west, the Tennessee-Mississippi state line on the south, and a half section line within Section 17 Township 1 South Range 7 West (T1S R7W) of the Chickasaw Meridian on the east. The tract can be identified on the Southeast Memphis, TN 7.5-min. quad (409 SE) and the Pleasant Hill, MS-TN 7.5-min. quad (Figure 1-01).

Except for three energy transmission corridors, the property is wooded, and the terrain is hilly and dissected with elevations ranging from 390 ft. to <350 ft. (Figure 1-02). An open 100 ft. wide Texas Gas pipeline corridor bisects the northern portion of the tract. An open 200 ft. wide MLGW corridor containing two electrical high-volume transmission lines and a 24-in. natural gas pipeline bisects the southern portion of the tract. An open 50 ft. wide Valero petroleum pipeline corridor is located on the western edge of the tract; it is adjacent to and parallel to Swinnea Road. Drainage is principally to the northeast via Hurricane Creek, but the southwestern corner of the tract is drained by a tributary of Rocky Creek.

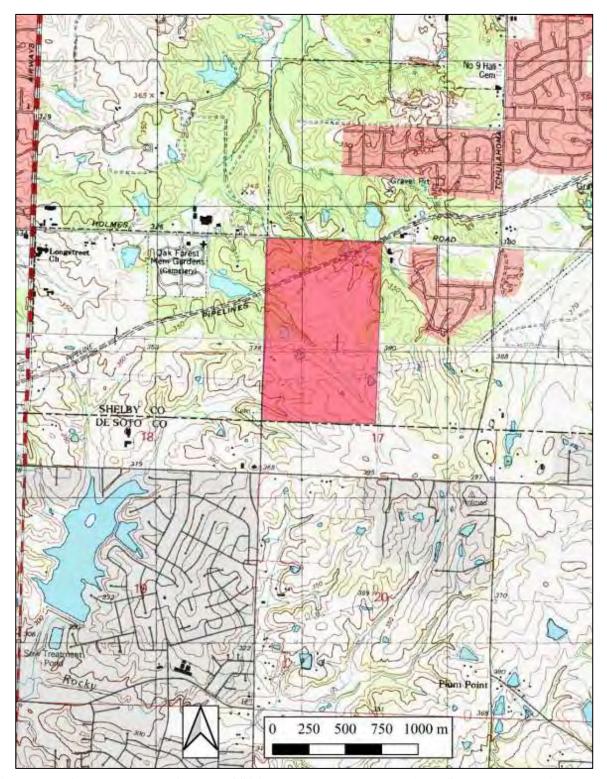


Figure 1-01. Quad map locator for the MCSAA Holmes Road study area (2016 Southeast Memphis, TN 7.5-min. quad. and 2016 Pleasant Hill, MS-TN 7.5-min. quad).

Figure 1-02. Google Earth imagery showing the MCSAA Holmes Road study area.

II. ENVIRONMENTAL SETTING

GEOLOGY

The project area is located on the western Tennessee loess sheet. Stearns (1975) refers to the loess sheet as the West Tennessee Plain, and views it as a subregion of the Gulf Coastal Plain physiographic province (Fenneman 1938). A more recent ecoregion map refers to this area as the Loess Plains (74b), a Level IV ecoregion within the Mississippi Valley Loess Plains (a Level III ecoregion; Griffith et al. 2004; Figure 2-01). The Loess Plains cover 4,023 mi. in Tennessee, and the topography consists of level to gently rolling terrain that is the result of sequential deposition and erosion of Pleistocene (Late Wisconsin) loess. Wide, flat bottomlands and floodplains are present within the Loess Plains and they harbor low gradient silt and sand bottomed steams; most of which have been channelized.

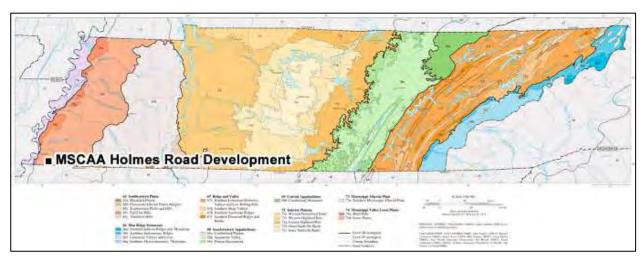


Figure 2-01. Project location shown on an ecoregions map of Tennessee (Griffith et al. 2004).

The loess deposit is thickest (24 m) along the Mississippi River—this is the reason for the various Chickasaw bluffs—and it thins to the east (Stearns 1975). Well logs from the Memphis Defense Depot reveal that the loess ranges 7.0–10.1 m thick in this area (Law Environmental 1990). Geologic studies of the loess sediments along Nonconnah Creek reveal that the loess is stratigraphically equivalent to the Late Wisconsin Peoria loess of the Upper Mississippi Valley (Cowell 1977). Remains of American mastodon and other now-extinct Late Pleistocene megafauna have been discovered deeply buried within Memphis's loess (Corgan and Breitburg 1996). Brister et al. (1981) date one such find on Nonconnah Creek to 17,000–23,000 years before present (YBP).

Soils

There are two major soil regions in Shelby County. The majority of the county, including the project area, is associated with "Soils of the Loess Region" which include alfisols, entisols, and ultisols (Springer and Elder 1980:19). The soils in Loess Region are silty and fertile, and support some of the largest acreage of cropland in Tennessee (Springer and Elder 1980:19). However, these soils are prone to erosion if not managed carefully, and can result in gullied land and stream head cutting.

Examination of the "General Soil Map of Shelby County, Tennessee" (Sease et al. 1989) reveals the study tract lies within the Memphis-Grenada-Loring soil association. This association is described

as "nearly level to sloping, well drained and moderately well drained, silty soils on broad uplands" (Sease et al. 1989:7).

More specifically, review of soil survey maps (Sease et al. 1989:Sheet 86) reveals the study tract contains nine soil types or phases, as well as gullied land and water covered areas (Figure 2-02). The extent of these soils within the tract was calculated using the Web Soil Survey area on-line application (Table 2-01). Loring silt loam is the most extensive soil type within the APE (31.0 percent), and including four other phases of Loring soils that are represented within the tract, the Loring series covers 50.5 percent of the tract. Loring series soils formed in loess, and are deep, moderately well drained and exhibit a fragipan (Sease et al. 1989:25).

Soil Type		Capability Unit	Percent of APE
Collins silt loam, 0 to 2 percent slopes, occasionally flooded, brief duration		IIw-2	10.6%
Falaya silt loam		IIw-1	8.2%
Grenada complex, 5 to 12 percent slopes, eroded		VIe-2	15.1%
Gullied land silty (udorthent)		None	9.6%
Loring silt loam, 2 to 5 percent slopes		IIe-1	31.9%
Loring silt loam, 5 to 8 percent slopes, eroded		IIIe-1	3.5%
Loring silt loam, 8 to 12 percent slopes		IVe-1	0.7%
Loring silt loam, 8 to 12 percent slopes, eroded		IVe-1	4.6%
Loring silt loam, 5 to 12 percent slopes, severely eroded		VIe-1	9.8%
Memphis silt loam, 2 to 5 percent slopes, moderately eroded		IIIe-1	1.9%
Water		None	4.0%

Table 2-01. Soils represented within the study tract.

The Grenada series is represented by only one soil type (Grenada complex, 5 to 12 percent slopes, eroded), however it ranks second in extent across the tract (15.1 percent). Grenada series soils are moderately well drained, silty soils with a fragipan, and formed in loess >4 ft. thick (Sease et al. 1989:17).

The third best represented soil, Collins series (10.6 percent), are deep, level, moderately well drained and silty, and are first bottoms of streams (Sease et al. 1989:14). They formed in silt loam sediments washed from adjacent loess hills.

Falaya series rank fourth (8.2 percent), and are poorly drained silty soils on bottoms. Memphis series, which are poorly represented in this tract, are similar to Loring soils, although they so not exhibit a fragipan.

Note that five of the soil type-phases listed in Table 2-01 are characterized as eroded to severely eroded. These soils are unlikely to contain significant archaeological deposits, because the surface soil horizon has been carried away by erosion.

Because soils are indicators of past environments, soil types and/or phases can be used to predict a given tract's potential for containing archaeological deposits. The Natural Resources Conservation Service's "Capability Unit/Class" classification is a measure of the limitations of each soil type that can restrict its use. These Capability Unit/Class can be used by archeologists as indicators of the potential that a given soil type has for containing an archaeological deposit, because soils with few limitations are more likely to yield evidence of human occupation than soils with moderate or severe limitations.

Figure 2-02. Soil map for the MSCAA Holmes Road tract.

From an archaeological standpoint, Capability Units/Classes are evaluated as followed:

- Unit/Class I soils have few limitations that restrict their use, and are considered to have a high probability of containing archaeological resources.
- Unit/Class II soils have moderate limitations, and are considered to have a moderate probability of containing archaeological resources.
- Unit/Class III and IV soils have severe limitations, and are considered to have a low probability of containing archaeological resources.
- Unit/Class V through VIII soils have very severe limitations, and are considered to have little to no probability of containing archaeological resources.

A total of 50.7 percent of the APE is composed of Capability Unit II soils and has a moderate probability of containing archaeological resources; however 10.6 percent of this is associated with Collins silt loam, 0 to 2 percent slopes, occasionally flooded. Class III and IV soils form 10.7 percent of the project area, and Class VI soils form 24.9 percent of the project area. The latter, which combined cover 36.6 percent of the tract, are considered low probability settings.

DRAINAGE

The MSCAA Holmes Road tract is located on a local drainage divide. The principal drainage within the tract is Hurricane Creek, which flows northeasterly. It is a short feeder stream—the study tract is essentially at its headwaters—that empties into Nonconnah Creek about 7 km to the northeast.

Nonconnah Creek is one of the three major tributaries of the Mississippi River in Shelby County (the others being the Wolf and Loosahatchie rivers). The Nonconnah Creek Watershed is located in northwest Mississippi and southwest Tennessee. Nonconnah Creek flows for approximately 56 km (35 mi.) from its headwaters in Marshall County, Mississippi to its mouth at McKellar Lake in Shelby County, Tennessee.

The southwestern portion of the tract drained by a southwesterly flowing unnamed tributary that feeds into Rocky Creek in De Soto County, Mississippi. Rocky Creek flows west then northwest, emptying into Horn Lake Creek in Shelby County, Tennessee. Horn Lake Creek was a tributary of the Mississippi River, but its hydrogeology is highly modified.

FLORA

Shelby County is part of the Mississippi Embayment Section of the Western Mesophytic Forest Region as described by Braun (1964:157), and the Tulip-Oak Forest as described by Shelford (1974:35). Oak and Oak-Hickory floral communities predominate in this region along stream and river terraces, with swamp forest species predominating along low-lying floodplain areas. However, much of the modern landscape is so modified that the flora is in no way reflective of a natural setting. Floral species within the former Oak and Oak-Hickory communities include white oak (Quercus alba), southern red oak (Quercus falcata), hickory (Carya sp.), and tuliptree (*Liriodendron tulipifera*) at higher elevations, with beech (*Fagus grandifolia*), sugar maple (*Acer* saccharum), and bald cypress (Taxodium distichum) occurring at only very low elevations such as those immediately abutting local drainages. Undergrowth in these communities is characteristically sparse, with dogwood (*Cornus florida*), winged elm (*Ulmus alata*), persimmon (Diospyros virginiana), sassafras (Sassafras albidium), mulberry (Morus sp.), white ash (Fraxinus americana), and holly (Ilex sp.) accounting for the majority of species (Braun 1964:157). In particular, mast-producing species such as the various oaks and hickories represented an important subsistence resource for humans occupying this region.

FAUNA

Faunal species occupying these communities include large mammals such as the white-tailed deer (*Odocoileus virginianus*) and black bear (*Ursus americanus*); smaller mammals such as opossum (*Didelphis marsupialis*), raccoon (*Procyon lotor*), rabbit (*Syvilagus* sp.), beaver (*Casor canadensis*), otter (*Lutra canadensis*), and squirrel (*Sciurus* sp.); and large terrestrial birds including wild turkey (*Meleagris gallapavo*). Migratory waterfowl such as ducks (*Anas* sp.) and geese (*Branta* sp.) undoubtedly also frequented these communities on a seasonal basis. Riverine species within these communities would have included fish species such as bass (*Micropterus* sp.), catfish (*Ictalurus* sp.), sunfish (*Lepomis* sp.), drum (*Aplodinotus grunniens*), and gar (*Leisosteus* sp.). All the faunal species described immediately above would have offered important subsistence resources for humans occupying the area during prehistoric and historic times.

PALEOCLIMATE/VEGETATION

Paleoenvironmental conditions were substantially different in the late Pleistocene through the middle Holocene. Delcourt et al. (1999) have synthesized current data and mapped vegetation reconstructions for the Central Mississippi Valley. The discussion that follows is drawn from this summary. During the Late Wisconsin full-glacial interval (18,000 YBP) the central Mississippi River valley was covered by boreal forest communities and a Spruce-Willow Forest was on the valley train surfaces that were fed by glacial meltwater from the Ohio River. Post-glacial warming caused jack pine population to collapse about 14,000 YBP, but the area east of Crowley's Ridge remained a Spruce-Willow Forest. By 12,000 YBP warming temperatures lead to an expansion of Oak-Hickory Forest on abandoned braided steam terraces and the Spruce-Willow Forest became more restricted as the active channel of the Ohio River shifted east.

By 10,000 YBP "the vegetation had become temperate to warm temperate in character" (Delcourt et al. 1999:25). Sweetgum-Elm Forest and Willow-Cane Forest developed along and near the now-meandering Mississippi River, while the Oak-Hickory Forest continued to expand on abandoned braided stream terraces.

At 8,000 YBP the effects of a warm and dry interval referred to as the Hypsithermal begin to be seen in the pollen record. Drought-tolerant species expanded and the Oak-Hickory Forest that formerly covered the valley train to the west of the project area developed into an Oak-Hickory Savannah. However, along and near the Mississippi River, Sweetgum-Elm Forest and Willow-Cane Forest remained and Cypress-Tupelo Forest expanded in the backswamps.

Regionally, the Hypsithermal was most strongly felt around 6,000 YBP and the arid conditions continued until after 4,000 YBP (Delcourt et al. 1999). McNutt (1996) suggests that during 7,500–5,500 YBP the strongest cultural impacts of the Hypsithermal were felt. Willow-Cane Forest and Cypress-Tupelo Forest became "confined to the easternmost portion of the Eastern Lowlands along a relatively narrow meander belt" that would have included the Barnes Ridge area (Delcourt et al. 1999:26). Within the backswamps, mesic lowland forest probably expanded into Cypress-Tupelo Forests because of dropping water tables.

Modern floristic regions developed between 4,000 and 3,000 YBP with a return to wetter conditions. The Sweetgum-Elm Forest re-expanded along drainages and Willow-Cane Forest "occupied a broadening and shifting Mississippi meander belt" (Delcourt et al. 1999:27). Changes in the locations of Willow-Cane, Sweetgum-Elm and Cypress-Tupelo Forests became dependent on shifts in channel morphology.

In discussing the 1,000 YBP environment, Delcourt et al. (1999) note that portions of the Eastern Lowlands would have been covered by Ragweed-Grass Old Field vegetation. This refers to "anthropogenically disturbed landscapes" (Delcourt et al. 1999:28), such as Native American

(Mississippian period) cornfields with early secessional grassland and thickets for cover. Delcourt et al. (1999:28) state, the "paleoecological 'signature' of cultural impact is characterized by occurrence of pollen grains of cereals such as maize; weedy herbs including ragweed, chenopods, and grasses; and spores of old-field ferns, such as bracken."

MODERN CLIMATE

Shelby County's climate is typical of the central Mississippi River valley, with hot summers and mild winters and abundant rainfall. The average annual temperature in Memphis is 62° F, although extremes of 106° F and -11° F were recorded during 1931–1960 (Sease et al. 1989:2). The growing season is long (238 days), extending from late March to mid-November (Sease et al. 1989:3). July is the warmest month, with daily average maximum and minimum temperatures of 92.1° F and 71.5°. January is the coldest month, with daily average maximum and minimum temperatures of 50.6° F and 33.4° (Sease et al. 1989:Table 1).

Rainfall amounts vary throughout the county, with differences of up to 2 in. per annum recorded between the western and eastern portions (Sease et al. 1989:2). The average precipitation per annum is 49.73 in. (Sease et al. 1989:Table 1). Precipitation is normally heaviest during the winter and early spring months, with January, on average, having 6.07 in. (Sease et al. 1989:Table 1). Fall is the driest season and October, with an average of 2.72 in. of precipitation, is the driest month (Sease et al. 1989:Table 1).

III. CULTURAL BACKGROUND

The following is a summary of the prehistoric and historic cultural sequence of western Tennessee. Each of these periods is defined by characteristic artifact assemblages and patterns of subsistence and settlement. The prehistoric period in the southeastern U.S. is traditionally divided into four major periods: Paleoindian, Archaic, Woodland, and Mississippian.

PREHISTORIC SEQUENCE

PALEOINDIAN PERIOD

Paleoindian occupations represent the first well-accepted occurrence of humans in the Western Hemisphere. These populations are generally thought of as highly adaptive, mobile huntergatherers whose recent ancestors were Upper Paleolithic Siberians who migrated across the present Bering Strait during the Late Pleistocene, when sea levels were ca. 60 m lower. During the Late Glacial era, when initial human colonization of the Southeast is postulated (ca. 11,000–8000 B.C.), climatic changes followed the receding of the continental ice sheets, and there was a widespread extinction of megafauna. The environment at this time is usually interpreted to have been spruce and/or pine-dominated boreal forest (Saucier 1978).

Research on Paleoindian diagnostics (Anderson et al. 1990) indicates that the period may be subdivided into Early (ca. 9500–9000 B.C.), Middle (ca. 9000–8500 B.C.), and Late (ca. 8500–8000 B.C.) stages, based on changes in hafted biface morphology. No radiocarbon dates are available to confirm independently the accuracy of the subdivision.

Aboriginal groups of the period were likely small, mobile bands dependent upon a hunting-and-gathering economy. Although they may have hunted some of the megafauna that became extinct at the end of the Pleistocene, such as mastodon (*Mammut americanum*), bison (*Bison bison antiquus*), and ground sloth (*Megalonyx* sp.), it is likely that the subsistence base was varied and included a number of plant and animal foods. One of the nearest firm associations of a fluted point with mastodon remains is well north of western Tennessee at the Kimmswick bone bed in Missouri (Graham et al. 1981), although a possible association at Mississippi River Island No. 35 to the south should be noted as well (S. Williams 1957). No artifacts are associated with the Nonconnah Creek Mastodon find (Brister et al. 1981).

DALTON PERIOD

The Dalton period is considered a transitional phase between the Paleoindian and Archaic traditions. The key distinguishing feature of the material culture is the unfluted, serrated Dalton point, but the Dalton tool kit includes a number of other diagnostic special-function tools and a woodworking adz (Morse and Morse 1983, 1996). Dalton points recovered from a Forked Deer River context are noted by G.P. Smith (1996:101) as being long, thin forms with only a minimal amount of constriction in the hafting area. Goodyear (1982) suggests that Dalton represents a distinct temporal horizon dating to 8500–7900 B.C. While technologically similar to Paleoindian, Dalton assemblages suggest an adaptive pattern more akin to later Archaic cultures. One of the most important game species from this time to the contact era seems to have been the white-tailed deer (Morse and Morse 1983:71). During the Dalton period, the Mississippi River meander system was established in the lower valley and was working northward, but a braided stream regime still existed.

Dalton components are better represented in northwestern Tennessee than are the preceding Early and Middle Paleoindian diagnostics, although much is yet to be learned about this temporal period. Mainfort (1996a:80) notes that the only two examples of Dalton components recovered

from the Reelfoot Basin of extreme northwestern Tennessee were collected from predominantly Mississippian-component sites. Sites 40OB123 and 40OB127, approximately 1 mi. apart, have yielded one Dalton artifact each. Mainfort (1996a) further notes that a "fairly large Dalton site" has been reported by a local collector in the Reelfoot area, although the location of that site has yet to be determined. In Fayette County, G.P. Smith (1996:101) notes the presence of a Dalton component in a relatively shallow context at 40FY13.

In the 1960s the Ford-Redfield survey project identified a concentration of Dalton components in northeastern Arkansas (Redfield 1971; Redfield and Moselage 1970). Important sites such as Brand (Goodyear 1974), Sloan (Morse 1975, 1997), and Lace (Morse and Morse 1983) produced evidence for some of the oldest cemeteries in the New World and revealed other features interpreted as living floors and shelter remains. The distribution of sites and site types along the major drainages has also led to the formulation of competing settlement-pattern models for bandlevel societies (Morse 1975, 1977; Price and Krakker 1975; Schiffer 1975), which have been succinctly commented upon by McNutt (1996:191–192).

ARCHAIC PERIOD

The Archaic is usually thought of in terms of three subperiods: Early (ca. 8000–5000 B.C.), Middle (5000–3000 B.C.), and Late (3000–1500 B.C.). Temporal divisions of the Archaic are primarily based on the occurrence of distinctive projectile points. Throughout Archaic times a hunter-gatherer lifeway appears to have continued, and it was focused on essentially the same flora and fauna as represented in the natural environment today. The Archaic is perceived as a time of regional "settling in," when an efficient utilization of the environment was keyed to highly cyclical, repetitive seasonal activities continued by indigenous groups over thousands of years (Caldwell 1958). Some seasonal movement to exploit econiches was probably required, but Archaic populations, compared to Paleoindian, are generally portrayed as being attached to localities, river valleys, or regions. A total of 31 sites with known or probable Archaic components have been recorded in the Reelfoot Basin of extreme northwestern Tennessee (Mainfort 1996a:80). Additionally, numerous other sites with Archaic components have been recorded in all the major river valleys in western Tennessee (G.P. Smith 1979). Relatively little is known about this temporal period in this area of the Southeast. In the Central Mississippi Valley, virtually no Archaic sites have been excavated, and indeed these components appear to have been overlooked by archaeologists more concerned with ceramic-period adaptations (McNutt 1996:194; S. Williams 1991).

Concerning the Early Archaic period, McNutt (1996:194) notes that "we can see several projectile points coming into the Valley from the west and north, probably in conjunction with the prairie expansion and dry econiches during the Hypsithermal." Point forms considered diagnostic for the Early Archaic include Big Sandy, Hardin, Plevna, and Lost Lake (G.P. Smith 1996:101). For northeastern Arkansas, Morse and Morse (1983) proposed a series of horizon markers that grade from classic Early Archaic Corner-Notched forms (ca. 7500–7000 B.C.) into Middle Archaic Basal Notched forms.

The Middle Archaic period was marked by a shift in subsistence modes. This was possibly due to environmental changes caused by a climatic episode called the Hypsithermal which is dated 7000–3000 B.C. (McNutt 1996) or 8000–4000 B.C. (Morse and Morse 1983). This change resulted in restricted deciduous forest occurrence, limiting the availability of certain floral and faunal resources. The cultural impact of this warming trend appears to have been most strongly felt from 5500–3500 B.C. Several settlement models regarding human adaptation during the climatic optimum have been posited. Morse and Morse (1983) propose that the western lowlands of northeastern Arkansas were largely abandoned for the uplands (Ozark Plateau and its escarpment). However, in the lower Tennessee/Cumberland region, populations appear to have congregated at a limited number of floodplain locations, producing deep middens (Nance

1987). M.J. Higgins (1990) proposed that the drying of the uplands forced people into the floodplain (American Bottom). Cypress Creek II, Eva, and perhaps some side-notched forms are noted as the diagnostic point forms from this temporal period (G.P. Smith 1996:101).

The Late Archaic began at the end of the Hypsithermal climatic episode (ca. 3000 B.C.) and the establishment of the modern climatic regime. The Mississippi River was by then a well-entrenched meander belt-type fluvial system and adapting to this type of environment was critical for human occupation. There is evidence for more sedentary lifeways and possibly limited horticulture was being employed, as sunflower, squash, and other cultivated native starchy seed annuals appear in the archaeobotanical record at this time in the other areas of the Southeast. Late Archaic settlement models typically have a seasonal round aspect, and there is evidence that the substantial "winter" villages, typically located on major streams, were actually occupied year round. Both earthen and shell mounds appear in the archaeological record in the Southeast at this time.

The Late Archaic is characterized by a substantial increase in the number of sites, cultural elaboration, and widespread trade. The period opened with the Benton culture, represented in the diagnostic material record by the Benton projectile point. G.P. Smith (1996:102) notes that two sites in western Tennessee yielded settlement-pattern information regarding Benton culture. Geographical positioning of these sites appears to represent a Benton trend toward the habitation of low stream terraces in western Tennessee. Excavations at 40FY13 and 40GB42 revealed a heavy dependence on mast-bearing species such as the hickory, and 40FY13 further revealed Benton structural remains, interpreted as bent-pole rectilinear to ovate dwellings. Flexed burials at 40GB42 are at present tentatively tied to the Benton component at this site. Subsequent cultures of the Late Archaic in western Tennessee are very poorly understood. Such cultures may be represented by the Bartlett and Macintire, *variety A* projectile points as described by G.P. Smith (1979), although little is known about the Late Archaic cultures that produced these lithic artifacts.

POVERTY POINT

Poverty Point, or Terminal Late Archaic, components are distinguished by the appearance of large mounds, earthworks, clay balls or "Poverty Point Objects," microlithics, lapidary work, raw material trade, and specialized manufacturing sites. The Poverty Point period (1500–500 B.C.) is considered one of three cultural "zeniths" in prehistoric Southeastern studies. In other portions of the Southeast, these components are referred to as Gulf Formational (Walthall 1990 [1980]) and include fiber-tempered ceramics as a diagnostic (Morse and Morse 1983:124). In western Tennessee, fiber-tempered ceramics occur only occasionally in the Nonconnah and Lambert complexes of the Terminal Late Archaic, and most likely represent trade items obtained from groups farther to the south (G.P. Smith 1996:104).

Midden mounds and gathering camps appear in the archaeological record at this time and reflect semi-sedentary populations (McNutt 1996; Morse and Morse 1983). G.P. Smith (1996:104) notes the presence of a Lambert complex component at 40FY13, possibly representing a Terminal Late Archaic mast-collection site. Site 40GB42 yielded similar components, although there they are attributable to the Kenton complex of the Terminal Late Archaic.

Clay balls are thought to have been a substitute for boiling stones and have considerable time depth, apparently extending into the early Middle Woodland; thus they cannot be used as exclusively Poverty Point component markers. A variety of stemmed projectile points are characteristic of the period, including Burkett-Etley-Gary forms, similar to Ledbetter-Pickwick-Mulberry Creek points, and the Weems-Wade-Dyroff-McIntire forms, which lead into the Early Woodland.

G.P. Smith (1979, 1996; G.P. Smith and McNutt 1988) has repeatedly proposed a series of Poverty Point complexes for the interior drainages (loess region) of western Tennessee. The nine complexes he delineates are based primarily on pre-1975 fieldwork. His complexes are spatially discrete and distributed along the terraces of the smaller river bottoms that characterize the region. They are distinguished by variations in baked clay ball and preliminary projectile point types and varieties. The complexes are akin to phases and have been strongly criticized by Mainfort (1994) who remarks "While such a fine-scale typology may be useful, Smith does not demonstrate its value beyond documenting intra-regional variation and even that may be premature considering the fact that most of the data are derived from surface collections" (J.K. Johnson 1993:67).

WOODLAND PERIOD

During the Woodland period, intensification in horticultural methods, construction of earthworks, elaboration of artistic expression, and burial rituals are all thought to be related to the reorganization of social structure. For at least part of the year, a sedentary group was needed to plant, tend, and harvest crops. Sedentism and communal labor efforts promoted territorial circumscription. This period was also characterized by increased variety and use of ceramics. Ceramic types and varieties are thus a primary consideration in interpreting settlement patterns and chronological progression of the Woodland period. Considerable archaeological attention has been focused on these ceramic cultures, and a number of phases and phase sequences have been proposed. However, the reader should be aware that these phase assignments are highly problematic and have received strong criticism in the recent past (Mainfort 1994).

The Early Woodland or Tchula period is viewed by G.P. Smith (1996:104–105) as a continued occupation by the distinct cultural complexes of the previous Poverty Point period. Tchula period diagnostic ceramics, including Tammany Punctated, Cormorant Cord Impressed, Twin Lakes Punctated, and Withers Fabric Impressed, are poorly represented in the archaeological assemblage from western Tennessee and Kentucky (Lewis 1996:51–53; Mainfort 1996a:81–82). According to Mainfort and R.B. Lewis, this poor representation is most likely attributable to the lack of temporally specific research projects aimed at the recovery of data regarding Tchula period occupations.

The most intensively investigated Early Woodland component in western Tennessee is the Fulmer site (40SY527), located on a finger ridge on the margin of the Loosahatchie floodplain near Arlington, Tennessee (Weaver et al. 1996, 1999). Approximately 62 percent of this small, essentially single-component open-habitation site was formally excavated, resulting in detailed data regarding Tchula period site structure. Activity and midden areas in the lee of the prevailing wind around a central hearth were suggested by artifact distributions. Numerous reconstructed vessel sections recovered here revealed that the conoidal bowl/beaker was overwhelmingly the most common vessel form (n=35), followed by medium jars (n=11), large flaring-rim bowls (n=5), and other bowl and jar forms. Fabric impression was the most common surface decoration, but slipped, punctated, and cord-impressed vessels were also manufactured, often with folded rims. Several ¹⁴C samples were dated, but the resulting dates (A.D. 970, 980, 1060, 1520, 1750, and 1780; uncalibrated) were considered invalid (i.e., rejected). Most features at the site were heavily disturbed by tree roots, rodent burrowing, and other processes, including early twentieth-century plowing, and the radiocarbon dates may date these post-depositional disturbances. Comparative review of the regional literature led the authors to suggest that Fulmer was affiliated with the Turkey Ridge phase of the Lake Cormorant Horizon, with a likely occupation ca. 400–100 B.C.

Another important late Tchula period component is a large site within the Reelfoot Basin, the MacDonald High site (40LK44). This site may have originally contained as many as 40 mounds; however, it has now been completely destroyed by agricultural activity (Mainfort 1996a:81–82).

The Middle Woodland period featured elaborate burial ceremonialism and artistic expression, and represents the second major cultural zenith in the prehistoric Southeast. In the Ohio Valley, the Middle Woodland period is referred to in terms of Hopewell, while in the Lower Mississippi Valley this period is characterized as Marksville. Diagnostic ceramics from the Middle Woodland period include sand-tempered ceramics including Marksville Stamped and Marksville Incised (McNutt 1996:213). Two major Marksville sites are located within the Reelfoot Basin of Southwestern Kentucky: the Amberg and Hickman Earthworks, 15FU37 and 15FU39–44 respectively.

The major Middle Woodland site of the region is Pinson Mounds (40MD1). Originally considered to be a Mississippian period site, subsequent archaeological investigations at Pinson (Fischer and McNutt 1962; Mainfort ed. 1980; Morse and Polhemus 1963) have provided ample radiocarbon dating evidence for a Middle Woodland temporal assignment. Site 40MD1 is interpreted as a large Middle Woodland ceremonial center utilized by "relatively small groups of semi-sedentary peoples" (Mainfort 1986) on a seasonal and/or infrequent basis. Middle Woodland settlement-pattern information has also been recovered (Broster and Schneider 1977) from 23 sites in the vicinity of Pinson.

The Late Woodland or Baytown period represents a period of change characterized by a population increase accompanied by decentralization and the continuing adaptation of agriculture to riverine environments (B.D. Smith 1986). Both characteristics of this temporal period may have represented a response to over-exploitation of local resources (McNutt 1996:217). Diagnostic Late Woodland ceramics consist entirely of clay-tempered types including Baytown Plain, Mulberry Creek Cord Marked, and Larto Red Filmed (Phillips 1970). Morse and Morse (1983) note that small, triangular projectile points such as the Hamilton and Madison types are diagnostic of the Late Woodland period and subsequent temporal periods as well. However, the general paucity of lithic artifacts from the Late Woodland may be related to the introduction of the bow and arrow ca. 700 A.D. (Blitz 1988), which may have reduced "the production of stone points to near zero" (Dunnell and Feathers 1991:26).

MISSISSIPPIAN PERIOD

Hallmarks of the Mississippian period include population increase, intensive floodplain settlement, greater emphasis on agricultural activity, earthwork construction on celestial alignments, inter-regional exchange of exotic items, shell-tempered ceramics, and possibly bow warfare. These factors and the development of a distinctive elite iconography are associated with the rise of conscripted, complex sociopolitical systems, which we now refer to as chiefdoms. A complex mosaic of competing chiefdoms dominated the late prehistoric Southeastern political landscape. These chiefdoms were documented by the Spanish explorers at the close of the Mississippian period, which is the final Native American cultural development.

Early Mississippian cultures initiated a shift toward the production of sparse shell-tempered ceramic vessels, construction of rectilinear domestic structures, and a heavy dependence upon maize-based agriculture for subsistence. The distribution of Early or "emergent" Mississippian occupations on the loess sheets of northwestern Tennessee is relatively poorly understood when compared to the remainder of the Central Mississippi Valley, with the exception of the Samburg (40OB1) and Foxhole (40LK10) sites in the Reelfoot Basin. Farther south, however, excavations at the Shelby Forest site (40SY489) revealed a Varney horizon occupation, the earliest cultural horizon in the Mississippian period, characterized by a prevalence of red-filmed ceramics (Varney Red) in the assemblage (McNutt 1988, 2015; McNutt and Fain 1990).

The Middle Mississippian period is characterized by the appearance of palisade-fortified villages, geographically expressed across the landscape in relation to an increasing adaptation to

maize agriculture. Population density, house and storage pit size, vessel forms, and tool types visible in the archaeological assemblage further reflect an adaptation to and concentration upon agrarian subsistence (McNutt 1996:230). Middle Mississippian components in western Tennessee are, once again, poorly understood in comparison to surrounding areas. Two sites in the Reelfoot Basin, 40LK2 and 40LK3, offer the only Middle Mississippian occupational expressions in this portion of the state. Not until traveling much farther south does one encounter evidence of another Middle Mississippian occupation, the Chucalissa site (40SY1), located in extreme southwestern Tennessee.

The Late Mississippian period represents the final prehistoric cultural climax in the Southeastern U.S. and is predominantly characterized by a wide variety of elaborately decorated ceramic vessel types. A large number of Late Mississippian sites have been located and investigated in western Tennessee, although a surprising amount of information has yet to be published regarding these sites (Mainfort 1996b:172). G.P. Smith (1996:112-117) has defined three primary phases of the Late Mississippian period in western Tennessee. Smith's phases include (1) the Walls Phase, located in extreme southwestern Tennessee and northern Mississippi; (2) the Tipton Phase, located in middle western Tennessee; and (3) the Jones Bayou Phase, located immediately north of the Tipton Phase, representing the closest of these three phases to the current project area. Mainfort (1996b) presents the most complete account of this temporal period for western Tennessee to date, although he notes that much work is needed before a complete understanding of the Late Mississippian cultures will be possible. Important Late Mississippian sites in western Tennessee include Sweat, Porter, Jones Bayou, Fullen, Graves Lake, Hatchie, Richardson's Landing, Wilder, Rast, Jeter, and Chucalissa. northwestern Tennessee is relatively devoid of Late Mississippian period sites, a notion that has been addressed by S. Williams (1980, 1990) in his "Vacant Quarter Hypothesis."

PROTOHISTORIC PERIOD

This period is generally considered to have begun with the first appearance of European peoples in the Southeast. The De Soto expedition is thought to have crossed the Mississippi River near Walls, Mississippi, in June 1541, after following an upland trail from their 1540 winter camp with the proto-Chickasaw in northeastern Mississippi (Dye 1993). Sites along the Mississippi River that were occupied after initial European contact have been termed Armorel phase components, and a number of horizon markers are proposed (S. Williams 1980).

Protohistoric sites in western Tennessee (A.D. 1541–1650) produce low frequencies of European trade goods (rarely Spanish, more typically French beads and brass) in association with Late Mississippian artifact types, including quantities of the ceramic type Campbell Appliqué (Mainfort 1996b:179). Protohistoric components are relatively infrequent in comparison to southeastern Missouri and northeastern Arkansas, and are essentially absent from the interior drainages of the loess sheet. The key sites for this period in western Tennessee, Otto Sharpe and Graves Lake, are both located near the Mississippi River.

HISTORIC ABORIGINAL PERIOD

Terming seventeenth-century aboriginal occupations as "historic" versus "protohistoric" is a rather arbitrary division, as by this point Native American culture had irreversibly changed from pre-European contact lifeways. Western Tennessee is noteworthy for its general absence of historic aboriginal tribes, although the Chickasaw claimed the region as a hunting ground (Satz 1979:11).

The Chickasaw were a Muskogean group that occupied the northeastern portion of Mississippi "between the heads of the Tombigbee and Tallahatchie Rivers" (Swanton 1946:116). The De Soto expedition is believed to have encountered the Chickasaw in 1540. During the late seventeenth-century they were armed by English traders, and became aligned with British

interests. Their population ca. 1700 is estimated to have been 3,000–5,000 (Swanton 1946:119). Chickasaw slave raiding parties "were responsible for much of the disturbance along the lower Mississippi" during the colonial period (Swanton 1946:117).

The Chickasaw claimed territory far to north of Mississippi as hunting grounds (including the Memphis area), and in a 1786 treaty their northern boundary was fixed at the Ohio River. Increasing pressure from American settlers lead to a series of treaties (land cessions) during the early nineteenth century that culminated in 1832 with the Treaty of Pontotoc. The actual removal of the Chickasaws from Mississippi "extended from 1837 to 1847" and they settled on Choctaw lands Indian Territory (Oklahoma; Swanton 1946:118). In 1855 they were granted their own land within Indian Territory (Yenne 1986:40).

Galloway (1995:267) laments, "only limited archaeological excavation has been conducted on Chickasaw sites in the vicinity of Tupelo, Mississippi". One of the more spectacular amateur finds made in the vicinity of Tupelo was the 1956 discovery of a Chickasaw burial that is interpreted as the remains of Pomingo (Atkinson 2000). This elaborate burial contained a silver Washington Peace Medal; silver arm and wrist bands; a silver cross; two silver gorgets; a flintlock rifle; and various other European trade goods.

HISTORIC ERA

COLONIAL PERIOD

In the waning sixteenth and seventeenth centuries, more or less continuous contact was established between European and aboriginal populations. Initial Spanish, French, and English settlements were all located on the coast. The English established Jamestown in 1607, and in 1609 King James I granted a charter to the London Company for a vast region that included present-day western Tennessee. The coastal Virginians armed the local Westo Indians, who proceeded to raid the Muscogee, or Creeks, who lacked firearms (Braund 1993:28). Such direct and indirect European-induced social disruptions, such as introduced disease (Ramenofsky 1987), would characterize the entire Colonial period and lead to shifting allegiances as the European powers struggled for territory and profits in North America.

In 1665, all land south of 36° 30' was granted to the Lord Proprietors of Carolina by King Charles II, including what is present day Tennessee. The English established Charlestown in 1670, and in 1685 Henry Woodward's packtrain traveled overland from Charlestown to the Lower Creek towns, an act that is generally regarded as the formal opening of the English deerskin trade.

In the early eighteenth century, the deer and slave trades continued to expand, as interior aboriginal populations became increasingly dependent on European goods such as flintlock muskets, metal tools, and textiles. Carolina companies "reaped huge benefits as hides and furs from interior tribes soon became the colony's major export" (Braund 1993:29). For example, in the period from 1699 to 1705, Charleston traders shipped an average of 45,000 deerskins annually to London. Above it was noted that in 1701 a group of French Canadian traders ascended the Tennessee River.

While deerskins were the staple exchange, the sale of captive enemies was also profitable, fostering the breakdown of ancient traditions and a profound change in the nature of aboriginal warfare. Western groups such as the Choctaw and disrupted, weak coastal groups became targets for Creek-English slave raids.

During the 1740s tensions between the colonial powers mounted, and alliances with Indians were critical for seizing and holding both territory and deerskin-trading profits. The French launched

raids on the Chickasaw during 1736–1740 in retaliation for the Chickasaw raiding of their shipping (primarily Illinois wheat-laden barges) on the Mississippi River. In 1739, Fort Assumption (now Memphis) was built by the French on the Chickasaw Bluffs in an attempt to curb the Chickasaw. Also at about this time the introduction of significant numbers of Negro slaves began along the coast, supplying the colonists with a more stable and controlled supply of labor.

In 1756, the French and Indian War (Seven Years' War) broke out, partly as a result of French efforts to fortify the Ohio Valley. France was defeated and signed the Treaty of Paris on February 10, 1763, ending the war. However, the English colonists were still forbidden to settle west of the Appalachians. English traders began infiltrating pro-French tribes in Louisiana in the 1770s; for example, in 1773 a Quapaw chief adopted an English trader, and they attended a conference at Pensacola together (Arnold 1991:109).

No significant activity took place in western Tennessee during the American Revolution. The nearest known engagement was the Englishman James Colbert's attack on Arkansas Post with a Chickasaw war party in April 1783 (Arnold 1991:111–112). This action took place well after Cornwallis surrendered at Yorktown (October 1781), essentially forcing the British to abandon the war effort and sign a preliminary peace treaty at Versailles in November 1782. The peace treaty that ended the American Revolution was formally ratified in Paris on September 3, 1783.

After the American Revolution, significant numbers of settlers from North Carolina and Virginia began to migrate over the Blue Ridge Mountains into Tennessee and Kentucky. Tennessee at this time was still part of North Carolina, as specified in the charter issued by the British Crown. In 1785, there were significant tensions between the settlers in the Cumberland and the legislators in North Carolina; a separate assembly was formed, resulting in the birth of the "Lost State" of Franklin (Gerson 1968:36). In 1790, George Washington established the Territory of the U.S. South of the River Ohio, which provided a formal federal separation. In 1796, Tennessee became a state.

ANTEBELLUM PERIOD

The early nineteenth century is better understood and represented in the archaeological record in Middle and East Tennessee, as this is where most settlements were located. In 1812 western Tennessee was rocked by a series of massive earthquakes known as the New Madrid earthquakes (Fuller 1912). The town of New Madrid, Missouri, was destroyed, Reelfoot Lake was formed, and the aftershocks continued for months. After the War of 1812 ended (in 1815) and the British-Creek Confederacy was defeated, immigration increased again.

In 1818, the Jackson Purchase Treaty resulted in the acquisition of western Tennessee from the Chickasaw Indians in Mississippi. Shelby County was created by the Tennessee General Assembly on November 24, 1819. The county is named for Isaac Shelby, one of the Jackson Purchase Treaty commissioners. Neighboring Fayette County was established by the Tennessee Legislature on September 19, 1824, and was named for Marquis de Lafayette, the French general and statesman (Morton 1998). Settlement of the area along the Shelby-Fayette county line began as early as 1820. Memphis, the largest city in Shelby County, was laid out in 1819 and incorporated in 1826.

Early settlements in eastern Shelby County include the following (Davies-Rodgers 1990; Magness 1994; Van West 1998). In 1807, the log house that would later become *Davies Manor* in Brunswick was built. The Davies did not acquire the eventual plantation until 1851, but the "manor" portion had been added to the log house by 1831. In 1825, Frances Wright founded the utopian plantation, *Neshoba*, on 2,000 ac. along the Wolf River; the plantation failed in 1829. In 1826, the Shelby County Court authorized the Memphis to Somerville Stage Road (now US-64).

In 1830, the Morning Sun Post Office was established in the Wash Store, located at the intersection of Seed Tick and Old Stage Coach roads. Around 1835 Stephen Jones, Jr. moved his family from Halifax County, Virginia to Brunswick; a log house built by Stephen's son, Russell, around 1860 still stands today. Also in 1835, Thomas C. Crenshaw built *Mount Airy*, a two-story plantation home southeast of Morning Sun. Other plantations, such as the Eklin family's *Woodlawn* existed in East Shelby County in the 1830s as well.

Historically, the economy of Shelby County outside of Memphis was based on agriculture, in particular cotton and corn production (Morton 1998:303). Large plantations and small farms existed throughout the county, and the adjacent sections of Fayette County. During the Antebellum era, the plantations were worked using slave labor, and the slave population of the county rose steadily during 1830–1860 (Table 3-01). In the early 1800s, the Shelby County population lagged behind that of the neighboring Fayette County. However, the rise of Memphis as an important river port eventually lead to Shelby County becoming one of the most populated areas of the state. On the eve of the Civil War, African-American slaves formed 26 percent of the Shelby County population, while they formed more than 63 percent of Fayette County's total population. The eastern portions of Shelby County (i.e., rural areas outside of Memphis) were more akin to Fayette County.

			·	
Census	Shelby County Total Population	Shelby County Slave Population	Fayette County Total Population	Fayette County Slave Population
1830	5,648	2,049	8,652	3,178
1840	14,721	7,043	21,501	10,885
1850	31,157	14,360	26,719	15,264
1860	48,092	16,953	24,327	15,473

Table 3-01. Antebellum Census Data for Shelby and Fayette counties.

The Ames Plantation, located near LaGrange, has been the focus of historical archaeological research, and 190 archaeological sites are documented o the property (DuVall and Evans 1995; Byrne and Moreland 2007). The Ames Plantation covers >18,000 ac. in Fayette and Hardeman counties, and contains an agricultural complex centered on the nineteenth century Cedar Grove Plantation of John W. Jones Family. During the ante-bellum period the Cedar Grove Plantation covered >2,000 ac. and employed the labor of >240 slaves. Hobart Ames, an industrialist from Massachusetts, purchased the Cedar Grove Plantation in the early twentieth century and then expended the estate.

Railroad development came in the 1850s. The Memphis to Charleston Railroad construction began in 1852 (Magness 1994:213) and by 1853 the tracks reached Moscow. The line was completed in 1857, connecting Memphis directly with the Atlantic Coast for the first time. The Memphis and Ohio Railroad was established through Shelby Depot (renamed Brunswick Depot after 1880; Davies-Rodgers 1990:123). This became part of the Louisville and Nashville (L&N; now Seaboard) Railroad.

CIVIL WAR AND RECONSTRUCTION

Following Lincoln's election, the initial vote for secession failed, but after the war began Tennessee seceded. In 1861–1862, several skirmishes took place along the Mississippi River during the Federal campaign to seize control of the river. New Madrid was captured by Confederate forces under General Pillow in 1861. Island No. 10 was fortified by the Confederates and was the scene of a battle in March 1862 (Daniel and Bock 1996).

Fort Pillow was originally constructed just above the mouth of the Hatchie River by Confederate forces in 1861, but was abandoned and seized by Union forces in June 1862. Also in June 1862, the Federal forces captured Memphis. In April 1864, the Confederate cavalry, under General Forrest, raided Fort Pillow and routed the Union troops. Following the battle for Fort Pillow, sporadic guerrilla activity characterized combat of the latter war years.

During 1992–1993, TDOA conducted a thematic survey to identify Civil War period military sites in western Tennessee (Prouty and Barker 1996). As a result of this survey, 89 sites were identified, and 19 types of archaeological sites were recognized (Prouty and Barker 1996:22). Thirteen Civil War era military sites were identified within Shelby County as a result of this study (40SY5, 40SY515–40SY524, and 40SY532–40SY533), and 18 were identified in Fayette County (40FY214–40SY231). A variety of military sites types are reported in Shelby County, most are associated with the Union Army. The most common site type is "long term encampment" (n=11). The most significant well-preserved Civil War period military sites in Shelby County include Fort Pickering (40SY5) on the Memphis bluffs and Fort Germantown (40SY533) (Prouty and Barker 1996; Smith and Nance 2003).

W.G. Brownlow was selected as the governor by the military occupation forces (Folmsbee et al. 1969:353). He took office in April 1865 and immediately disenfranchised all former Confederates. However, owing to Federal occupation of most of the significantly populated areas of Tennessee (esp. Memphis, Nashville, and Knoxville) for most of the war, Reconstruction was a relatively short affair in Tennessee, ending in 1869.

During Reconstruction railroad construction began to open the interior portions of Western Tennessee. During 1855–1950 communication and transportation became dominated by the railroads. The period is "foremost characterized by a drastic reorganization of non-farming settlement pattern keyed to extremely narrow corridors ..." (Stewart-Abernathy and Watkins 1982:HA18-19). From an archaeological viewpoint the Railroad period is summarized as:

... aside from the increased presence of consumer goods and increased general information level, the Railroad period is reflected by scores of nucleated settlements whose end or beginning date correspond to the coming of the railroad, and by some of the greatest landscape modifications made by people. These modifications take the form of embankments, cuttings, bridges, and support complexes, and exist on an intensive and extensive scale matched only by the construction after 1950 of highways and levees [Stewart-Abernathy and Watkins 1982:HA18-19].

Railroads were critical to the late nineteenth-century development of Memphis as a regional distribution center and transportation hub. Railroad construction boomed after the Civil War, and by 1900 there were 3,131 mi. of track in Tennessee (E.A. Johnson 1998:771). By the 1890s, most of the railroads in Tennessee were consolidated into three major systems: the Southern Railway Security Company (Southern); the L&N; and the Illinois Central (IC).

TENANT PERIOD

The period from 1870–1950 is known as the Tenant period (Stewart-Abernathy and Watkins 1982), and is named for the sharecropping or tenant farm labor system that was a significant characteristic of southern U.S. agriculture after the Civil War. This decentralization of the old plantation system developed during Reconstruction as a means of stabilizing labor relations between former slaves and landowners. M. Prunty (1955) has interpreted tenancy as a postbellum modification of the plantation system.

Tennessee's farm tenancy percentage peaked during 1930–1935 at 46.2 percent, and was higher than the Southern average (Holley 2000:27). The importance of the Tenant farm period in the archaeological record is that it represents the maximum occupation of the study area prior to the

1950s developments. The dispersed settlement pattern of the Tenant period contrasts sharply with the clustered settlement pattern prior to 1865 (Orser and Nekola 1985:68). The Tenant settlement pattern can be observed on 1930s–1940s aerial photographs, with alignments along roads and bayous at regular spacing. Sites dating to this period are numerous, and the issue of these sites' NRHP significance status has generated some commentary (S. Wilson 1990).

The Tenant Farm Activity period is defined as:

...the phase within the history of commercial agriculture in which the rural landscapes dominated by mono-culture are composed of small farms of minimal size operated by white and black renter or sharecropper families. These small farms are tied to the plantation complex and represent a decentralized stage in this development. In this stage the use of capital for the production of a base crop is routed through an extra step consisting of the several families who are responsible for raising the crop. While the direction of capital use and power obviously flows from top to bottom in this stage, the extent to which the tenant family, in fact, exercises control over various of their affairs is problematical, with archaeological implications ranging from source of supply for table ceramics and architectural environment to responsibility for social and physical community patterning and maintenance of ethnic identity [Stewart-Abernathy and Watkins 1982:HA16-HA17].

Stewart-Abernathy (1999:240) has reviewed a number of "intriguing" investigations at Tenant farmsteads in the "delta" area around Memphis that were conducted by contract archaeologists (Buchner 1992; Buchner and Childress 1991; Buchner and Weaver 1990; Childress 1990). Nearly all of this work was CRM investigations funded by the USACE Memphis District. Examination of "Delta" Tenant period archaeological site data has lead to the development of a distinctive "Tenant Period Artifact Pattern" (Buchner 1992), when assemblages are analyzed using South's (1977) functional groups. While some deviations can be observed in the frequency patterns identified based on surface collected assemblages versus excavated assemblages, in general, the pattern is one where Kitchen Group artifacts dominate. Excavated assemblages tend to produce more nails, thus the proportional representation of the Architecture group increases at the expense of the Kitchen Group.

The ceramics are typically cheaper types, often from mismatched sets, and many of these types can be identified following C.R. Price (1979). Mean ceramic dates are often not calculated for these sites due to the long span of whiteware production, as well as problems relating to temporal lag. Garrow et al. (1989:60) note that "South's (1977) mean ceramic date (MCD) formula tends to break down after ca. 1860...the primary reason is that neither manufacturing or popularity date ranges have been firmly established for the post-1860 period." Only trace frequencies of other artifact groups are found (Arms, Clothing, Personal, Furniture, Tobacco), and in small assemblages these minority group types are often not represented.

The cultural deposits at Tenant period sites are typically near surface, often plowzone only contexts, as a result of the buildings being frame structures elevated on brick, concrete, or cypress stump piers. If a house did not have a substantial chimney, it was more likely to be swept away during a flood. Occasionally, tenant sites are multi-component (i.e., co-occur with prehistoric material), this is largely dependent on the natural setting of the site. Many Tenant period sites are located on silty clay backswamp soils that were not suitable for human habitation until after drainage improvements were made.

MEMPHIS AIRPORT HISTORY

The origin of the Memphis airport dates to 1927, when Mayor Watkins Overton created a municipal Airport Planning Commission (Memphis International Airport 2015). The 200 ac. Ward Farm tract, located 7 mi. south of the city was selected, as the open country would allow for growth.

The Memphis Municipal Airport was dedicated on June 14, 1929, and consisted of three hangers and a sod runway (Memphis International Airport 2015). A modern terminal was added in 1938. During World War II the Army assumed control of the airport.

An Airport Planning Commission was created in 1956 to address the need for a new terminal and facilities to meet the demands of the "Jet Age" (Memphis International Airport 2015). Roy Harrover (1928-2016), of the Memphis firm Mann & Harrover, was the architect of the new terminal that was dedicated in 1963. The Memphis airport was among the first airports to make use of jetways and a two-level system, and is particularly noted for its distinctive "martini glass" shaped columns (Connolly 2016). The new facility was re-named the Memphis Metropolitan Airport. In 1969 the name was changed again to Memphis International Airport (MEM), and the Memphis-Shelby County Airport Authority (MSCAA) was created.

In 1973, Federal Express (now FedEx) was established and made Memphis International Airport their headquarters (Memphis International Airport 2015). This lead to extensive expansion of the airport and FedEx's package sorting complex, now known as the "Super Hub." Memphis International Airport was the busiest cargo airport in the world from 1992 to 2009, and is currently the second-busiest cargo airport in the world behind Hong Kong.

The existing Plough Blvd. entrance to the Memphis International Airport was constructed in 1974 (Smith 2009). The road is named for Abe Plough (1892-1984), a legendary Memphis philanthropist who made a fortune in the pharmaceutical industry, after starting the Plough Chemical Company at age sixteen (Lewis 1998).

In 1985, Republic Airlines chose Memphis International Airport as one of its hubs, dramatically boosting commercial passenger service. In 1986, Republic merged with Northwest Airlines, setting into motion a flurry of construction projects as the airport sought to keep up with the resulting increase in traffic and service (Memphis International Airport 2015).

Also in 1986, the authority completed work on a new master plan for continued development, the key elements of which included building a third parallel north-south runway; extending an existing runway to 11,100 ft. to better accommodate nonstop international flights; improving existing terminal concourses; building a new International Arrivals Facility; creating additional parking; and making roadway improvements (Memphis International Airport 2015).

In September 2004, the Airport Authority negotiated a land swap among the Tennessee Air National Guard (TANG) and FedEx. The land swap provided TANG the space it needed to construct new facilities to accommodate the significantly larger C-5 Galaxy aircraft that the Guard were flying as part of its new mission. TANG's relocation to the southeast corner of the airport freed space for FedEx to expand and consolidate their operations on the north end of the airport. TANG dedicated its new facilities in September 2008.

In June 2013, Delta Air Lines announced that it would no longer maintain hub operations in Memphis, and MEM began the transition to becoming an origin and destination airport. (Memphis International Airport 2015). Part of this transition involved recruiting new airlines to serve Memphis.

IV. LITERATURE & RECORDS SEARCH

ARCHAEOLOGICAL SITES

Due to the COVID-19 pandemic, the Tennessee Division of Archaeology (TDOA) facility in Nashville was closed during this investigation. Mitch Childress, RPA e-mailed TDOA Site File Curator Satin B. Platt on 6 April 2020, and subsequently she supplied 11 site forms and a spreadsheet with a list of report references in the study vicinity. Additionally, it should be noted that Panamerican conducted surveys of adjacent tracts in 2016 and 2019 (Buchner and Saatkamp 2019; Buchner and Taylor 2016), and thus we maintain a pre-existing set of records regarding the archaeology of this section of our hometown.

Importantly, Ms. Platt's research revealed that there are no previously recorded archaeological sites located within the MSCAA Holmes Road development. Within a 2-km radius of the development there are 11 previously recorded archaeological sites (Table 4-01; Figure 4-01). The majority are Prehistoric and the bulk of these (n=7) are of undetermined affiliation; the only identified components are Archaic/Woodland and Woodland. The local Prehistoric settlement pattern reveals that most sites occur on higher terrain within about 200 to 400 m of Hurricane Creek; note however that Sites 40SY501—507 occur too far north to be shown on Figure 4-01. The only Historic sites are two farmsteads (40SY762 and 40SY844) and an isolated find at 40SY843. However, note that the Hildebrand House (40SY615), which was the subject of Phase II and III studies funded by the MSCAA, is located just outside the 2 km search radius.

Table 4-01. Previously recorded archaeological sites within a 2-km radius.

Site	Туре	NRHP Status	Date Reported
40SY85	Woodland camp along Hurricane Creek	Undetermined	1963
40SY91	Archaic/Woodland village along Days Creek	Undetermined	1966
40SY307	Lithic scatter along Hurricane Creek	Undetermined	?
40SY501	Lithic scatter along Hurricane Creek	Undetermined	1988
40SY502	Lithic scatter along Hurricane Creek	Undetermined	1988
40SY503	Lithic scatter along Hurricane Creek	Undetermined	1988
40SY506	Lithic scatter along Hurricane Creek	Undetermined	1988
40SY507	Lithic scatter along Hurricane Creek	Undetermined	1988
40SY762	Historic twentieth-century farmstead	Not eligible	2016
40SY843	Low-density lithic scatter and isolated Historic find along Hurricane Creek.	Not eligible	2019
40SY844	Historic late nineteenth to early twentieth-century farmstead	Not eligible	2019

Previous Investigations

The MSCAA Holmes Road tract has not been previously surveyed for archaeological resources. Past archaeological investigations in this section of south Memphis are reviewed below; note that Panamerican conducted six of these studies.

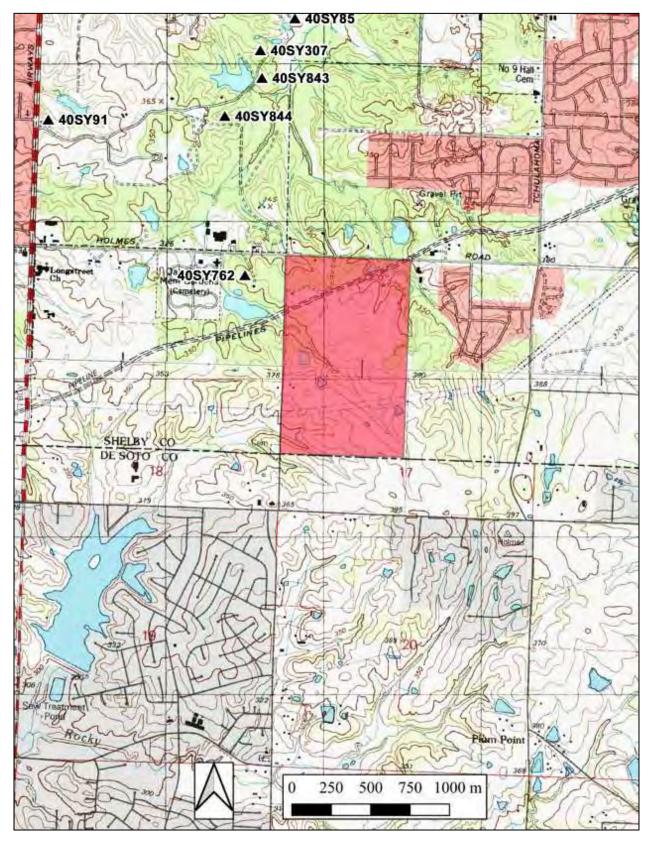


Figure 4-01. Previously recorded archaeological sites in Tennessee within 2 km of the study tract (map sources: Southeast Memphis, TN and Pleasant Hill, MS-TN 7.5-min. quads).

MEMPHIS ARCHAEOLOGICAL AND GEOLOGICAL SOCIETY

The Memphis Archaeological and Geological Society conducted the earliest reported archaeological investigations in this area of Memphis during the 1950s. During this investigation, a 17-mi. reach of Nonconnah Creek from its mouth to the Kirby Road Bridge was examined "either on foot or on bicycle," and 19 prehistoric sites were recorded (Kee et al. 1952:1). These sites are discussed in Kee et al. (1952) using temporary site numbers. Official state site numbers were later assigned to these sites (this was apparently done by archaeologists from Memphis State University [now The University of Memphis] during the 1960s).

Kee et al. (1952:1) remarked that several of the sites they recorded were already "effaced by the earth moving operations of contractors putting up new subdivisions to the East of town; so it can be seen that the efforts...[were] well spent and very much to the point." Today, most, if not all, of the sites along Nonconnah Creek that have been recorded in the early 1950s by the Memphis Archaeological and Geological Society have been destroyed; however, the project is significant for documenting, prior to the bulldozers, that the Nonconnah valley once harbored an abundance of prehistoric Native American sites.

MEMPHIS STATE UNIVERSITY

During the 1960s and early 1970s, archaeologists from Memphis State University (now The University of Memphis) conducted additional reconnaissance level survey work along Nonconnah Creek. During this time, site forms for some of the sites identified by the Memphis Archaeological and Geological Society during the 1950s were completed. Surface inspection was the primary method of site detection, as these investigations were non-intensive and had not been conducted for compliance purposes (i.e., this was research). The site survey forms that were completed (and the accompanying artifact analysis sheets) are the only records that document this effort, since a report had never been prepared. The assemblages from most of the sites identified by the Memphis State University (now the University of Memphis) are curated at Chucalissa Indian Village C.H. Nash Museum. Sites 40SY227—40SY230, located along and near Hurricane Creek, southeast of the airport, were recorded during this period.

MALFUNCTION JUNCTION SURVEY

During 1980, Tennessee Department of Transportation (TDOT) archaeologists assessed the Interstate 240/Interstate 55 (I-240/I-55) Interchange, better known locally as "Malfunction Junction." One previously recorded site (40SY35) in the interchange was not relocated and was reported as destroyed (DuVall 1980).

NONCONNAH CREEK BASIN RECONNAISSANCE

During 1981, Gilbert/Commonwealth conducted an archaeological reconnaissance of selected areas along the Nonconnah Creek Basin for the USACE, Memphis District (Kern 1981). No prehistoric archaeological site was newly recorded during this project, which was largely a literature review.

NONCONNAH CREEK SURVEY

During 1987, Coastal Environments, Inc. conducted a cultural resources survey of Nonconnah Creek from its mouth (McKellar Lake) upstream for 18.2 mi. (Smith and Weinstein 1987). This work was conducted for the USACE, Memphis District, prior to the proposed channel-improvements. The survey relied on visual inspection of the creek banks and the shovel testing of intact portions of the floodplains. No newly recorded archaeological site was identified during this project. Smith and Weinstein (1987) reported that they were unable to relocate most of the previously recorded sites along Nonconnah Creek, because the sites were destroyed by commercial developments and the I-240 construction. The report does have one outstanding

contribution; a detailed synthesis of the prehistoric archaeology of the Nonconnah Creek basin was prepared (Smith and Weinstein 1987:27-67).

HURRICANE CREEK SURVEY

During August 1988, G.P. Smith conducted an archaeological survey along the portion of Hurricane Creek that lies southeast of Memphis International Airport. No report documenting this work could be found on file at the TDOA facility in Nashville, or at the C.H. Nash Museum in Memphis, despite the site survey forms that suggest some type of compliance study was undertaken for the MSCAA. Seven prehistoric sites (40SY501—40SY507) were reported, and all lie within the 2-km search radius for this project (see Table 4-01). All are lithic scatters of undetermined cultural affiliation. The TDOA assigned the site numbers several months after the fieldwork, in March 1989. Sites 40SY501—40SY507 were identified in close proximity to four prehistoric sites (40SY227—40SY230) that were recorded by G. Smith and Kirth Rennick, a collector, during March 1972. The latter four sites were recorded as a part of Memphis State University's additional survey work along Nonconnah Creek, as noted above.

FEDEX BURIALS DISCOVERY

During 1998, a construction crew unearthed two poorly preserved Historic burials in a drainage ditch within the FedEx complex of the Memphis International Airport. Construction was halted and an archaeological removal of the burials, designated as 40SY619, was undertaken by Weaver & Associates, LLC (W&A; Weaver 1998). Archival research suggested that the burials were part of a church cemetery, shown on a 1916 map, that was thought to have been relocated "before or during the 1940s" (Weaver 1998:14). Skeletal analysis by Dr. Symes revealed that Burial 1 was a robust white male 35–45 years of age, and Burial 2 was a gracile, white male fewer than 40 years of age. Beyond fragments of coffin wood (cypress or yellow pine), few artifacts were recovered. An unreported number of 8d cut nails was recovered from both burials (Weaver 1998:12). Two partial shoes were recovered from Burial 1 with "sided lasted and wire nails" (Weaver 1998:13). The type of nails and shoes found suggest that these burials date after 1862 and before 1890. Weaver (2002) suggested that the deceased were yellow fever victims, but later research by Oster et al. (2005) determined the cemetery dated to 1899-1933 (i.e., after the yellow fever epidemic).

HILDEBRAND HOUSE PHASE II AND III

Also during 1998, W&A conducted archaeological testing at the Hildebrand House (40SY615), a standing nineteenth-century structure located near the airport at 4571 Airways Boulevard, for the Memphis-Shelby County Airport Authority (Weaver et al. 1998). Magness (1983:167) describes the Hildebrand House as a "plantation-style built of hand-hewn hickory logs pegged together, with a central hall plan and veranda with two-story columns facing east." Weaver et al. (1998) suggest that the structure was built ca. 1850–1855 to replace an earlier home, in contrast to Magness (1983) suggestion that it was built in 1838. Test excavations revealed a dense historic midden in the yard surrounding the home. Six related structures or outbuildings were archaeologically identified, including a twentieth-century garage (Structure-2), two twentieth-century barns (Structure-3 and Structure-4), two possible slave quarters (Structure-5 and Structure-6), and a twentieth-century well house (Structure-7).

The site was recommended as eligible for NRHP nomination, and a data recovery (Phase III) project was conducted in early 1999 prior to the demolition of the home (Weaver et al. 2011).

LIGHT RAIL CORRIDOR ALTERNATES ANALYSIS

During 2002–2003, Panamerican conducted a cultural resources alternative analysis of the proposed Memphis Area Transit Authority (MATA) Downtown-Airport Light Rail Corridor alternates (Buchner and Albertson 2003). In addition to assessing the viability of the two

primary alternates, this project resulted in the recovery of numerous cartographic sources from the Memphis Room (Special Collections) of the Shelby County Library. The project is also significant for resulting the preparation of a history of street railways in Memphis.

PROVIDENCE BAPTIST CEMETERY REMOVAL

During March 2003, a construction crew working at FedEx Runway C exposed additional burials within a 103-x-103 ft. stripped area in close proximity to the two previously discovered burials (i.e., 40SY619). As a result, W&A conducted an archaeological removal of 65 burials that were aligned in eight rows (Oster et al. 2005). Oster et al. (2005) conducted archival research that revealed the cemetery was associated with the Providence Baptist Church, and was in use from 1899-1933. Runway construction ca. 1939-1940 resulted in a portion of the cemetery being covered and forgotten. Analysis of the casket types and coffin hardware revealed that the western section of the cemetery dated ca. 1899-1915, and these burials were largely unadorned. The later burials in the central portion of the cemetery dated ca. 1915-1933, and exhibited more elaborate mortuary treatment, suggestive of higher socio-economic status. Some of the burials contained associated artifacts (i.e., saucers, bottles) associated with folk beliefs. Osteological analysis conducted by the University of Tennessee Knoxville revealed that the remains were African-Americans of various ages.

HOLMES ROAD SURVEY

During 2009, Panamerican conducted a Phase I archaeological assessment of a 6.8-km segment of Holmes Road in association with a planned widening project (Clifton 2010). The survey revealed that the majority of the archaeological APE, which lay within a heavily urbanized and industrial portion of the city, had been disturbed extensively. Negative findings were reported and no further work was recommended.

TCHULAHOMA ROAD SURVEY

Also during 2009, TRC conducted a survey of a 4,344 ft. section of Tchulahoma Road that was slate for improvements (Hockersmith 2009). This is the section of Tchulahoma Road that extends south of Holmes Road to the Mississippi state line. Work conducted included a visual inspection; no shovel tests were excavated because the "soils in the project area had been disturbed as a result of the construction of the existing road and commercial and residential development" (Hockersmith 2009:19). Negative findings were reported.

SHELBY & TCHULAHOMA CELL TOWER

In January 2014, Panamerican conducted a survey of the proposed Shelby & Tchulahoma Cell Tower site (Buchner 2014). The survey tract consisted of a 0.22-ac. lot located behind a modern building housing a grocery and vacant liquor store at the Shelby Drive and Tchulahoma Road. Work conducted included the excavation of nine shovel tests at 5-m, 10-m, and 15-m intervals, and a visual survey. Negative findings were reported.

TVA Emission Control Project Survey

During May 2014, Tennessee Valley Archaeological Research (TVAR) conducted a survey of a 224 ac. tract and a 13 mi. pipeline corridor for TVA in advance of the construction of a natural gas powered power plant (a combustion turbine/combine cycle [CT/CC] facility) to replace TVA's aging coal fired Allen Generating Plant (de Gregory et al. 2014). The nearest portion of these survey areas is the eastern end of the TVAR pipeline corridor, which is located approximately 0.6 mi. west of the MSCAA Holmes Road tract and is within the same 200 ft. wide high-voltage/natural gas corridor that bisects the southern portion of our study area.

De Gregory et al. (2014:10) utilized shovel testing at 30 m intervals as the primary site detection method, and delineated all archaeological finds at 10 m intervals. The locations of all 1,096 excavated shovel tests were recorded using GPS equipment, and maps of the shovel test distributions are provided in the report (de Gregory et al. 2014:Figures 8-34).

The TVAR Emission Control survey resulted in the identification of one previously recorded site in the Ensley Bottom (40SY554), four newly recorded sites in the loess uplands (40SY750, 40SY751, 40SY752, and 40SY753), and 14 isolated finds. Isolated finds 1 and 2 were recorded near Airway Blvd. (de Gregory et al. 2014:Figure 8).

TVA LAYDOWN YARDS SURVEY

In 2015, Tennessee Valley Archaeological Research conducted a survey of laydown yards and access roads associated with the Tennessee Valley Authority (TVA) Allen Fossil Plant Emission Control Project (Rosenwinkel et al. 2015). Laydown Yard 2 was a 14.47 ac. tract located southwest of the intersection of Airways Blvd. and Shelby Drive. Negative findings were reported.

COPART TRACT SURVEY

In March 2016, Panamerican conducted a survey of a 44 ac. undeveloped tract located southwest of the Holmes Road and Swinnea Road intersection that was slated for improvements by Copart, a used auto parts company (Buchner and Taylor 2016). This tract is immediately west of the MSCAA Holmes Road tract that is the subject of this investigation. During the course of the survey 93 shovel test locations were documented, including three positive, 84 negative, and six no-test location where transect shovel tests were planned, but not excavated. The survey of the Copart tract resulted in the identification of one newly recorded twentieth-century domestic site (40SY762) that was recommended not eligible for the NRHP.

ROSENWALD FUND THEMATIC STUDY

During 2015-2018, the TDOA conducted a thematic study of Rosenwald Fund facilities in Tennessee that were built for African-Americans (Nance and Eckhardt 2018). Rosenwald Fund constructions in Tennessee included 354 schools, nine teacher homes and ten industrial shops. Shelby County contained a concentration of these because of its high African-American population. 40SY793 was recorded south of Winchester Road and west of the airport during this study.

MELTECH SURVEY

During October 2017, Panamerican conducted a survey of the 55 ac. Meltech tract under contract with DHL Supply Chain (Buchner 2017). A review of the TDOA, THC, MDAH, and NRHP databases revealed that there is no previously recorded archaeological site or Historic property within the tract. A cartographic review of nineteenth- and twentieth-century sources failed to produce evidence for any structure existing within the tract. More generally, the tract was likely cleared for farming by Francis Holmes (1839–1916)—a Civil War veteran and resident of the Plum Point, Mississippi, located approximately 1 mi. to the south—and remained farmland or pasture until ca. 2007 when it began to become overgrown. The tract was surveyed using 30 m interval shovel testing. During the course of the survey, 212 shovel test locations were documented, including no positive, 164 negatives, and 48 no-test locations where transect shovel tests were planned, but not excavated, primarily due to the presence of standing water or drainages, and disturbances on the natural gas pipeline corridor.

To summarize, the cultural resource survey of the Meltech tract produced negative findings. This is not surprising given the absence of high-probability terrain within the tract, coupled with soil erosion and a lack of archival evidence for Historic occupation of the tract.

NATIONAL GUARD READINESS CENTER SURVEY

During January 2019, MRS Consultants, LLC conducted a cultural resources survey of the 30.7 ac. National Guard Memphis Readiness Center located on Holmes Road (Ryba and Spry 2019). The undeveloped portions of the property were subjected to shovel testing at 30 to 40 m intervals, and 24 tests were excavated, principally in the hilly and wooded terrain north and west of the existing buildings and parking lots. The archaeological survey produced negative findings. MRS evaluated the NRHP status of a ca. 1960 Colonial Revival dwelling that is now occupied by the Central U.S. Earthquake Consortium, a non-profit, as not eligible. MRS concluded that the "Memphis Readiness Center will have no effect upon the identified historic resource" (i.e., the Colonial Revival dwelling).

AIRPORT TREE OBSTRUCTION SURVEY

During April 2019 Panamerican performed a Phase I archaeological assessment for the MSCAA McKellar Park Tree Obstruction Clearing undertaking at the request of EnSafe, Inc. (Buchner and Saatkamp 2019). The archaeological APE was limited to areas where ground-disturbing activities will take place (i.e., tree stump removal, grubbing, and access road construction), and consisted of 283 ac. (0.4422 mi.²) of non-contiguous forested areas in the uplands south of Runways 36L, 36C and 36R. The APE is located within the former McKellar Park, which at 554 ac. was once Memphis' largest city park and contained an 18-hole golf course from ca. 1972 to 1995. A literature and records check revealed that there were three previously recorded archaeological sites with McKellar Park (40SY85, 40SY91 and 40SY307), however they may or may not be within the APE. During the course of the field work, 1,207 shovel test locations were documented, including nine that were positive for cultural material, 494 that were negative for cultural material, and 704 planned tests that were not dug, mainly due to standing water and steep slopes.

The McKellar Park Tree Obstruction survey resulted in the identification of two newly recorded sites: 40SY843 was a low-density undifferentiated Prehistoric lithic scatter and isolated historic find, and 40SY844 was a late nineteenth to mid twentieth century farmstead. 40SY843 is interpreted as a peripheral element of 40SY307 (a Poverty Point and Late Woodland site), that otherwise no longer appears to exist. Sites 40SY843 and 40SY844 were recommended as ineligible for the NRHP.

TENNESSEE HISTORICAL COMMISSION

Review of the on-line Tennessee Historical Commission GIS database reveals that two standing structures are documented within the study tract: SY31708A and SY31607A (Figure 4-02). Structure SY31708A is on Swinnea Road, to the north of the high-voltage transmission corridor. It a ca. 1935 traditional single-family rectangular residence that was in a deteriorated condition with the windows missing when recorded. Structure SY31607A lies short distance east of Structure SY31708A, and is a ca. 1935 traditional single-family rectangular residence.

Within 0.5-mi. of the tract there are three additional previously recorded properties: two twentieth century residences and a ca. 1920 cemetery. Across Swinna Road from Structure SY31708A, Structure SY31707A is recorded. It is a ca. 1940 traditional single-family rectangular residence; its windows were missing when recorded. On the other side of Swinna Road, opposite the southwestern corner of the MSCAA Holmes Road tract, property SY31606A is found. It is the ca. 1920 Brown Missionary Baptist Cemetery, and it is indicated on the Pleasant Hill, MS-TN 7.5-min. quad. Approximately 0.5-mi. east of the southeastern corner of the MSCAA Holmes Road tract, Structure SY-31705A is recorded at 1920 Tchulahoma Road. It is a 1920 traditional single-family rectangular residence, and the porch roof is supported by plain square columns.

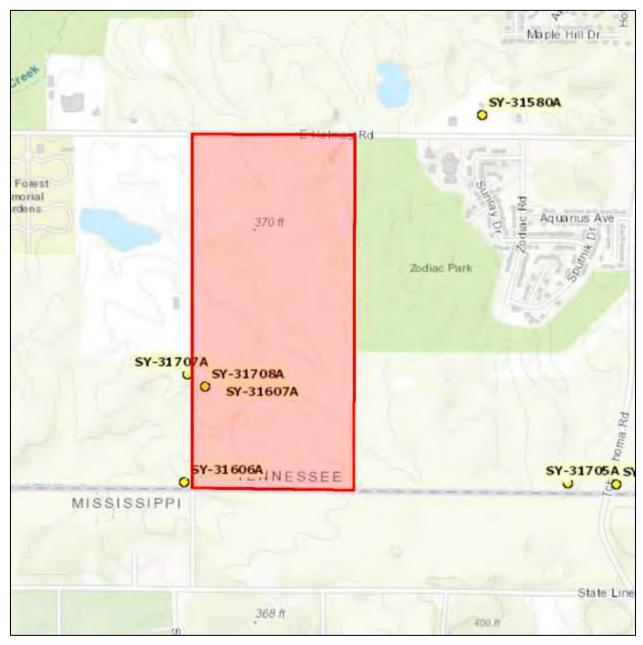


Figure 4-02. Screen shot of the Tennessee Historical Commission viewer with the MSCAA Holmes Road tract added.

NRHP LISTINGS

There are currently 195 NRHP listed properties within Shelby County, Tennessee, including four National Landmarks. Importantly, there is no NRHP listed property within the MSCAA Holmes Road tract. The nearest NRHP listed property to the study area is Graceland, the home of the "King of Rock and Roll" Elvis Presley (1935-1977), which is 7 km to the northwest.

BLM LAND PATENTS

To investigate the early history of private land ownership in the study area, land patent reports were obtained from the Bureau of Land Management (BLM) web page. This was accomplished by searching for patents issued for Section 17 in T1S R7W. The land patent reports use an 1820-1908 electronic database; only partial data is available for land patents issued after 1908.

This search resulted in the identification of one land patent dated 11 November 1840 for 640 ac. The patent was issued to *HUL LUP PA CHA* for all of Section 17 of T1S R7W under the authority of the 1832 Chickasaw Treaty (i.e., Treaty of Pontotoc), and was dispensed at the Pontotoc land office. By the terms of the Treaty of Pontotoc, the Chickasaws agreed to cede the United States all their lands east of the Mississippi and, and procure a new home for themselves west of the Mississippi. In payment for the cession, the United States agreed to pay over to the nation all the money arising from the sale of their former lands in the easy, after deducting sale costs. So presumably *HUL LUP PA CHA* was paid by the United States after Section 17 of T1S R7W was sold.

CARTOGRAPHIC REVIEW

Below various archival maps are reviewed to document the land use patterns and developments in and near the MSCAA Holmes Road tract.

1835 GLO PLAT MAP

Due to a surveying mistake, during the early nineteenth century APE tract was part of Mississippi. The 1835 General Land Office (GLO) plat map for T1S R7W of the Chickasaw Meridian reflects this, as the tract is located within Section 17 of that township, which was then part of Mississippi (Figure 4-03). No improvements are shown within the APE. Hurricane Creek is shown, but not labeled. Note Pigeon Roost Road, now Lamar Ave., in the northeastern portion of the township; this was an old Chickasaw trail.

In 1838, the state line—which was then at Winchester Road—was resurveyed, and the state boundary was moved south. At this time the 1835 GLO plat map of T1S R7W was amended, and "New Tennessee State Line" was added; observe that it is located approximately 0.25 mi. south of the MSCAA Holmes Road tract (see Figure 4-03). Today this is where State Line Road is in Mississippi, as the state boundary was later re-surveyed again prior to 1888 and finally established at its current location.

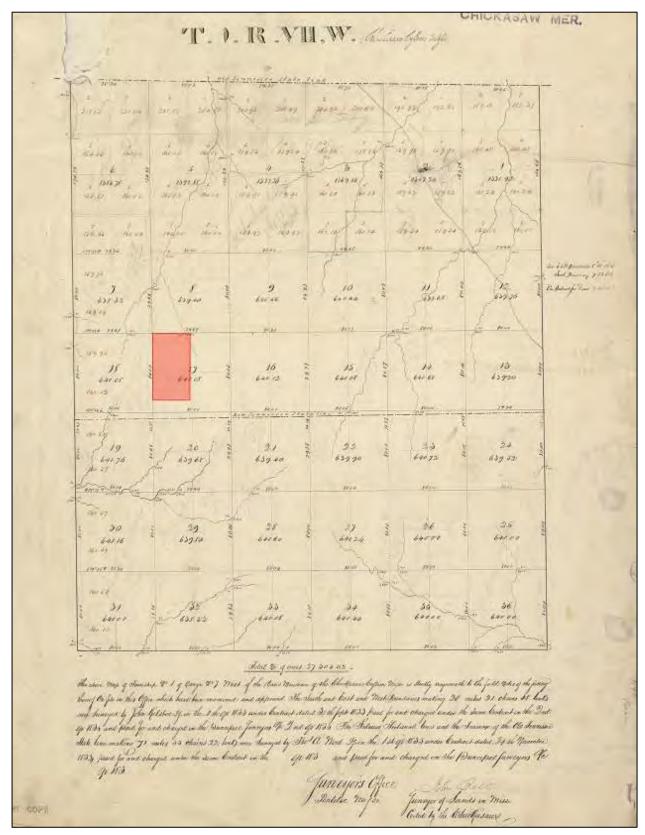


Figure 4-03. The 1835 GLO plant map for T1N R7W with the MSCAA Holmes Road tract highlighted in Section 17 (map courtesy: BLM web page).

1888 W.T. WILLIAMSON MAP OF SHELBY COUNTY

The 1888 W.T. Williamson map of Shelby County is an important archival resource because it shows landowners, and property boundaries and acreages (Figure 4-04). Note that Holmes Road and Swinnea Road did not exist at this date. Examination of the 1888 map reveals that the MSCAA Holmes Road is part of a large parcel owned by Francis Holmes.

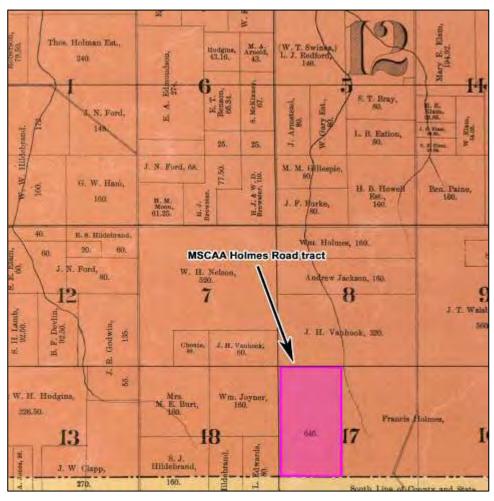


Figure 4-04. A portion of the 1888 W.T. Williamson Map of Shelby County with the MSCAA Holmes Road tract overlaid (map courtesy: Library of Congress).

Francis Holmes (1839–1916) was a Civil War veteran and resident of the Plum Point, Mississippi, which is located approximately 1 mi. to the south of the study area. He is buried at the Bethlehem Cemetery on Holmes Road 3.5 mi. east of the study area. Holmes Road is named for Francis Holmes, who was described in 1922 as follows:

Captain Holmes was true to the best ideals of the old South, and was a great believer in culture and education. After the Civil War he returned to his plantation and lived there until his death. He was chiefly concerned in the promotion of education and was a steadfast believer in religion, being a life-long member of the Methodist Episcopal Church, South. He was interested in a number of Memphis Financial institutions, and throughout his long and useful life he stood as a bulwark for law and order in North Mississippi. He was a man without show or pretense, but his influence reached far beyond the horizon of his native heath [Moore and Jones 1922:774].

1927 SHELBY COUNTY COMMISSIONER'S MAP

H.V. Patton Co. produced a "Map of Shelby County, Tenn." in 1927 for the Shelby County Commissioners. The copy on file at the Memphis Room is a 1932 revision of the 1927 edition that shows the location of white schools in Memphis and Shelby County, and the school names are hand written on the map; the nearest to the study area is "Whitehaven" (Figure 4-05). Importantly this map shows that Holmes Road and Swinnea Road were in placed by 1927, and thus the MSCAA Holmes Road tract can be readily identified. The only feature shown within the tract is an arm of Hurricane Creek.

Figure 4-05. A portion of the 1927 revised 1932 "Map of Shelby County, Tenn." by the Shelby County Commissioner's and engraved by H.V. Patton Co. with the MSCAA Holmes Road tract highlighted (map courtesy: Memphis Room, Benjamin L. Hooks Central Library).

1939 HIGHWAY AND TRANSPORTATION MAP

The 1939 Tennessee State Highway Department "General Highway and Transportation Map, Shelby County, Tennessee" is fairly detailed (Figure 4-06). This map shows the local road network was essentially the same on the 1927-1932 map (compare to Figure 4-05). Importantly, five structures are located within the tract: three on Holmes Road west of an arm of Hurricane Creek, and two on Swinnea Road to the south of another arm of Hurricane Creek.

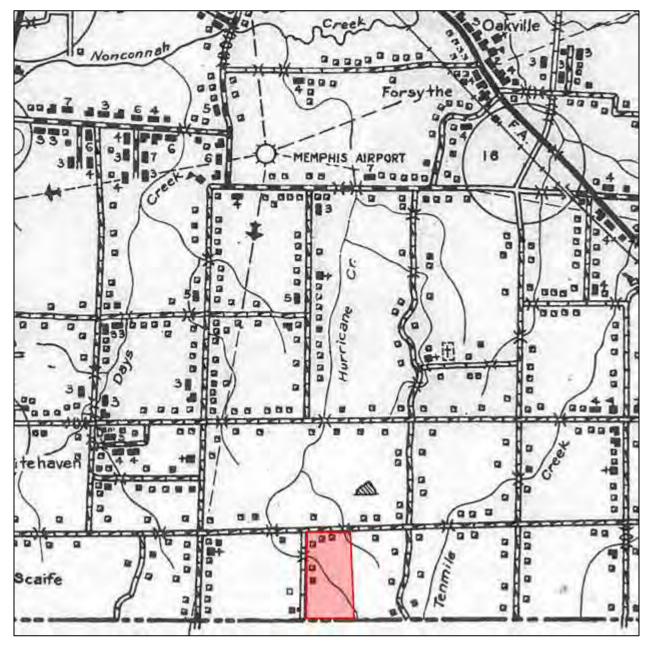


Figure 4-06. A portion of the 1939 Tennessee State Highway Department "General Highway and Transportation Map, Shelby County, Tennessee" with the MSCAA Holmes Road tract highlighted (map courtesy: Memphis Room, Benjamin L. Hooks Central Library).

1956 COUNTY ENGINEERING DEPARTMENT MAP OF SHELBY COUNTY

During the 1950s the County Engineering Department produced several similar editions (1953, 1954, 1956, and 1959) of a county map that shows the early stages of the modern developments and infrastructure construction in south Memphis. A portion of the 1956 edition is provided below (Figure 4-07). Importantly it reveals that the gas pipeline corridor that traverses the northern portion of the tract was in place by then, and that it contained two 26-in. lines. In contrast, the high voltage power line in the southern portion of the tract, and the petroleum pipeline on the western edge of the tract are not shown.

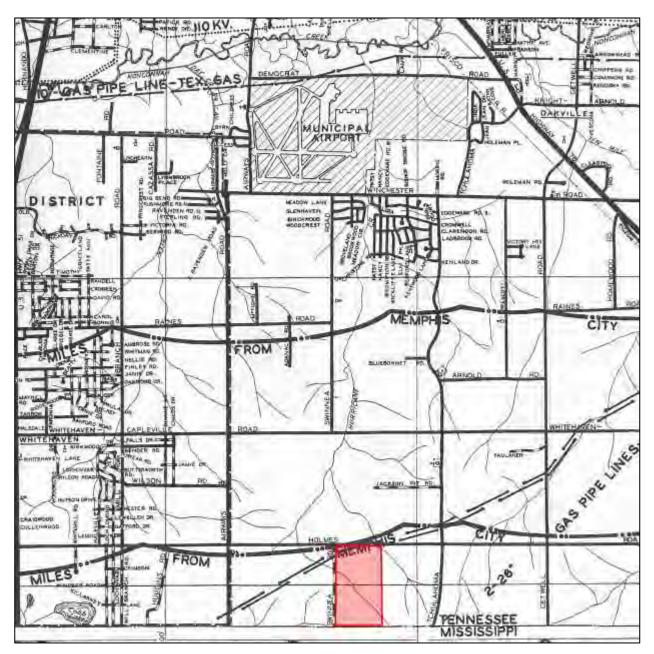


Figure 4-07. A portion of the 1956 "Map of Shelby County, Tennessee" prepared by the County Engineering Department with the MSCAA Holmes Road tract highlighted (map courtesy: Memphis Room, Benjamin L. Hooks Central Library).

1961 BARTLETT 15-MIN. QUAD

The northern portion of the MSCAA Holmes Road tract can be identified on the 1961 Bartlett, TN 15-min. quad (Figure 4-08). This quad shows seven structures, a road and two ponds within the tract. Four structures are clustered south of Holmes Road, and three are roughly evenly distributed along Swinnea Road. The southern portion of the tract is found on the Hernando, MS-TN 15-min. quad, but there is no 1960 edition, the nearest contemporary edition dates to 1944.

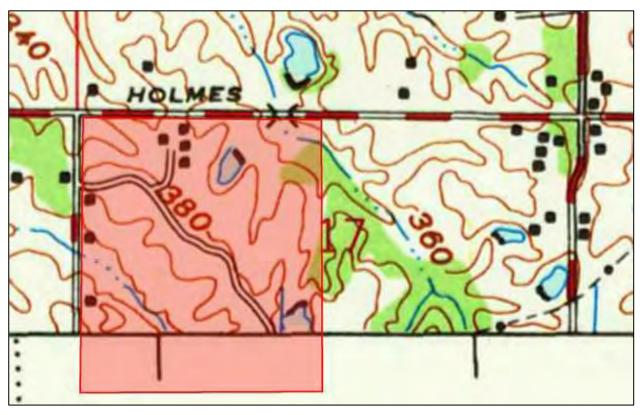


Figure 4-08. An enlarged portion of the 1961 Bartlett 15-min. quad with the MSCAA Holmes Road tract highlighted.

1965 & 1997 Southeast Memphis 7.5-min. Quads

The northern portion of the MSCAA Holmes Road tract can be identified on the 1965 and 1997 editions of the Southeast Memphis, TN 7.5-min. quad (Figure 4-09). The 1965 edition shows nine structures, the gas pipeline corridor, several ponds and a gravel pit within the tract (Figure 4-09). Five of the structures are residences, including two on Holmes Road and three on Swinnea Road. The other four structures are outbuildings and they are clustered in the central portion of the tract between Holmes Road and the gas pipeline corridor.

Examination of the 1997 edition of the Southeast Memphis, TN 7.5-min. quad reveals that only two of the 1965 structures remained.

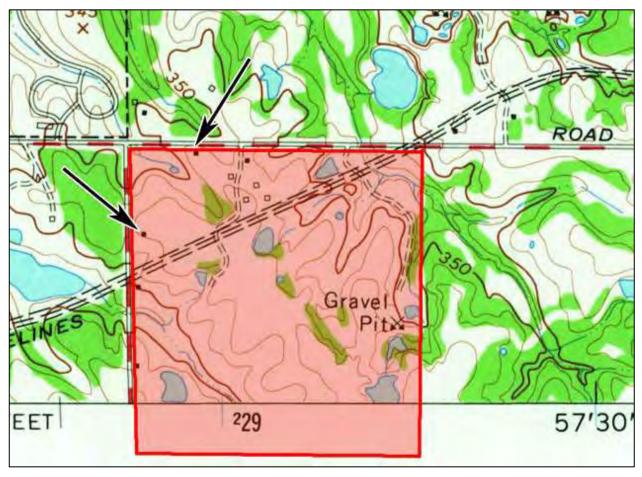


Figure 4-09. An enlarged portion of the 1965 Southeast Memphis, TN 7.5-min. quad with the MSCAA Holmes Road tract highlighted.

Arrows denote the only two structures that remain on the 1997 edition of the same quad.

1982 & 1996 PLEASANT HILL 7.5-MIN. QUAD

The southern portion of the MSCAA Holmes Road tract can be identified on the 1982 and 1996 editions of the Pleasant Hill, MS-TN 7.5-min. quad (Figure 4-10). The 1982 edition reveals two residences and two outbuildings on the western side of the study tract along Swinnea Road. Examination of the 1997 edition of the same quad reveals that only two structures remain.

Additionally, the locations of the tower structures associated with the pair of high-voltage electrical transmission lines are also shown on the 1982 edition. Because the high-voltage transmission line was not shown on a 1975 air photo, see below, it is dated ca. 1976-1981.

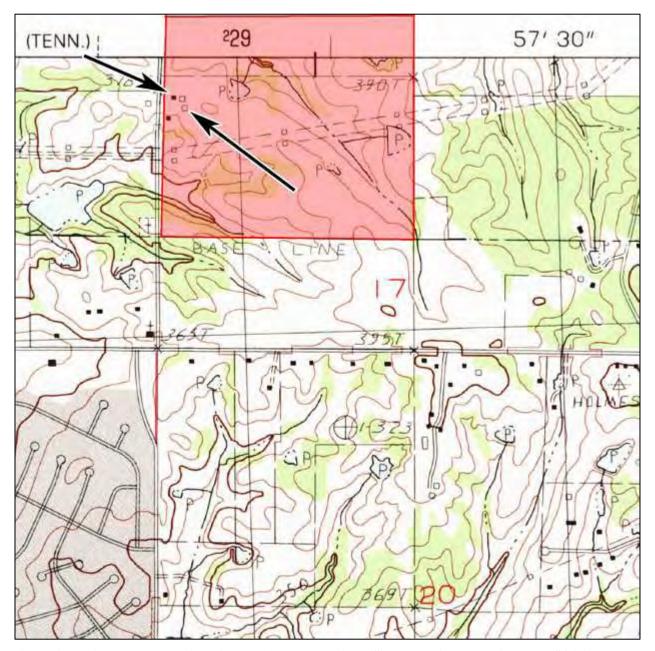


Figure 4-10. An enlarged portion of the 1982 Pleasant Hill, MS-TN 7.5-min. quad with the MSCAA Holmes Road tract highlighted.

Arrows denote the only two structures that remain on the 1996 edition of the same quad.

1975 EARTH EXPLORER AIR PHOTO

An aerial photo dated February 21, 1975 was retrieved from the USGS Earth Explorer web page (image 1VDUY00010098.tif) (Figure 4-11). This image reveals much of the northern portion of the tract was denuded and barren, likely from gravel pit operations, as indicated by the 1965 quad (see Figure 4-09). To the south, along Swinnea Road, a farmstead can be observed where THC properties SY31708A and SY31607A are recorded. Note that the MLGW high-voltage transmission line corridor is not present in 1975.

Figure 4-11. A portion of the 1975 air photo with the MSCAA Holmes Road tract highlighted.

1990 EARTH EXPLORER AIR PHOTO

An aerial photo dated February 12, 1990 was retrieved from the USGS Earth Explorer web page (image 1VFMT00010013.tif) (Figure 4-12). The northeastern portion of the tract is denuded and barren, and exhibits a deep erosional gully. At the location of the 1975 farmstead there is a cluster of structures within a barren area; we suggest that the gravel pit operation has shifted to here. Due to the COVID-19 pandemic, the Memphis Library is closed, thus we can not search Polk's City Directories to established the identify of this compound.

Figure 4-12. A portion of the 1990 air photo with the MSCAA Holmes Road tract highlighted.

GOOGLE EARTH HISTORICAL IMAGERY

Google Earth provides historical imagery for the study tract for the period from 1991-2018. The farmstead on Swinnea Road that may have converted into a gravel operation after 1975 and before 1990 is shown on a February 1991 image, and it appears in basically the same condition as on the 1990 image: a cluster of structures within a denuded area, with piles of material stacked in rows within the area. The next image that is available is dated January 1997, and on this compound is completely gone, and the vegetation has begun to regenerate over the former area. This reveals that the occupation of the compound ceased during the early 1990s. By January 1997 vegetation had also begun to regenerate over the northern portion of the tract, within the former broad barren area with a deep erosional gully.

SURVEY EXPECTATIONS

Given the above, the following survey expectations can be offered. A review of various archival maps suggests five or so twentieth century domestic sites should be located within the tract, and they are distributed along and near Holmes Road and Swinnea Road. Archival sources also suggest that portions of the tract were denuded, eroded and otherwise degraded by gravel pit and/or strip mine operations. Many of the ponds within the tract are likely the by-product this extractive land use.

More generally, the environmental setting (uplands) and eroded loess soils across the majority of the tract led us to conclude that, overall, the tract has a moderate to low probability of containing archaeological resources. The local Prehistoric settlement pattern reveals that most known sites occur on higher terrain within about 200 to 400 m of Hurricane Creek, a tributary of Nonconnah Creek, which has its headwaters in the study area.

The expected archaeological site density for the APE can be inferred from Peterson's (1979) sample survey of the Wolf River basin, the next watershed to the north, which is highly similar both ecologically and archaeologically to the Nonconnah Creek basin. During Peterson's study the Wolf River watershed was stratified into three environmental zones (floodplain, terraces, and uplands) and subdivided into 716 one-minute quadrates. A three percent random sample of the quadrates was surveyed. The results rather dramatically reveal that archaeological sites in the Wolf River watershed—and by inference the Nonconnah Creek basin—are concentrated on terraces, where 3.22 sites were identified per km². In contrast, uplands yielded only 0.49 sites per km² and floodplain even less (0.22 site per km²). Since the 244 ac. (0.99 km²) MSCAA Holmes Road tract is associated with uplands, the number of expected sites is 2.02 (0.99 km²/0.49 sites per km²).

V. FIELD INVESTIGATIONS

METHODS

A four-person crew conducted the fieldwork from April 7 to 21, 2020 (see "Acknowledgements" for personnel). Shovel testing at 30 m intervals was the primary site detection method.

OBJECTIVE

The two main objectives in conducting the intensive archaeological survey were as follows: (1) to obtain a complete inventory of all significant cultural resources present; and (2) to evaluate all identified resources relative to eligibility criteria of the NRHP (36 CFR 63). No data recovery beyond the constraints of an intensive (shovel test) survey and site boundary delineation was expected.

STANDARD SHOVEL TEST

A shovel test consisted of the excavation of four-sided hole at least 30 cm in diameter (0.09 m²). Each shovel test was excavated to culturally sterile deposits or upon reaching the water table. To ensure consistent artifact recovery, all sediment was hand screened through 0.25-in. mesh hardware cloth. All natural and cultural strata revealed in the individual shovel test profiles will be recorded using metric depth measurements, and described in terms of textural class and color (using the Munsell Soil Color Chart). Additional strata descriptions were provided as needed, such as moisture level, and number and size of roots. Panamerican employs a specialized shovel test form to insure consistent shovel test profile recording. All holes were subsequently backfilled as closely as possible to the original condition.

SITE SAMPLING/DELINEATION

When an artifact was encountered in a shovel test, the area was delineated on a 10-m interval cruciform pattern, expanding to a grid pattern if necessary. Shovel tests were excavated in both patterns until there were two consecutive negative shovel tests, at which point the digging was halted.

SURVEY DOCUMENTATION

To ensure appropriate field data management, Panamerican employs a system the company developed for large-scale intensive surveys in the Southeast, and that has been successfully employed during all of Panamerican's past work. Throughout the course of the fieldwork, the crew used specialized forms to individually record the shovel test locations. The status of each shovel test was assessed as positive (), negative (), or not excavated (Ø). In the case of the latter, which are referred to as "no-test" locations, the reason why no shovel test was excavated is provided on the forms. This allows for a complete inventory of shovel tests to be generated. Shovel test profiles, sediment characteristics, and depths of artifact recovery, if any, were recorded on the forms during the fieldwork. At the end of each field day, this information is collected by the field director and reviewed for content.

In addition to the individual shovel test results recorded by the archaeological technicians, the field documentation included, but was not limited to, the following tasks: (1) field notes were maintained; (2) the survey area and all recorded sites were recorded via photography; and (3) a number of logs or lists were maintained, including those for photo records.

GPS DATA COLLECTION

During the survey the locations of all excavated shovel tests and no-test locations were recorded using Global Positioning System (GPS) equipment. Each Archaeological Technician was issued a Garmin eTrex Venture HC GPS with which to record their excavated shovel test locations. The resulting metadata (i.e., shovel test UTM coordinates) was integrated into Geographic Information System (GIS) ArcMap format to produce the shovel test distribution map.

RESULTS

During the course of the survey 937 shovel test locations were documented within the tract, including two that were positive for artifacts, 768 that were negative for artifacts, and 167 "notest" locations were planned tests were not excavated due to principally due to slope, water and past disturbances (Figure 5-01). Appendix A provides the individual shovel tests data. Among the 770 excavated and screened shovel tests, the depths ranged from 4 cm to 40 cm, and the average depth was $18.06 \text{ cm} (\pm 4.77 \text{ cm})$.

The survey resulted in the identification of five twentieth-century Historic loci; four former house sites and a breached earthen dam. Site forms were completed for these and submitted to the Tennessee Division of Archaeology (TDOA); however they declined to assign them site numbers (i.e., trinomials) as TDOA does not record historic sites that lack sufficient evidence of pre-1950 occupation. Although historic maps show structures near four of the loci, the lack of below ground pre-1950 archaeological evidence prompted TDOA to decline to issue site numbers (TDOA, personal communication April 2020). The five loci that were recorded during fieldwork are described below.

Locus 1

Cultural Affiliation.	Twentieth Century
Site Type	Razed house site
Site Size	60-x-50 m
Artifact Recovery Total	0
Recommended NRHP Status	Not Eligible

Location and Setting

Locus 1 is a newly identified former historic house site located in the northwestern part of the MSCAA Holmes Road tract, near Swinnea Road to the north of the Texas Gas pipeline. There is a low ridge in the area, running northeast from the southwest boundary of the study tract. An unnamed tributary to Hurricane Creek is about 200 m south. Sease et al. (1970) map the Locus 1 area as Loring silt loam, 2 to 5 percent slopes (LoB; see Figure 2-02).

Archaeology

Transects 1 and 2 traversed Locus 1, but the shovel tests were all negative for cultural material (Figure 5-03). The Locus 1 location was wooded in secondary growth and there was poor surface visibility (Figure 5-04). Some displaced brick and modern trash was observed on the ground surface (Figure 5-05). In the north portion of the site there are two parallel barbed-wire fence remnants. These may have marked a drive or road, which is shown archival maps here (see "Additional Remarks" below), or it could be a cattle shoot. The site size is estimated from the observed surface scatter of brick, concrete and the fence lines.

Artifacts

No artifacts were recovered from the nearby shovel tests or the surface.



Figure 5-01. Aerial image of the MSCAA Holmes Road tract with the shovel tests superimposed.

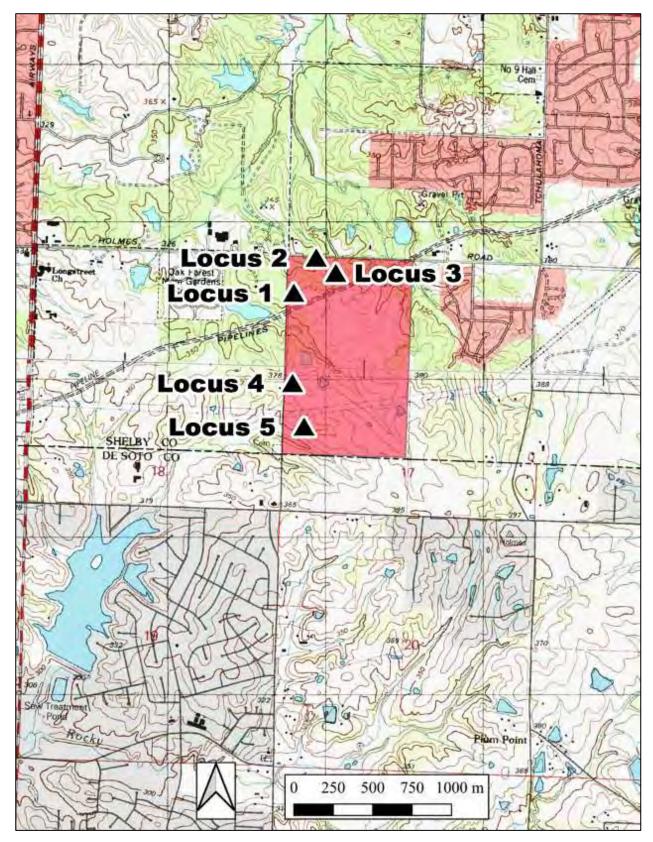


Figure 5-02. Identified archaeological loci shown Southeast Memphis, TN 7.5-min. and 2016 Pleasant Hill, MS-TN 7.5-min. quads.

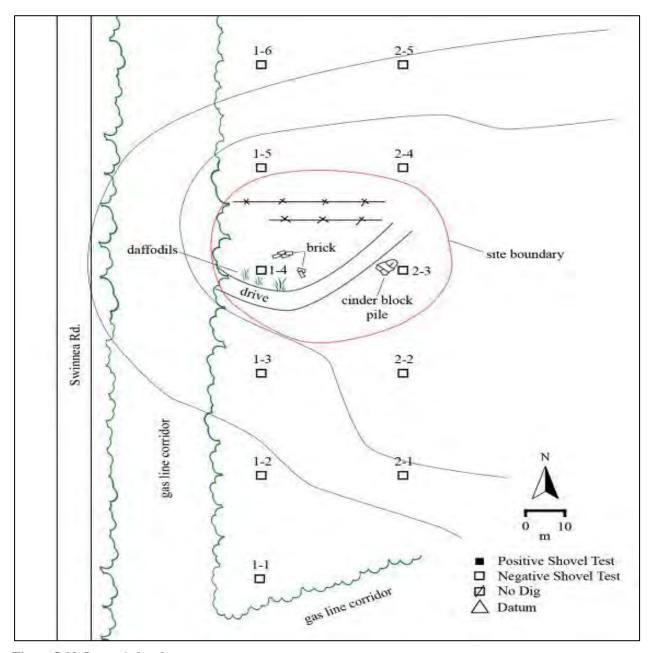


Figure 5-03. Locus 1 sketch map.

Figure 5-04. Photograph of Locus 1, view north across locus (DSCN2567).

Figure 5-05. Pile of brick at Locus 1, view north (DSCN2568).

Additional Remarks

A structure is shown at the Locus 1 location on the 1939 Shelby County highway map, the 1961 Bartlett 15-min. quad, and the 1963, 1973, 1983, 1993 and 1997 editions of the SE Memphis 7.5-min. quad (see Chapter IV). Interestingly, although the 1983 edition of the SE Memphis quad shows a structure, it also depicts the entire site location area as part of the gravel pit.

An aerial photo dating to 1975 reveals much of the northern portion of the tract, including the Locus 1 location, was denuded and barren, likely from gravel pit operations, as indicated by the 1965 quad (see Figure 4-11). An aerial photo dating to 1990 shows the Locus 1 as somewhat wooded, although still disturbed from the gravel quarry.

The structure at Locus 1 was razed some time after 1997.

Recommendation

Locus 1 is recommended not eligible for the NRHP. Although a structure is shown at this location on archival maps dating to 1939, no subsurface remains were encountered during transecting of the area. As noted above, it is TDOA policy to not assign state trinomials to historic scatters lacking a definite pre-1950 occupation in the form of cultural material. No additional cultural resources work is recommended for the Locus 1 location.

Locus 2

Cultural Affiliation	Twentieth Century
Site Type	
Site Size	35-x-35 m
Artifact Recovery Total	
Recommended NRHP Status	

Location and Setting

Locus 2 is a newly identified historic house site located in the northern part of the MSCAA Holmes Road tract, to the south of Holmes Road. There is a low ridge in the area, running northwest to Holmes Road. An unnamed tributary to Hurricane Creek is the drainage in the area and is about 120 m west. Sease et al. (1970) map the Locus 2 area as Loring silt loam, 2 to 5 percent slopes (LoB; see Figure 2-02).

Archaeology

Transects 5, 6, and 7 traversed this locus, but the nearby shovel tests were all negative for cultural material (Figure 5-06). At the time of investigation, the Locus 2 location was wooded in secondary growth, and there was poor surface visibility (Figure 5-07).

During a visual survey of the area some concrete footers were observed just south of Holmes Road, as were two sections of brick that were interpreted as the remains of chimneys (Figure 5-08). There was no obvious turn-in off Holmes Road to the locus location. The site size is estimated from the observed surface scatter of brick and concrete.

Artifacts

No artifacts were recovered from Locus 2.

Additional Remarks

A structure is shown at, or near, the Locus 2 location on the 1939 Shelby County highway map, and the 1963, 1973, 1983, 1993 and 1997 editions of the SE Memphis 7.5-min. quad (see Chapter 4). Interestingly, the 1961 Bartlett 15-min. quad does not show a structure here. Unlike Locus 1, the Locus 2 area is not depicted as a gravel pit, but it is mapped just east of it.

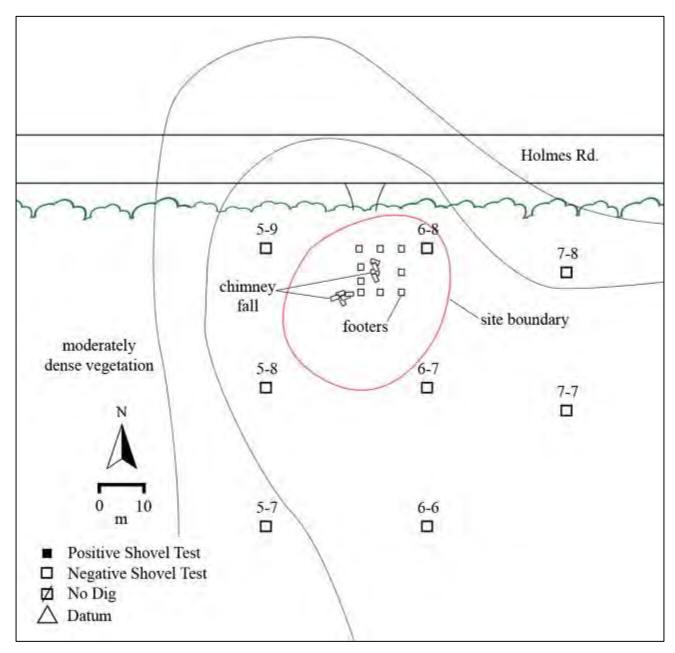


Figure 5-06. Locus 2 sketch map.

Figure 5-07. Photograph of Locus 2, view east across locus (DSCN2574).

Figure 5-08. Chimney fall at Locus 2, view north (DSCN2572).

An aerial photo dating to 1975 reveals much of the northern portion of the tract, including the Locus 2 location, was denuded and barren, likely from gravel pit operations, as indicated by the 1965 quad (see Figure 4-11). An aerial photo dating to 1990 shows the Locus 2 as somewhat wooded, although still disturbed from the gravel quarry.

The structure at Locus 2 was razed some time after 1997.

Recommendation

Locus 2 is recommended not eligible for the NRHP. Although a structure is shown at this location on archival maps dating to 1939, no subsurface remains were encountered during transecting of the area. As noted above, it is TDOA policy to not assign state trinomials to historic scatters lacking a definite pre-1950 occupation in the form of cultural material. No additional cultural resources work is recommended for the Locus 2 location.

Locus 3

Cultural Affiliation	Twentieth Century
Site Type	
Site Size	
Artifact Recovery Total	0
Recommended NRHP Status	

Location and Setting

Locus 3 is a newly identified historic farmstead later used by a quarry operation located in the northern part of the Holmes Road study tract. There is a low ridge in the area, running north to Holmes Road. An unnamed tributary to Hurricane Creek is the drainage in the area and is about 240 m south. Sease et al. (1970) map the Locus 3 area as Loring silt loam, 2 to 5 percent slopes (LoB; see Figure 2-02).

Archaeology

Transects 9, 10, and 11 were run over Locus 13, but the nearby shovel tests were all negative for cultural material (Figure 5-09). At the time of investigation, the Locus 3 location was wooded in secondary growth and there was poor surface visibility (Figure 5-10). This area was less dense in vegetation than Loci 1 and 2.

During a visual survey of the area several large piles of concrete, along with some corrugated metal were observed in the locus area, along with modern trash (Figure 5-10). There is a turn-in off Holmes Road, which corresponds with the mapped location of a drive running south along the ridge. The site size is estimated from the observed scatter of concrete and metal, along with the structure locations shown on the quad maps.

Artifacts

No artifacts were recovered; however, there was a great deal of modern trash scattered about the site.

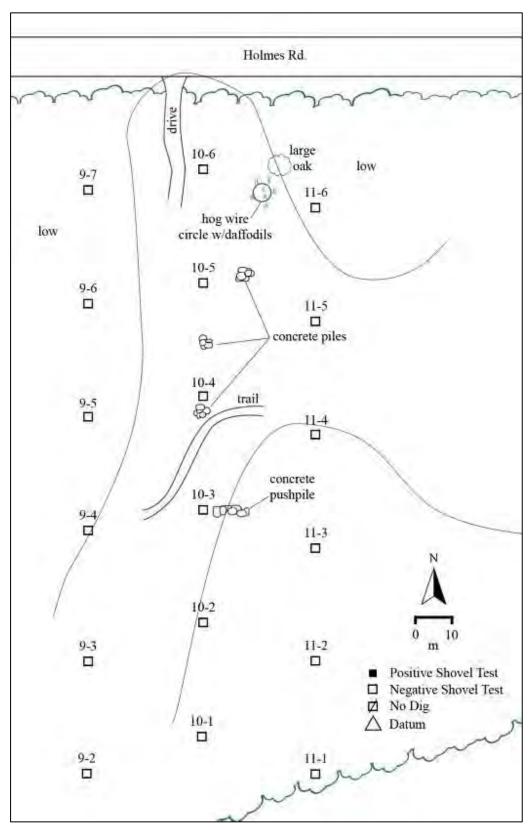


Figure 5-09. Locus 3 sketch map.

Figure 5-10. Photograph of Locus 3, view north-northeast across locus (DSCN2580).

Figure 5-11. Concrete pile at Locus 3, view southeast (DSCN2579).

Additional Remarks

A structure is shown just south of Holmes Road on the 1939 Shelby County Highway map at Locus 3. On the 1961 Bartlett 15-min. quad there are four structures shown at or near Locus 3. Four structures are also shown here on the 1965, 1973, and 1983 SE Memphis 7.5-min. quads.

Only one structure is shown on the 1993 edition, and no structure appears on the 1997 edition. A road or drive leading south from Holmes Road is shown on the maps, and there is a turn-in at this location. During the field visit this road was difficult to distinguish due to vegetation. There are no foundations or brick piles suggesting chimneys, but there are several large piles of concrete that have been dozed into piles. While this area is not shown as part of the gravel pit, it is shown as being just north of it. The collection of structures shown south of Holmes Road, north of the pipeline, may have been related to the gravel quarry and the concrete piles are what are left of them.

An aerial photo dating to 1975 reveals much of the northern portion of the tract, including the Locus 3 location, was generally denuded and barren, likely from gravel pit operations, as indicated by the 1965 quad (see Figure 4-11). There are what appear to be structures (open square icons suggestive of sheds or barns) at the Locus 3 location, north of the pipeline. An aerial photo dating to 1990 shows the Locus 3 as even more disturbed in appearance; the structures do not appear to be present, which would agree with the lack of structures on the 1993 quad.

Recommendation

Locus 3 is recommended not eligible for the NRHP. Although a structure is shown at this location on archival maps dating to 1939, no subsurface remains were encountered during transecting of the area. As noted above, it is TDOA policy to not assign state trinomials to historic scatters lacking a definite pre-1950 occupation in the form of cultural material. No additional cultural resources work is recommended for the Locus 3 location.

Locus 4—THC Structures SY-31607A & SY-31708A

Cultural Affiliation	
Site Type	Farmstead; Quarry operation
Site Size	
Artifact Recovery Total	
Recommended NRHP Status	

Location and Setting

Locus 4 is historic farmstead that appears to have been later used as part of a quarry operation. It is located in the western portion of the MSCAA Holmes Road tract where THC recorded structures SY-31607A and SY-31708A (see Figure 4-02). This locus is atop a prominent ridge that runs east/west, and terrain slopes down to the north and south. A Valero petroleum pipeline and Swinnea Road are located immediately west of the site. An unnamed tributary to Rocky Creek is about 270 m southeast. Sease et al. (1970) map the Locus 4 area as Loring silt loam, 2 to 5 percent slopes (LoB; see Figure 2-02).

Archaeology

Transects 21 and 22 were run over the locus location, but the nearby shovel tests were all negative for cultural material (Figure 5-12). At the time of investigation, the Locus 4 location was wooded in secondary growth and there was generally poor surface visibility (Figure 5-13). Near the center of the locus there were a great many limbs from fallen trees.

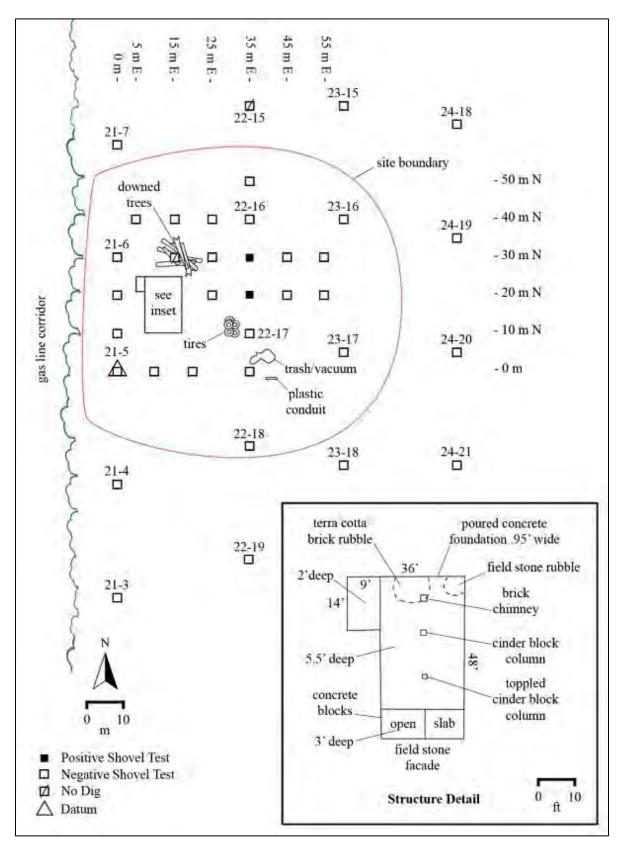


Figure 5-12. Locus 4 sketch map.

Figure 5-13. Locus 4 foundation and free standing chimney, view southwest (DSCN2594).

Figure 5-14. Locus 4 southeast corner of foundation, view southwest (P409641).

A largely intact poured concrete foundation/basement was observed within the wooded area east of the petroleum pipeline (Figure 5-13). This foundation was measured to be 36-x-48 ft. at its largest dimensions, and is about 5.5 ft. deep. The wall line is 0.95 ft. wide. It exhibits is a slight "L" shape, with a 9-x-14 ft. projection/room off the northwest end. The south end has a 12-x-12 ft. open portion on the west side, and a 12-x-12 ft. enclosed "cellar" section on the southeast corner (Figure 5-14). These latter two elements may be additions to the original structure.

Inside the foundation there is a free-standing brick chimney about 4 m tall with a buff-colored terra cotta flue liner at the top. To the south of this, there is a free-standing cinder block column that no doubt supported the floor joists. To the south of it, there is a second collapsed cinder block column.

On the exterior of the southern portion of the possible addition to the foundation there is a decorative flagstone veneer (Figure 5-15). Additional pieces of similar flagstone are casually tossed into a pile within the foundation/basement north of the brick chimney.

Figure 5-15. Flagstone veneer on south portion of the foundation, view northwest (DSCN2592).

A great deal of modern trash was observed across Locus 4, in particular to the west of the foundation, including a television, a vacuum cleaner, a cassette/CD player and large amounts of bottles aluminum cans and plastic items. Concrete demolition debris was abundant on the hill side slope to the south of the foundation, where it was tossed into a deep erosional gully.

Due to the fact that there was an irrelatively intact foundation and the locus was horizontally extensive, addition shovel tests were excavated at 10 m intervals at Locus 4 despite an absence of positive transect tests. Of these 19 delineation tests, two adjacent tests were positive: shovel tests N20 E35 and N30 E35. The soil profile for shovel tests N20 E25, a positive test located

near the center of the site was recorded as: 0-4 cm below surface (bs), 10YR 4/4 silty clay loam with artifacts; and subsoil 4-18 cm bs, 10YR 5/6 silty clay, sterile. The nearby tests also revealed that A horizon is quite thin, no doubt due to extensive past soil erosion.

Artifacts

The recovery from the two shovel tests is presented in Table 5-01. Of the 15 recovered items, over half are small flat pieces of blue plastic. The next most common artifact category is clear bottle glass (n=6), which is probably not even 50 years old. The lone remaining item is a plain whiteware sherd. The assemblage appears to date primarily to the late twentieth century.

Shovel test	Depth (cm)	Artifact Category	Comments	N	Mass (g)
N10 E35	0-8	bottle glass, clear		1	6.1
N20 E35	0-4	flat glass, clear		5	6.7
N20 E35	0-4	whiteware, plain		1	0.6
N20 E35	0-4	plastic	light blue	8	0.3
			Total:	15	

Table 5-01. Locus 4 artifact recovery.

Additional Remarks

The Tennessee Historic Commission recorded two structures at or near the Locus 4: SY-31607A and SY-31708A. Both structures were recorded in 1995, based off Tax Assessor records, and were described as single family, traditional dwellings (see Chapter IV). They were dated ca. 1935 and 1940, and were unoccupied/abandoned when recorded.

The following archival maps show one or two structures at Locus 4: the 1939 Shelby County road map (see Figure 4-06); the 1961 Bartlett, TN 15-min. quad (see Figure 4-08); 1965 Southeast Memphis, TN 7.5 min. quad (see Figure 4-09); and the 2016 Southeast Memphis, TN 7.5 min. quad (see Figure 1-01).

An aerial photo dated February 21, 1975 was retrieved from the USGS Earth Explorer web page (see Figure 4-11). This image reveals a farmstead that can be observed where THC properties SY-31708A and SY-31607A are recorded. An aerial photo dated February 12, 1990 was retrieved from the USGS Earth Explorer web page (see Figure 4-12). This photo shows the location of the 1975 farmstead is now within a barren area with several sheds and piles of material nearby. This leads us to suggest that the former farmstead was being re-used as by a quarry operation; possibly the former residence was an office.

We should also note that across the non-site area on the surrounding property abundant pieces of twisted sheet metal roofing were observed along many transects (Figure 5-16). We speculate that these were tossed from Locus 4 during a windstorm or tornado, likely after 2016 because the structure is shown on a quad of that data.

Recommendation

Locus 4 is recommended not eligible for the NRHP. Although two structures were recorded by the THC as dating to ca. 1935-1940, beyond the one whiteware sherd there is no archaeological evidence for a non-modern occupation of Locus 4. It is TDOA policy to not assign state trinomials to historic scatters lacking a definite pre-1950 occupation in the form of cultural material. No additional cultural resources work is recommended at Locus 4.

Figure 5-16. An example of the corrugated metal roofing found scattered across the MSCAA Holmes Road tract (DSCN2586).

Locus 5

Cultural Affiliation	Twentieth century
Site Type	
Site Size	100-x-10 m
Artifact Recovery Total	
Recommended NRHP Status	Not Eligible

Location and Setting

Locus 5 is a newly identified Historic earthen dam located in the southern part of the Holmes Road study tract, south of the MLGW transmission lines and east of Swinnea Road. The locus is a narrow embankment of raised earth running 30° off north-south between higher ridges to the north and south. A small intermittent stream that is a tributary of Rocky Creek bisects the feature. Sease et al. (1970) map the Locus 5 area as Loring silt loam, 8 to 12 percent slopes, eroded (LoD2; see Figure 2-02).

Archaeology

Locus 5 is wooded and there was generally poor surface visibility (Figures 5-17, 5-18 and 5-19). The dam is approximately 100 m long and the top is fairly narrow (2.5 m). It is about 10 m wide at the base, and is about 6 m tall at its highest point overlooking the tributary that bisects it. An ATV trail runs over the top of the northern section of the dam. The antiquity of the dam is indicated by the size of some of the hardwood trees growing out of it. Biologists had recently flagged out a wetland area to the east of the dam feature where the pond is thought to have been located.

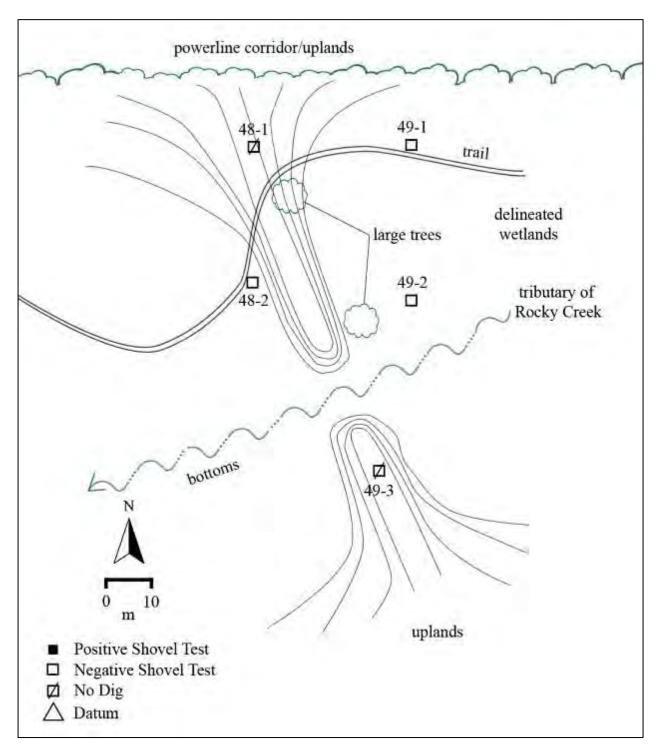


Figure 5-17. Locus 5 sketch map.

Transects 48 and 49 traversed Locus 5, but the nearby shovel tests were all negative for cultural material.

Artifacts

No artifacts were recovered or observed at Locus 5.

Figure 5-18. Photograph of Locus 5, view south (DSCN2614).

Figure 5-19. Locus 5, view southeast (DSCN2613).

Additional Remarks

None of the archival maps that were consulted indicate a dam, or a resulting pond to the east, at this location. However, both the 1982 and 1996 editions of the Pleasant Hill 7.5-min. quad shows contour lines that appear to match up with the dam feature as it exist today, as well as the gap or breach in the center of to where the tributary now flows. Thus the dam appears to have been abandoned before 1982. It was likely built in the early twentieth century, and may be somehow related to one of the gravel pit operations that operated elsewhere within the MSCAA Holmes Road tract.

Recommendation

Locus 5 is recommended not eligible for the NRHP. It is an abandoned probable early twentieth century dam that offers no significant future archaeological research potential. A site form was submitted for it, but the TDOA declined to assign it a trinomial. No additional cultural resources work is recommended at Locus 5.

DISCUSSION

The MSCAA Holmes Road tract failed to produce any evidence for Prehistoric occupation. Based on Peterson's (1979) sample survey of the Wolf River basin, we suggested that the expected number of Prehistoric sites was 2.02 (0.99 km²/0.49 sites per km²). Additionally in our "Survey Expectations" (see Chapter IV), it was noted that given the environmental setting (uplands), land-use history and resulting erosion of loess soils, it was concluded that the tract had a moderate to low probability of containing archaeological resources.

The only evidence for utilization of the tract consists of five twentieth-century Historic resources: four former residences or farmsteads (Loci 1, 2, 3 and 4), and one breached earthen dam (Locus 5). Three of the residences were razed and poorly preserved, and had no positive shovel tests. A fourth farmstead, where THC recorded two ca. 1935-1940 structures, exhibited a concrete foundation/basement with a free-standing chimney. Its small artifact assemblage and archival sources reveal that it was occupied late into the twentieth-century, and was possibly reused by a quarry operation. As expected, the identified Historic resources were encountered along or near Holmes Road and Swinnea Road; these roads were constructed after 1888 and before 1927.

More generally, the interior of the tract has been degraded by past quarry operations and subsequent erosion across denuded areas that were not excavated. The shovel tests generally revealed that the A horizon was thin and eroded, and thus was not conductive for archaeological site preservation. Even well managed soils in the west Tennessee loess region have experienced the loss of up to 2-3 ft. of soil, and the MSCAA Holmes Road tract was not well managed.

The other major Historic utilization of the tract consists of energy transmission corridors (Figures 5-20, 5-21 and 5-22; also see cover illustration). The 100 ft. wide Texas Gas pipeline corridor that bisects the northern portion of the tract has been in place since at least 1956 (see Figure 4-07). The 200 ft. wide MLGW corridor containing two high-volume electric transmission lines was constructed across the southern portion of the tract after 1975 and before 1982. Review of Google Earth imagery suggests that the 50 ft. wide Valero petroleum pipeline corridor that is parallel to Swinnea Road was constructed ca. 1991-1997; its supplies fuel to the Memphis International Airport.

Figure 5-20. Texas Gas corridor, view northeast toward Holmes Road (P4094663).

Figure 5-21. MLGW high-voltage corridor, view east (P4094679).

Figure 5-22. Valero petroleum corridor, view south (P4094678).

VI. SUMMARY & RECOMMENDATIONS

SUMMARY

At the request of Ensafe, Inc. and the Memphis Shelby County Airport Authority, Panamerican Consultants, Inc. performed a Phase I cultural resources survey of a 244. ac. (98.74 ha, or 0.38125 mi.²) tract located southeast of the intersection of Holmes Road and Swinnea Road. The purpose of the survey was to identify any archaeological sites or historic properties that are listed on, eligible for, or potentially eligible for the NRHP present within the APE, and to provide appropriate management recommendations for any such resources identified.

The study tract is a rectangular wooded parcel located 1.6 km south of Runway 36 R at the Memphis International Airport. It is bounded by Holmes Road on the north, Swinnea Road on the west, the Tennessee-Mississippi state line on the south, and a half section line within Section 17 of T1S R7W of the Chickasaw Meridian on the east (see Figure 1-01). Except for three energy transmission corridors, the property is wooded, and the terrain is hilly and dissected with elevations ranging from 390 ft. to <350 ft. (Figure 1-02).

Review of TDOA records revealed that there are no previously archaeological sites within the tract, but there are 11 within a 2-km radius (see Table 4-01). Examination of THC records revels that there are two ca. 1935-1940 one-story plain traditional residences on Swinnea Road within the tract: SY-31708A and SY-31607A (see Figure 4-02). Importantly, there is no NRHP listed property within the MSCAA Holmes Road tract, and the nearest NRHP listed property is Graceland, the home of the "King of Rock and Roll" Elvis Presley (1935-1977), which is 7 km to the northwest.

A number of archival maps were retrieved and assisted in developing a land-use pattern for the tract (see Figure 4-03—4-12); also see "Discussion" in Chapter V. These sources suggested five twentieth century domestic sites could be expected within the tract, and they should be distributed along and near Holmes Road and Swinnea Road. More generally, the environmental setting (uplands) and eroded loess soils across the majority of the tract led us to conclude that, overall, the tract has a moderate to low probability of containing archaeological resources (see "Survey Expectations" in Chapter IV).

A four-person crew conducted the fieldwork from April 7 to 21, 2020 (see "Acknowledgements" for personnel). Shovel testing at 30 m intervals was the primary site detection method. During the course of the survey 937 shovel test locations were documented within the tract, including two that were positive for artifacts, 768 that were negative for artifacts, and 167 "no-test" locations were planned tests were not excavated due to principally due to slope, water and past disturbances (see Figure 5-01). Appendix A provides the individual shovel tests data.

The survey resulted in the identification of five twentieth-century Historic loci; four former house or farmstead sites and a breached earthen dam. Site forms were completed for these and submitted to the TDOA; however they declined to assign them site numbers (i.e., trinomials). Only the farmstead (Locus 4) produced subsurface artifacts (N=15; see Table 5-01); this locus was where THC recorded two ca. 1935-1940 residences than no longer remain (SY-31708A and SY-31607A). No artifacts were collected from the other three house sites (Loci 1, 2 and 3) surfaces because the observed material all appeared modern.

RECOMMENDATIONS

All five identified Historic loci (Locus 1, Locus 2, Locus 3, Locus 4 and Locus 5) are recommended not eligible for nomination to the NRHP. They failed to produce unambiguous

artifactual evidence of pre-1933 occupation, and the TDOA declined to assign them trinomials. Beyond the component and locational data that are already in hand these loci are incapable of producing any significant archaeological data that is relevant to the twentieth-century occupation of southwest Tennessee. No further work is recommended.

VII. REFERENCES CITED

Anderson, D.G., R.J. Ledbetter, and L.D. O'Steen

1990 Paleoindian Period of Georgia. Georgia Archaeological Research Design Paper 6. Laboratory of Archaeology Series Report 28. University of Georgia, Athens.

Arnold, M.S.

1991 Colonial Arkansas 1686–1804. University of Arkansas Press, Fayetteville.

Atkinson, J.R.

2000 Death of a Chickasaw Leader: The Probable Grave of Piomingo. *Mississippi Archaeology* 35(2):124-172.

Blitz, John

1988 The Adoption of the Bow and Arrow in Prehistoric North American *Archaeologist* 9(2):123–145.

Braun, E.L.

1964 Deciduous Forests of Eastern North America. Hafner, New York.

Braund, K.E.H.

1993 Deerskins & Duffels. University of Nebraska Press, Lincoln.

Brister, R.C., J.W. Armon, and D.H. Dye

1981 American Mastodon Remains and Late Glacial Conditions at Nonconnah Creek, Memphis, Tennessee. Occasional Papers No. 10. Memphis State University Anthropological Research Center.

Broster, J.B., and L. Schneider

1977 Settlement and Subsistence: An Analysis of Middle Woodland Sites on the South Fork of the Forked Deer River, West Tennessee. *Journal of Alabama Archaeology* 23(1):59–70.

Buchner, C. Andrew

- 1992 Archaeological Investigations at the Lewis Site (3LE266): A Twentieth-Century Black Owned Farmstead on the St. Francis Floodway, Lee County, Arkansas. Garrow & Associates, Inc. Submitted to the U.S. Army Corps of Engineers, Memphis District.
- 2014 Phase I Cultural Resources Survey of the Proposed Shelby and Tchulahoma Cell Tower, Shelby County, Tennessee. Panamerican Consultants, Inc. Report No. 34005. Submitted to Terracon, Inc.
- 2017 Phase I Cultural Resources Survey for the Meltech Tract, Shelby County, Tennessee. Panamerican Consultants, Inc. Report No. 37195. Submitted to DHL Supply Chain.

Buchner, C. Andrew, and Eric S. Albertson

2003 Cultural Resources Alternative Analysis for the Proposed MATA Light Rail Corridor, Memphis, Tennessee. Panamerican Consultants, Inc., Memphis. Revised draft report submitted to Parsons-Brinckerhoff, Nashville, Tennessee.

Buchner, C. Andrew, and M. Childress

1991 Archaeological Investigations at 3SF332: An Early Mississippian and Tenant Period site on Cutoff Bayou, St. Francis County, Arkansas. Garrow & Associates, Inc. Report submitted to the U.S. Army Corps of Engineers, Memphis District.

Buchner, C. Andrew, and Robert Taylor

2016 Cultural Resources Survey of the 44 ac. Copart Expansion Tract, Shelby County, Tennessee. Panamerican Consultants, Inc. Report No. 36031. Submitted to Brophy-Heineke & Associates, Inc.

Buchner, C. Andrew and J. Andrew Saatkamp

2019 Phase I Archaeological Assessment for the Memphis Shelby County Airport Authority Tree Obstacle Clearing, Shelby County, Tennessee. Panamerican Consultants, Inc. Report No. 39019. Submitted to Ensafe, Inc.

Buchner, C. Andrew, and G.G. Weaver

1990 A Report of Archaeological Testing at Site 3CT263 within the Proposed Edmonson Wastewater Pond, Crittenden County, Arkansas. Garrow and Associates, Inc. Report submitted to the U.S. Army Corps of Engineers, Memphis District.

Byrne, Ryan and Milton Moreland

The Archaeology of Slavery: Potential Models from the Ames Plantation. Paper presented to the 2007 Mid-South Archaeological Conference, University of Memphis.

Caldwell, J.R.

1958 *Trend and Tradition in the Prehistory of the Eastern United States.* Memoirs No. 88. American Anthropological Association, Menasha, Wisconsin.

Childress, Mitchell R.

1990 Analysis and Interpretation of Artifact Collections from Four Archaeological Sites within the Country Club Gardens Permit Area, West Memphis, Crittenden County, Arkansas. Garrow & Associates, Inc. Report submitted to the U.S. Army Corps of Engineers, Memphis District.

Clifton, A.

2010 Architectural/Historical Assessment of the Proposed Improvements to Holmes Road, Shelby County, Tennessee. Panamerican Consultants, Inc., Memphis, Tennessee Report No. 29271. Prepared for Fisher & Arnold, Inc., Memphis, Tennessee.

Connolly, Daniel

2016 Memphis architect Roy Harrover dies. *Commercial Appeal*, December 16, 2016, Memphis, Tennessee.

Corgan, James X., and Emanuel Breitburg

1996 Tennessee's Prehistoric Vertebrates. Tennessee Division of Geology Bulletin 84.

Cowell, Randy C.

1977 Sedimentology and Scanning Electron Microscope Study of the Loess and Related Sediments along Nonconnah Creek, Memphis, Tennessee. Master's thesis, Memphis State University.

Daniel, Larry, and Lynn N. Bock

1996 Island No. 10 Struggle for the Mississippi Valley. University of Alabama Press, Tuscaloosa.

- Davies-Rodgers, Ellen
 - 1990 Along the Old Stage-Coach Road. The Plantation Press, Davies Plantation.
- de Gregory, J. Rocco, Scott C. Meeks, Ted Karpynec, Katherine Wright, Meghan Weaver, and Kate Manning
 - 2014 Phase I Cultural Resource Survey of Tennessee Valley Authority's Allen Fossil Plant Emission Control Project, Shelby County, Tennessee. Tennessee Valley Archaeological Research. Prepared for the Tennessee Valley Authority.
- Delcourt, Paul A., Hazel R. Delcourt and Roger T. Saucier
 - 1999 Late Quaternary Vegetation Dynamics in the Central Mississippi Valley. In Arkansas Archaeology, edited by R.C. Mainfort and M.D. Jeter, pp. 15-30. University of Arkansas Press.
- Dunnell, R.C., and J.K. Feathers
 - 1991 Late Woodland Manifestations of the Malden Plain, Southeast Missouri. In *Stability, Transformation, and Variation: The Late Woodland Southeast*, edited by M.S. Nassaney and C.R. Cobb, pp. 21–45. Plenum Press, New York.
- DuVall, Glyn D.
 - 1980 Memorandum addressed to Ben L. Smith, Administrator of the Environmental Planning Division, from Tennessee Department of Transportation.
- DuVall, Glyn D. and Jamie Evans
 - 1995 A Phase I Historic Archaeological Survey and Limited Testing of Ames Plantation, Fayette and Hardeman Counties, Tennessee. DuVall & Associates, Inc. Submitted to the Hobart Ames Foundation and the Tennessee Historical Commission.
- Dye, David H.
 - 1993 Reconstruction of the de Soto Expedition Route in Arkansas: the Mississippi Alluvial Plain. In *The Expedition of Hernando de Soto West of the Mississippi, 1541–1543*, edited by G.A. Young and M.P. Hoffman, pp. 36–57. Proceedings of the de Soto Symposia, 1988 and 1990. University of Arkansas Press, Fayetteville.
- Fenneman, N.M.
 - 1938 The Physiography of the Eastern United States. McGraw-Hill, New York.
- Fischer, F. W., and C. H. McNutt
 - 1962 Test Excavations at Pinson Mounds, 1961. Tennessee Archaeologist 18(1):1–13.
- Folmsbee, S.J., R.E. Corlew, and E.L. Mitchell
 - 1969 Tennessee: A Short History. University of Tennessee Press, Knoxville.
- Fuller, M.L.
 - 1912 *The New Madrid Earthquake*. USGS Bulletin 394. U.S. Government Printing Office, Washington, D.C.
- Galloway, Patricia A.
 - 1995 *Choctaw Genesis 1500-1700*. University of Nebraska Press, Lincoln.
- Garrow, Patrick H., Guy G. Weaver, and Charles R. Cobb (editors)
 - 1989 Nineteenth- to Twentieth-Century Agriculture in Southern Illinois: Pope County Farmstead Thematic Study, Shawnee National Forest. Garrow & Associates, Inc. Final report submitted to the National Forest Service, Shawnee National Forest.

Gerson, N.B.

1968 Franklin, America's "Lost State." Crowell-Collier Press, New York.

Goodyear, A.C., III

- 1974 *The Brand Site: A Techno-functional Study of a Dalton Site in Northeast Arkansas.* AAS Research Series 7. Arkansas Archeological Survey, Fayetteville, Arkansas.
- The Chronological Position of the Dalton Horizon in the Southeastern United States. *American Antiquity* 47:382–395.

Graham, R.W., C.V. Haynes, D.L. Johnson, and M. Kay

1981 Kimmswick: A Clovis-Mastodon Association in Eastern Missouri. *Science* 213:1115-1117.

Griffith, Glenn, James Omernik, and Sandra Azevedo

2004 Ecoregions of Tennessee Map. Interagency effort. Available at the U.S. Environmental protection Agency Western Ecology Division web site http://www.epa.gov/wed/pages/ecoregions/tn_eco.htm.

Higgins, Michael J.

1990 *The Nocta Site: The Early, Middle, and Late Archaic Occupations.* American Bottom Archaeology, FAI-270 Site Reports No. 21, Urbana.

Hockersmith, Kelly

2009 Phase I Archaeological Survey of the Proposed Improvements to Tchulahoma Road, Shelby County, Tennessee. TRC, Inc. Submitted to Gresham, Smith and Partners.

Holley, Donald

2000 The Second Great Emancipation: The Mechanical Cotton Picker, Black Migration, and How They Shaped the Modern South. University of Arkansas Press, Fayetteville.

Johnson, Edward A.

1998 Railroads. In the *Tennessee Encyclopedia of Culture and History*, edited by C.V. West, pp. 769-773. Tennessee Historical Society, Nashville.

Johnson, Jay K.

1993 Poverty Point Period Crystal Drill Bits, Microliths, and Social Organization in the Yazoo Basin, Mississippi. *Southeastern Archaeology* 12(1):59-64.

Kee, J.W., M. Prichard, and G. Lane, Jr.

1952 Archaeological Explorations on the Lower Reaches of Nonconnah Creek, Shelby County, Tennessee, 1952. Memphis Archaeological & Geological Society Publication No. 4.

Kern, John R.

1981 Study of Archaeological, Architectural and Historic Resources within the Memphis Metropolitan Area; Tennessee, Arkansas and Mississippi: Nonconnah Creek Area. Gilbert-Commonwealth. Submitted to the U.S. Army Corps of Engineers, Memphis District.

Law Environmental

1990 Remedial Investigation Final Report, Appendices. Law Environmental, Inc. Report submitted to the USACE, Huntsville District.

Lewis, R. Barry

The Western Kentucky Border and the Cairo Lowland. In *Prehistory of the Central Mississippi Valley*, edited by C. H. McNutt, pp. 47–76. University of Alabama Press, Tuscaloosa.

Lewis, Selma

1998 Abe Plough entry in *The Tennessee Encyclopedia of History & Culture*, Carroll Van West, Editor in Chief, pp. 737-738. The Tennessee Historical Society.

Magness, Perre

- 1983 *Good Abode*. The Junior League of Memphis, Inc. Memphis, Tennessee.
- 1994 Past Times: Stories of Early Memphis. Parkway Press, LLC, Memphis, Tennessee.

Mainfort, Robert C. (Editor)

1980 Archaeological Investigations at Fort Pillow State Historic Area: 1976–1978. Research Series No. 4. Tennessee Division of Archaeology, Nashville.

Mainfort, Robert C.

- 1986 *Pinson Mounds: A Middle Woodland Ceremonial Center.* Research Series No. 7. Tennessee Division of Archaeology, Nashville.
- 1994 Archaeological Investigations in the Obion River Drainage: The West Tennessee Tributaries Project. Research Series No. 10. Tennessee Department of Environment and Conservation, Division of Archaeology, Nashville.
- 1996a The Reelfoot Lake Basin, Kentucky and Tennessee. In *Prehistory of the Central Mississippi Valley*, edited by C. H. McNutt, pp. 77–96. University of Alabama Press, Tuscaloosa.
- 1996b Late Period Chronology in the Central Mississippi Valley: A Western Tennessee Perspective. *Southeastern Archaeology* 15(2):172–180.

McNutt, Charles H., Sr.

- 1988 The Shelby Forest Site (40SY489). Paper presented at the 45th Southeastern Archaeological Conference, New Orleans, Louisiana.
- 1996 Prehistory of the Central Mississippi Valley. University of Alabama Press, Tuscaloosa.
- The Shelby Forest Site in Southwest Tennessee and early Mississippian Rd-Filmed Pottery in the Central Mississippi Valley. *Southeastern Archaeology* 34(2):136-148.

McNutt, Charles H., Sr. and Edith C. Fain

1990 *The Shelby Forest Site (40SY489): Excavations in 1987.* Report on file, Tennessee Division of Archaeology, Nashville.

Memphis International Airport

2015 Airport History. Memphis International Airport webpage http://www.flymemphis.com/airport-history accessed November 5, 2018.

Moore, D.D, and J.O Jones Company (Editors)

1922 *Men of the South: a work for the newspaper reference library.* Southern Biographical Association, New Orleans.

Morse, Dan F.

- 1975 Paleo-Indian in the land of opportunity: Preliminary report on the excavations at the Sloan site (3GE94). In Cache River archeological project, assembled by Michael Shiffer and John House. *Arkansas Archeological Survey Research Series* 8:135-143.
- 1977 Dalton Settlement Pattern: Reply to Schiffer (2). *Plains Anthropologist* 22:149-158.
- 1997 *Sloan: A Paleoindian Dalton Cemetery in Arkansas.* Smithsonian Institution Press, Washington, D.C.

Morse, Dan F., and Phyllis A. Morse

1983 Archaeology of the Central Mississippi Valley. Academic Press, New York.

Morse, Dan F., and J.H. Polhemus

1963 Preliminary Investigations of the Pinson Mounds Site near Jackson, Tennessee. Submitted to the U. S. National Park Service.

Morton, Dorothy

1998 Fayette County. In *The Tennessee Encyclopedia of History and Culture*, pp. 303-304, Carroll Van West, editor in chief. The Tennessee Historical Society..

Nance, Benjamin C., and Sarah Levithol Eckhardt

Archaeological Survey of Tennessee's Rosenwald Schools. Poster presented at the Current Research in Tennessee Archaeology, 30th Annual Meeting, January 26-27, 2018. Montgomery Bell State Park Conference Center.

Nance, J.D.

1987 The Archaic Sequence in the Lower Tennessee-Cumberland-Ohio Region. Southeastern Archaeology 6(2):129–139.

Orser, C.E., Jr., A.M. Nekola, and J.L. Roark

1987 Exploring the Rustic Life: Multidisciplinary Research at Millwood Plantation, A Large Plantation in Abbeville County, South Carolina and Elbert County, Georgia. Russell Papers 1987, U.S. Army Corps of Engineers, Savannah District. Mid-American Research Center, Loyola University of Chicago. Submitted to the U.S. National Park Service, Interagency Archaeological Services Division, Atlanta.

Oster, Warren J., Guy G. Weaver, Jamison P. Richardson, and Jason M. Wyatt

2005 Archaeological and Osteological Investigations of the Providence Baptist Church Cemetery (40SY619), Memphis-Shelby County Airport, Memphis, Shelby County, Tennessee. Weaver & Associates, LLC. Submitted to the Memphis-Shelby County Airport Authority.

Peterson, Drexel A., Jr.

1979 An Archaeological Survey and Assessment of the Wolf River Watershed. Report submitted to the U.S. Department of Agriculture, Soil Conservation Service, Nashville.

Phillips, P.

1970 Archaeological Survey in the Lower Yazoo Basin, Mississippi, 1949–1955. Papers of the Peabody Museum of American Archaeology and Ethnology Vol. 60. Harvard University, Cambridge.

Price, Cynthia R.

1979 19th Century Ceramics in the Eastern Ozark Border Region. Monograph Series No. 1. Center for Archaeological Research, Southwest Missouri State University, Springfield.

Price, James E., and James J. Krakker

1975 Dalton Occupation of the Ozark Border. Museum Brief No. 20. Museum of Anthropology, University of Missouri, Columbia.

Prouty, Fred M. and Gary L. Barker

1996 A Survey of Civil War Period Military Sites in West Tennessee. Tennessee Department of Environment and Conservation, Division of Archaeology, Report of Investigations No. 11.

Prunty, M., Jr.

1955 The Renaissance of the Southern Plantation. *The Geographical Review* 45:459–491.

Ramenofsky, A.F.

1987 *Vectors of Death: The Archaeology of European Contact.* University of New Mexico Press, Albuquerque.

Redfield, Alden

1971 Dalton Project Notes, Vol. 1. Museum of Anthropology, University of Missouri, Columbia.

Redfield, A., and J.H. Moselage

1970 The Lace Place, A Dalton Project Site in the Western Lowland in Eastern Arkansas. *Arkansas Archaeologist* 11:21–44.

Rosenwinkel, Heidi, Kate Maning, and Elin Crook

2015 Phase I Archaeological Survey of Laydown Areas and Access Roads Associated with Tennessee Valley Authority's Planned Allen Fossil Plant Emission Control project in Shelby County, Tennessee. Tennessee Valley Archaeological Research. Prepared for the Tennessee Valley Authority.

Ryba, Beth A. and Marla J. Spry

2019 A Phase I Cultural Resources Survey of 30.7 Acres for the Memphis Readiness Center in Memphis, Shelby County, Tennessee. MRS Consultants, LLC. Submitted to the Tennessee Military Department, Tennessee Army National Guard.

Satz, R.N.

1979 Tennessee's Indian Peoples. University of Tennessee Press, Knoxville.

Saucier, R.T.

1978 Sand Dunes and Related Eolian Features of the Lower Mississippi River Alluvial Valley. *Geoscience and Man* 19:23–40.

Schiffer, M.B.

1975 An Alternative to Morse's Dalton Settlement Pattern Hypothesis. *Plains Anthropologist* 20:253-266.

Sease, E.C., R.L. Flowers, W.C. Mangrum, and R.K. Moore

1989 Soil Survey of Shelby County, Tennessee. U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the Tennessee Agricultural Experiment Station. U.S. Government Printing Office, Washington, D.C. Originally issued 1970.

Shelford, V.E.

1974 The Ecology of North America. University of Illinois Press, Urbana.

Smith. Bruce D.

The Archaeology of the Southeastern United States: From Dalton to DeSoto, 10,500–500 B.P. *Advances in World Archaeology* 5.

Smith, Eric

2009 Plough Blvd. Revamp Closer to Fruition. *Memphis Daily News*, December 15, 2009. Available on-line at https://www.memphisdailynews.com/news/2009/dec/15/plough-blvd-revamp-closer-to-fruition/print.

Smith, Gerald P.

- 1979 Archaeological Surveys in the Obion-Forked Deer and Reelfoot-Indian Creek Drainages: 1966 Through Early 1975. Memphis State University Anthropological Research Center Occasional papers No. 9.
- 1996 The Mississippi River Drainage of Western Tennessee. In *Prehistory of the Central Mississippi Valley*, edited by C.H. McNutt, pp. 97–118. University of Alabama Press, Tuscaloosa.

Smith, Gerald P., and C.H. McNutt

1988 Poverty Point in Tennessee. Paper presented at the 45th Annual Meeting of the Southeastern Archaeological Conference, New Orleans.

Smith, Gerald P., and R.A. Weinstein

1987 Cultural Resources Survey, Without Testing, of the Nonconnah Creek Project, Shelby County, Tennessee. Coastal Environments, Inc. Baton Rouge, Louisiana. Submitted to U. S. Army Corps of Engineers, Memphis District, Memphis, Tennessee.

Smith, Samuel D., and Benjamin C. Nance

2003 A Survey of Civil War Era Military Sites in Tennessee. Tennessee Department of Environment and Conservation, Division of Archaeology. Research Series No. 14. Nashville, Tennessee.

South, Stanley

1977 Method and Theory in Historic Archaeology. Academic Press, New York.

Springer, M.E., and J.A. Elder

1980 Soils of Tennessee. University of Tennessee Agricultural Experiment Station, Knoxville, and USDA Soil Conservation Service, Bulletin 596.

Stearns, R.G.

1975 Introduction. In *Field Trips in West Tennessee*, edited by Richard G. Stearns. Report of Investigations No. 36. Tennessee Division of Geology.

Stewart-Abernathy, L.C.

1999 From Famous Forts to Forgotten Farmsteads. In *Arkansas Archaeology: Essays in Honor of Dan and Phyllis Morse*, edited by R.C. Mainfort and M.D. Jeter, pp. 225-244. University of Arkansas Press, Fayetteville.

Stewart-Abernathy, L.C. and B. Watkins

Historic Archeology. In *A State Plan for the Conservation of Archeological Resource in Arkansas*, edited by H.A. Davis, pp. HA1-97. Arkansas Archeological Survey Research Series No. 21.

Swanton, John R.

1946 *The Indians of the Southeastern United States*. Bureau of American Ethnology Bulletin 137. Smithsonian Institution, Washington, D.C.

Van West, C., editor

1998 *The Tennessee Encyclopedia of History and Culture.* The Tennessee Historical Society, Nashville.

Walthall, John A.

1990 Prehistoric Indians of the Southeast: Archaeology of Alabama and the Middle South. Originally published 1980. University of Alabama Press, Tuscaloosa.

Weaver, Guy G.

- 1998 Archaeological Investigations of an Abandoned Cemetery at the Memphis International Airport, Memphis, Shelby County, Tennessee. Weaver & Associates. Report submitted to Federal Express Corporation and Allen Hoshall.
- The Saffron Plague: The Archaeology of the Yellow Fever Epidemic in Memphis. In *Proceedings of the 21ST Mid-South Archaeological Conference: Ethnicity in Archaeology*, edited by C.A. Buchner, pp. 87-95. Panamerican Consultants, Inc. Special Publication No. 2., Memphis.

Weaver, G.G., M.R. Childress, C.A. Buchner, and M.E. Starr

- 1996 Archaeological Investigations at Three Sites near Arlington, State Route 385 (Paul Barrett Parkway), Shelby County, Tennessee. Garrow & Associates, Inc., Memphis. Submitted to Parsons De Leuw, Inc., Memphis, and the Tennessee Department of Transportation, Nashville.
- 1999 Archaeological Investigations at Three Sites Near Arlington, State Route 385 (Paul Barrett Parkway), Shelby County, Tennessee. Tennessee Department of Transportation Environmental Planning Office Publications in Archaeology No. 4.

Weaver, G.G., J.L. Hopkins, and M. Oats

1998 Archaeological Testing and Assessment at the Hilderbrand/McTighe House (40SY615), Memphis, Tennessee. Weaver and Associates, Memphis. Submitted to the Memphis Shelby County Airport Authority, Memphis.

- Weaver, Guy G., John H. Hopkins, Marsha R. Oates, Mary E. Starr, Anna Lunn, Emanuel Breitburg, Gary Crites, and Douglas Frink.
 - 2011 The Hilderbrand/McTighe House (40SY615): Archaeological Testing and Data Recovery at a Nineteenth Century Plantation in Memphis, Shelby County, Tennessee. Weaver & Associates, LLC. Submitted to the Memphis-Shelby County Airport Authority.

Williams, S.

- 1957 The Island 35 Mastodon. *American Antiquity* 22:359–372.
- 1980 Armorel: A Very Late Phase in the Lower Mississippi Valley. Southeastern Archaeological Conference Bulletin 22:105-110.
- 1990 The Vacant Quarter and Other Late Events in the Lower Valley. *In Towns and Temples Along the Mississippi*, edited by D.H. Dye and C.A. Cox, pp. 170–180. University of Alabama Press, Tuscaloosa.
- 1991 Poverty Point North and Some Thoughts on Origins. In *The Poverty Point Culture:* Local Manifestations, Subsistence Practices, and Trade Networks, edited by Kathleen M. Byrd. Geoscience & Man Vol. 29, Louisiana State University, Baton Rouge.

Wilson, J.S.

1990 We've Got Thousands of These! What Makes an Historic Farmstead Significant? *Historic Archaeology* 24(2):23–33.

Yenne, B.

1986 The Encyclopedia of North American Indian Tribes. Arch Cape Press, New York.

APPENDIX A: SHOVEL TEST DATA

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
1	1	17		0-6 cmbs, 10YR 4/4 silty clay; 6-17 cmbs, 7.5YR 6/4 clay	
1	2	19	0	0-11 cmbs, 10YR 4/4 silty clay loam; 11-19 cmbs, 10YR 5/6 silty clay; 19 cmbs, root impasse	
1	3	17		0-6 cmbs, 10YR 4/4 silty clay; 6-17 cmbs, 10YR 5/6 clay	
1	4	27		0-16 cmbs, 10YR 4/4 silty clay loam; 16-27 cmbs, 10YR 5/6 clay	
1	5	16	0	0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 clay	
1	6	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 clay	
1	7	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 clay	
1	8	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 clay	
1	9	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
1	10	16		cmbs, 10 YR 5/6 clay 0-3 cmbs, 10 YR 4/4 silty clay loam; 3-19	
1	11	19		cmbs, 10YR 6/6 compact silty clay 0-13 cmbs, 10YR 5/3 + 5/8 mottled silty	
1	12	13		clay 0-12 cmbs, 10YR 4/6 silty clay loam; 12-25	
2	1	25		cmbs, 10YR 5/8 silty clay 0-8 cmbs, 10YR 4/4 silty clay loam; 8-22	
2	3	22		cmbs, 10YR 5/8 silty clay 0-2 cmbs, 10YR 3/6 silty clay loam; 2-26	
2 2	4	26		cmbs, 10YR 5/8 silty clay 0-17 cmbs, 10YR 4/6 silty clay loam; 17-28	
2	5	31		cmbs, 10YR 5/8 silty clay 0-12 cmbs, 10YR 4/6 silty clay loam; 12-31	
2	6	22	<u> </u>	cmbs, 10YR 5/8 silty clay 0-6 cmbs, 10YR 4/6 silty clay loam; 6-22	
2	7	25		cmbs, 10YR 5/8 silty clay 0-7 cmbs, 10YR 4/6 silty clay loam; 7-25 cmbs, 10YR 5/8 silty clay	
2	8	21	۵	0-4 cmbs, 10YR 4/6 silty clay loam; 4-21 cmbs, 10YR 5/8 silty clay	
2	9	22	٥	0-4 cmbs, 10YR 4/6 silty clay loam; 4-22 cmbs, 10YR 5/8 silty clay	
2	10	28		0-7 cmbs, 10YR 4/6 silty clay loam; 7-28 cmbs, 10YR 5/8 silty clay	
3	1	34	0	0-34 cmbs, 10YR 6/6 silty clay loam; 34 cmbs, roots	
3	2	36		0-8 cmbs, 10YR 4/6 silty clay loam; 8-36 cmbs, 10YR 6/6 silty clay loam	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
3	3	12		0-12 cmbs, 10YR 6/4 silty clay; 12 cmbs, roots	large roots
3	4	30	٥	0-6 cmbs, 10YR 4/6 silty clay loam; 6-30 cmbs, 10YR 6/6 silty clay	
3	5	14		0-14 cmbs, 10YR 6/6 silty clay; 14 cmbs, roots	large roots
3	6	38		0-12 cmbs, 10YR 4/6 silty clay loam; 12-38 cmbs, 10YR 6/6 silty clay loam	
3	7	29	<u> </u>	0-16 cmbs, 10YR 4/6 silty clay loam; 16-29 cmbs, 10YR 6/6 silty clay loam	1
3	8	0	Ø		slope
4	1	23		0-9 cmbs, 10YR 4/4 silty clay loam; 9-23 cmbs, 10YR 5/6 compact silty clay	
4	2	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 compact silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
4	3	21		cmbs, 10YR 5/6 compact silty clay loam; 14 21 cmbs, 10YR 5/8 compact silty clay	
4	4	17	0	0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 saturated silty clay	gravel
4	5	17	٥	0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/6 silty clay / clay	
4	6	17		0-6 cmbs, 10YR 5/6 silty clay loam; 6-17 cmbs, 10YR 6/4 compact silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
4	7	18		cmbs, 10 YR 6/3 + 5/8 silty clay / clay 0-4 cmbs, 10 YR 6/3 + 5/8 silty clay / clay 0-4 cmbs, 10 YR 4/4 silty clay loam; 4-16	
4	8	16		cmbs, 10 YR 5/6 clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
4	9	14		cmbs, 10 YR 5/6 compact silty clay 0-7 cmbs, 10YR 4/4 silty clay loam; 7-21	
4	10	21		cmbs, 10YR 5/6 compact silty clay	
5	1	13		0-13 cmbs, 10YR 4/6 silty clay loam	
5	2	22		0-8 cmbs, 10YR 3/4 silty clay loam; 8-22 cmbs, 10YR 5/8 silty clay	
5	3	21		0-4 cmbs, 10YR 3/4 silty clay loam; 4-21 cmbs, 10YR 5/8 silty clay	
5	4	19	0	0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/8 silty clay	
5	5	27		0-13 cmbs, 10YR 4/4 silty clay loam; 13-27 cmbs, 10YR 5/8 silty clay	
5	6	23		0-4 cmbs, 10YR 3/6 silty clay loam; 4-23 cmbs, 10YR 5/8 silty clay	
5	7	22		0-3 cmbs, 10YR 4/4 silty clay loam; 3-22 cmbs, 10YR 5/8 silty clay	
5	8	24	0	0-11 cmbs, 10YR 3/4 silty clay loam; 11-24 cmbs, 10YR 5/8 silty clay	
5	9	27	<u> </u>	0-14 cmbs, 10YR 4/4 silty clay loam; 14-27 cmbs, 10YR 5/8 silty clay	
6	1	18		0-18 cmbs, 10YR 5/8 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
6	2	20	۵	0-8 cmbs, 10YR 4/2 + 3/6 silty clay loam; 8-20 cmbs, 10YR 6/3 + 5/8 mottled silty clay	
6	3	17	۵	0-3 cmbs, 10YR 3/6 silty clay loam; 3-17 cmbs, 10YR 5/8 silty clay	
6	4	16		0-4 cmbs, 10YR 3/6 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
6	5	21		0-2 cmbs, 10YR 4/4 silty clay loam; 2-21 cmbs, 10YR 5/8 silty clay	
6	6	26		0-11 cmbs, 10YR 3/6 silty clay loam; 11-26 cmbs, 10YR 5/8 silty clay	
6	7	21		0-8 cmbs, 10YR 3/4 silty clay loam; 8-21 cmbs, 10YR 5/8 silty clay	
6	8	28		0-14 cmbs, 10YR 3/3 silty clay loam; 14-28 cmbs, 10YR 5/8 silty clay	
7	1	14		0-14 cmbs, 10YR 5/6 + 6/4 compact silty clay mottled	
7	2	16	ū	0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 clay	
7	3	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/6 clay	
7	4	12		0-12 cmbs, 10YR 5/2 + 5/8 saturated silty clay	
7	5	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay / clay	
7	6	15		0-3 cmbs, 10YR 4/4 silty clay loam; 3-15 cmbs, 10YR 5/6 compact silty clay	
7	7	14		0-14 cmbs, 10YR 5/6 compact silty clay	
7	8	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 compact silty clay	
8	1	18	٦	0-6 cmbs, 10YR 3/6 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
8	2	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 6/4 + 5/8 mottled silty clay	saturated
8	3	29		0-12 cmbs, 10YR 3/4 silty clay loam; 12-29 cmbs, 10YR 5/8 silty clay	saturated
8	4	21		0-9 cmbs, 10YR 3/4 silty clay loam; 9-21 cmbs, 10YR 5/8 clay	
8	5	23		0-7 cmbs, 10YR 3/4 silty clay loam; 7-23 cmbs, 10YR 5/8 silty clay	
8	6	24		0-9 cmbs, 10YR 3/6 silty clay loam; 9-24 cmbs, 10YR 5/8 silty clay	
8	7	19		0-4 cmbs, 10YR 5/4 silty clay loam; 4-19 cmbs, 10YR 5/8 silty clay	
8	8	16		0-6 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 mottled silty clay	
9	1	14		0-4 cmbs, 10YR 4/4 silty clay; 4-14 cmbs, 10YR 5/6 clay	
9	2	0	Ø		drainage

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
9	3	12		0-4 cmbs, 10YR 4/4 silty clay loam; 4-12	
9	3	12	J	cmbs, 10 YR $6/3 + 5/6$ compact clay	
9	4	12		0-2 cmbs, 10YR 4/4 silty clay; 2-12 cmbs,	
,		12	_	10YR $6/3 + 5/6$ clay	
				0-3 cmbs, 10YR 4/4 silty clay loam; 3-21	
9	5	29		cmbs, 10YR 5/6 silty clay loam; 21-29	
				cmbs, 10YR 5/8 silty clay	
0		25	_	0-6 cmbs, 10YR 4/4 silty clay loam; 6-16	
9	6	25		cmbs, 10YR 5/6 silty clay; 16-25 cmbs,	
				10YR 6/4 + 5/6 compact silty clay 0-17 cmbs, 10YR 5/6 silty clay loam; 17-27	
9	7	27		cmbs, 10 YR 5/8 clay	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-16	
10	1	16		cmbs, 10YR 5/8 silty clay + gravel	strat II - 90% gravel
				0-4 cmbs, 10YR 3/4 silty clay loam; 4-15	
10	2	15		cmbs, 10YR 5/8 silty clay + gravel	strat II - 70% gravel
10	3	0	Ø	,	inundated
10	4			0-14 cmbs, 10YR 4/4 silty clay loam; 14-28	
10	4	28		cmbs, 10YR 5/8 silty clay	
10	_	10		0-4 cmbs, 10YR 4/4 silty clay loam; 4-12	
10	5	12		cmbs, 10YR 5/8 silty clay + gravel	strat II - 90% gravel
10	6	24		0-16 cmbs, 10YR 3/6 silty clay loam; 16-24	
10	U	24		cmbs, 10YR 5/8 silty clay	
11	1	19		0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
11	1	17	_	cmbs, 10YR 5/6 compact silty clay	
11	2	6		0-6 cmbs, 10YR 4/4 silty clay loam; 6 cmbs,	
			_	gravel impasse	
11	3	18		0-6 cmbs, 10YR 4/4 silty clay; 6-18 cmbs,	
				10YR 5/6 clay 0-11 cmbs, 10YR 4/4 silty clay loam; 11-21	
11	4	21		cmbs, 10YR 5/8 compact silty clay	
				0-12 cmbs, 10YR 4/4 silty clay loam; 12-21	
11	5	21		cmbs, 10YR 6/4 clay	few gravel
11	6	12		0-12 cmbs, 10YR 5/6 clay	
				0-4 cmbs, 10 YR 4/4 silty clay loam; 4-16	
11	7	16		cmbs, 10YR 5/6 silty clay	
10	1	12	_,	0-3 cmbs, 10YR 4/4 silty clay loam; 3-13	
12	1	13		cmbs, 10YR 5/6 + 6/4 compact silty clay	
				0-8 cmbs, 10YR 4/4 silty clay loam; 8-13	
12	2	21		cmbs, 10YR 6/3 silty clay loam; 13-21	
				cmbs, 10YR 5/8 compact silty clay	
	_		_	0-11 cmbs, 10YR 4/4 silty clay loam; 11-26	
12	3	26		cmbs, 10YR 5/8 compact silty clay loam	
12	4	19		0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
				cmbs, 10YR 5/8 clay 0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
12	5	19		cmbs, 10 YR 5/8 compact silty clay	
				0-7 cmbs, 10YR 4/4 silty clay loam; 7-17	
12	6	17		cmbs, 10YR 5/8 compact silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
13	1	21		0-8 cmbs, 10YR 5/6 silty clay; 8-21 cmbs, 10YR 5/8 compact silty clay	
13	2	22		0-9 cmbs, 10YR 3/6 silty clay loam; 9-22	
13	3	17		cmbs, 10YR 5/8 silty clay 0-6 cmbs, 10YR 4/4 silty clay loam; 6-19	
	_			cmbs, 10YR 5/8 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-28	
13	4	28		cmbs, 10YR 5/8 + 6/3 mottled silty clay 0-4 cmbs, 10YR 3/6 silty clay loam; 4-32	
13	5	32		cmbs, 10YR 5/8 hydric clay	
13	6	20		0-3 cmbs, 10YR 4/4 silty clay loam; 3-20 cmbs, 10YR 5/8 silty clay	
14	1	17	۵	0-9 cmbs, 10YR 4/4 silty clay loam; 9-17 cmbs, 10YR 5/6 silty clay loam; 17 cmbs, root impasse	
14	2	18	۵	0-8 cmbs, 10YR 4/4 silty clay loam; 8-18 cmbs, 10YR 5/6 silty clay	
14	3	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
14	4	16		0-5 cmbs, 10YR 4/4 silty clay loam; 5-16 cmbs, 10YR 5/8 silty clay	
14	5	0	Ø		slope, near road
15	1	15		0-4 cmbs, 10YR 4/4 silty clay loam; 4-15 cmbs, 10YR 5/6 silty clay	
15	2	24	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 6/4 silty clay loam; 16-24 cmbs, 10YR 5/6 silty clay	
15	3	21		0-6 cmbs, 10YR 4/4 silty clay loam; 6-21 cmbs, 10YR 5/6 compact silty clay	
15	4	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/8 silty clay / clay	
16	1	26		0-26 cmbs, 10YR 5/8 silty clay	
16	2	21	<u> </u>	0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 silty clay; 14-21 cmbs, 7.5YR 5/8 silty clay + gravel	gravel
16	3	19		0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/8 silty clay	
16	4	14	۵	0-3 cmbs, 10YR 3/4 silty clay loam; 3-14 cmbs, 10YR 5/8 clay	
17	1	6		0-6 cmbs, 10YR 4/4 silty clay loam; 6 cmbs, root impasse	
17	2	0	Ø		lake, standing water
17	3	32	٦	0-7 cmbs, 10YR 4/4 silty clay loam; 7-22 cmbs, 10YR 5/8 silty clay loam; 22-32 cmbs, 7.5YR 5/8 compact silty clay	
18	1	9	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-9 cmbs, 10YR 5/8 compact silty clay + gravel	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
18	2	14	۵	0-4 cmbs, 10YR 3/4 silty clay loam; 4-14 cmbs, 10YR 5/8 compact silty clay + gravel	
18	3	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 6/3 + 5/8 mottled clay	
19	1	15	۵	0-12 cmbs, 10YR 4/6 silty clay loam; 12-15 cmbs, 10YR 5/8 compact silty clay + gravel	
19	2	18		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
20	1	0	Ø		slope to drainage / ditch
21	1	13	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-13 cmbs, 10YR 5/6 silty clay loam; 13 cmbs, root impasse	
21	2	32		0-22 cmbs, 10YR 3/3 silty clay loam; 22-32 cmbs, 10YR 6/3 + 5/8 mottled silty clay	
21	3	22		0-11 cmbs, 10YR 3/3 silty clay loam; 11-22 cmbs, 10YR 6/3 + 5/8 mottled clay	
21	4	14	۵	0-8 cmbs, 10YR 3/3 silty clay loam; 8-14 cmbs, 10YR 5/8 silty clay loam; 14 cmbs, root impasse	
21	5	7		0-7 cmbs, 10YR 3/3 silty clay loam; 7 cmbs, gravel impasse	85% gravel
21	6	19		0-6 cmbs, 10YR 4/4 silty clay loam; 6-19 cmbs, 10YR 5/6 silty clay	few gravel
21	7	34	۵	0-11 cmbs, 10YR 4/4 silty clay loam; 11-34 cmbs, 10YR 5/6 compact silty clay loam	
21	8	19		0-7 cmbs, 10YR 4/4 silty clay loam; 7-19 cmbs, 10YR 5/6 silty clay / clay	
21	9	24		0-6 cmbs, 10YR 4/4 silty clay loam; 6-24 cmbs, 10YR 5/6 silty clay / clay	
21	10	24		0-14 cmbs, 10YR 4/4 silty clay loam; 14-24 cmbs, 10YR 5/8 clay	
21	11	21		0-11 cmbs, 10YR 4/4 silty clay loam; 11-21 cmbs, 10YR 5/8 compact silty clay	
21	12	25	۵	0-12 cmbs, 10YR 4/4 silty clay loam; 12-25 cmbs, 10YR 5/8 silty clay	
21	13	17		0-7 cmbs, 10YR 4/4 silty clay loam; 7-17 cmbs, 10YR 5/6 compact silty clay	
21	14	24		0-12 cmbs, 10YR 4/4 silty clay loam; 12-24 cmbs, 10YR 5/8 silty clay loam	
21	15	0	Ø		slope
21	16	21	۵	0-8 cmbs, 10YR 3/4 silty clay loam; 8-21 cmbs, 10YR 5/8 silty clay	
21	17	19	۵	0-7 cmbs, 10YR 4/4 silty clay loam; 7-19 cmbs, 10YR 5/8 compact silty clay loam	
21	18	21	ū	0-8 cmbs, 10YR 4/4 silty clay loam; 8-21 cmbs, 10YR 5/8 compact silty clay loam	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
21	19	0	Ø		drainage
21	20	10	_	0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	
21	20	18		cmbs, 10YR 5/8 silty clay	
				0-8 cmbs, 10YR 4/4 silty clay loam; 8-18	
21	21	18		cmbs, 10YR 6/3 + 5/8 compact silty clay	
				loam 0-14 cmbs, 10YR 4/4 silty loam; 14-31	
22	1	31		cmbs, 10YR 6/4 silty clay loam	
				0-18 cmbs, 10YR 4/4 silty loam; 18-38	
22	2	38		cmbs, 10YR 6/6 silty clay loam	
				0-9 cmbs, 10YR 4/6 silty clay loam; 9-21	
22	3	21		cmbs, 10YR 6/6 silty clay	
22	4	0	Ø		tree fall
22	5	15		0-15 cmbs, 10YR 6/6 silty clay	
22	6	20		0-20 cmbs, 10YR 6/6 silty clay	
22	7	21	п	0-6 cmbs, 10YR 4/6 silty clay loam; 6-21	
22	/	21		cmbs, 10YR 6/6 silty clay	
22	8	24		0-10 cmbs, 10YR 4/6 silty clay loam; 10-24	
		21	_	cmbs, 10YR 6/6 silty clay	
22	9	20		0-4 cmbs, 10YR 4/6 silty clay loam; 4-20	
22	10	1.0		cmbs, 10YR 6/6 silty clay	
22	10	16		0-16 cmbs, 10YR 6/6 silty clay	
22	11	21		0-6 cmbs, 10YR 4/6 silty clay loam; 6-21 cmbs, 10YR 6/6 silty clay	
				emes, 1011t 6/6 shry etay	bare ground, good
22	12	0	Ø		vis, washed out
22	13	30		0-8 cmbs, 10YR 4/6 silty clay loam; 8-30	
22	13	30		cmbs, 10YR 6/6 silty clay loam	
			_	0-4 cmbs, 10YR 4/6 silty loam; 4-16 cmbs,	
22	14	16		10YR 6/6 silty clay loam; 16 cmbs root	
22	1.5	0	a	impasse	4mail di
22	15	0	Ø	0-10 cmbs, 10YR 4/6 silty clay loam; 10-26	trail, good vis
22	16	26		cmbs, 10 YR 6/6 silty clay 10am; 10-26	
	. –			0-20 cmbs, 10YR 4/4 silty clay loam; 20-30	
22	17	30		cmbs, 10YR 6/6 silty clay	
				0-12 cmbs, 10YR 4/4 silty clay loam; 12-22	
22	18	22		cmbs, 10YR 5/6 silty clay; 22 cmbs, root	
				impasse	
22	19	26		0-16 cmbs, 10YR 4/4 silty loam; 16-26	
<u> </u>			_	cmbs, 10YR 6/6 silty clay loam	longo milo of
22	20	0	Ø		large pile of concrete rubble
22	21	29		0-14 cmbs, 10YR 4/4 silty clay loam; 14-29	
22	41	23	J	cmbs, 10YR 6/4 silty clay	
23	1	18		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	
		-	_	cmbs, 10YR 5/8 silty clay	
23	2	26		0-16 cmbs, 10YR 5/8 compact silty clay loam; 16-26 cmbs, 10YR 5/6 silty clay	
23	3	0	Ø	10-20 cmos, 10 1 K 3/0 sitty ciay	slope
23	J	9	×		biope

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
		(===)		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
23	4	25		cmbs, 10YR 5/6 silty clay loam; 17-25	
				cmbs, 10 YR $6/3 + 5/8$ silty clay	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-15	
23	5	23		cmbs, 10YR 5/8 silty clay loam; 15-23	
				cmbs, 10YR 5/6 silty clay	
23	6	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
23	U	17]	cmbs, 10YR 5/8 silty clay	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-18	
23	7	29		cmbs, 10YR 5/8 silty clay loam; 18-29	
				cmbs, 10YR 5/6 silty clay / clay	
23	8	17		0-6 cmbs, 10YR 5/6 silty clay loam; 6-17	
23	0	17	,	cmbs, 10YR 6/2 + 5/8 mottled silty clay	
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
23	9	18		cmbs, 10 YR $6/3 + 5/8$ compact silty clay	
				loam	
				0-12 cmbs, 10YR 5/4 silty clay loam; 12-23	
23	10	23		cmbs, 10YR 6/2 + 7.5YR 6/8 compact	
				mottled silty clay loam	
23	11	17		0-7 cmbs, 10YR 4/4 silty clay loam; 7-17	
				cmbs, 10YR 5/6 compact silty clay	
				0-7 cmbs, 10YR 4/4 silty clay loam; 7-22	
23	12	22		cmbs, 10 YR $6/3 + 7.5$ YR $5/6$ mottled silty	
				clay	
23	13	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
				cmbs, 10YR 5/8 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
23	14	17		cmbs, 10YR 6/3 + 5/8 silty clay	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-18	
23	15	18		cmbs, 10YR 5/6 silty clay	
				0-7 cmbs, 10YR 4/4 silty clay loam; 7-19	
23	16	19		cmbs, 10YR 5/6 compact silty clay loam	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6 cmbs,	
23	17	6		root impasse	
				0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
23	18	19		cmbs, 10 YR $5/6 + 6/2$ mottled compact silty	
			_	clay loam	
				0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	
23	19	18		cmbs, $10YR 5/6 + 6/3$ mottled compact silty	
				clay loam	
				0-9 cmbs, 10YR 4/4 silty clay loam; 9-18	
23	20	26		cmbs, 10YR 5/8 silty clay loam; 18-26	
				cmbs, 10 YR $5/6 + 6/3$ mottled silty clay	
23	21	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
23	21	1 /		cmbs, $10YR 5/6 + 6/3$ mottled silty clay	
24	1	23		0-11 cmbs, 10YR 5/4 sandy clay loam; 11-	
∠+	1	23]	23 cmbs, 10YR 6/4 sandy clay	
24	2	16		0-5 cmbs, 10YR 5/6 sandy clay loam; 5-16	
				cmbs, 10YR 6/6 sandy clay	
24	3	13		0-13 cmbs, 10 YR $5/6 + 6/1$ mottled clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
24	4	14		0-14 cmbs, 10YR 6/6 sandy clay	
24	5	17		0-17 cmbs, 10YR 6/6 sandy clay	
24	6	20		0-9 cmbs, 10YR 5/6 sandy clay loam; 9-20	
24	O	20		cmbs, 10YR 6/6 sandy clay	
24	7	26		0-26 cmbs, 10YR 6/6 sandy clay	
24	8	0	Ø		creek, stream
24	9	19		0-8 cmbs, 10YR 5/6 sandy clay loam; 8-19	
21			_	cmbs, 10YR 6/6 sandy clay	
24	10	15		0-4 cmbs, 10YR 5/6 sandy clay loam; 4-15	
24	1.1	1.4		cmbs, 10YR 6/6 sandy clay	
24	11	14		0-14 cmbs, 10YR 5/6 + 6/1 mottled clay	1
24	12	0	Ø		pond
24	13	0	Ø	0.12	pond
24	14	13		0-13 cmbs, 10YR 5/6 + 6/1 mottled clay	
24	15	16		0-16 cmbs, 10YR 5/6 + 6/1 mottled clay 0-5 cmbs, 10YR 5/6 sandy clay loam; 5-17	
24	16	17		cmbs, 10YR 6/6 sandy clay	
				0-3 cmbs, 10YR 5/6 sandy clay loam; 3-15	
24	17	15		cmbs, 10YR 6/6 sandy clay	
24	18	16		0-16 cmbs, 10YR 6/6 sandy clay	
24	19	15		0-15 cmbs, 10YR 6/6 sandy clay	
				0-12 cmbs, 10YR 5/4 sandy clay loam; 12-	
24	20	23		23 cmbs, 10YR 5/6 sandy clay	
24	21	1.4		0-14 cmbs, 10YR 3/1 sandy loam; 14 cmbs,	
24	21	14		gravel impasse	
24	22	13		0-13 cmbs, 10YR 6/6 clay	
24	23	11		0-11 cmbs, 10YR 5/6 sandy clay	
24	24	13		0-13 cmbs, 10YR 6/6 clay	
25	1	18		0-4 cmbs, 10YR 4/4 silty loam; 4-18 cmbs,	
				10YR 6/6 silty clay loam	
25	2	14		0-14 cmbs, 10YR 6/6 silty clay	
25	3	20		0-8 cmbs, 10YR 4/4 silty clay loam; 8-20	
				cmbs, 10YR 6/6 silty clay	large pile of concrete
25	4	0	Ø		rubble
25	5	20		0-20 cmbs, 10YR 5/3 + 5/6 silty clay	Tubble
25	6	14		0-14 cmbs, 10YR 6/6 silty clay	
				0-8 cmbs, 10 YR 4/4 silty clay loam; 8-24	
25	7	24		cmbs, 10YR 6/4 silty clay	
25	0	2.4		0-6 cmbs, 10YR 4/6 silty clay loam; 6-24	
25	8	24		cmbs, 10YR 6/4 silty clay	
25	9	21		0-21 cmbs, 10YR 6/8 silty clay	
25	10	28		0-5 cmbs, 10YR 4/4 silty loam; 5-28 cmbs,	
				10YR 6/6 silty clay loam	
25	11	18		0-18 cmbs, 10YR 6/4 + 5/8 silty clay	next to pond
25	12	16		0-16 cmbs, 10YR 6/6 + 6/2 clay	
25	13	0	Ø		pond berm
25	14	26		0-4 cmbs, 10YR 4/4 silty loam; 4-26 cmbs, 10YR 6/8 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
25	15	28		0-10 cmbs, 10YR 4/4 silty clay loam; 10-28 cmbs, 10YR 6/4 silty clay	creek bank
25	16	0	Ø		creek
25	17	0	Ø		creek
25	18	30		0-30 cmbs, 10YR 6/6 silty clay	
25	19	27		0-27 cmbs, 10YR 6/6 silty clay	
25	20	24		0-24 cmbs, 10YR 6/6 silty clay	
25	21	18		0-18 cmbs, 10YR 6/8 silty clay	
25	22	21		0-21 cmbs, 10YR 6/8 silty clay	
25	23	24		0-24 cmbs, 10YR 6/6 silty clay	
26	1	20		0-4 cmbs, 10YR 4/4 silty clay loam; 4-20 cmbs, 10YR 6/4 silty clay	
26	2	24		0-5 cmbs, 10YR 4/4 silty clay loam; 5-24 cmbs, 10YR 6/4 silty clay	
26	3	21		0-21 cmbs, 10YR 6/4 silty clay	concrete pile to west
26	4	0	Ø		standing water
26	5	28		0-4 cmbs, 10YR 4/6 silty clay loam; 4-28 cmbs, 10YR 6/4 silty clay	
26	6	10		0-10 cmbs, 10YR 6/4 silty clay loam; 10 cmbs, water	
26	7	16		0-16 cmbs, 10YR 6/4 silty clay; 16 cmbs, water	
26	8	26		0-26 cmbs, 10YR 6/6 silty clay	
26	9	27		0-8 cmbs, 10YR 6/4 silty clay; 8-27 cmbs, 10YR 6/6 silty clay	
26	10	18		0-18 cmbs, 10YR 6/6 silty clay	
26	11	0	Ø		slope
26	12	0	Ø		creek bank
26	13	0	Ø		creek
26	14	20		0-20 cmbs, 10YR 6/6 silty clay	saturated
26	15	0	Ø		slope, eroded gulley
26	16	24		0-24 cmbs, 10YR 6/6 silty clay	saturated
26	17	16		0-2 cmbs, 10YR 4/4 silty clay loam; 2-16 cmbs, 10YR 6/6 silty clay; 16 cmbs, water	
26	18	20		0-20 cmbs, 10YR 6/6 silty clay loam	saturated
26	19	0	Ø		standing water
26	20	0	Ø		slope
26	21	12	0	0-12 cmbs, 10YR 6/6 silty clay; 12 cmbs, water	
27	1	18		0-18 cmbs, 10YR 5/8 silty clay	
27	2	11		0-11 cmbs, 10YR 5/8 silty clay loam; 11 cmbs, water	
27	3	12		0-12 cmbs, 10YR 5/8 silty clay	
27	4	13		0-13 cmbs, 10YR 5/8 silty clay	
27	5	0	Ø		large pile of concrete rubble
27	6	0	Ø		slope to asphalt pile
27	7	14		0-14 cmbs, 10YR 5/8 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
27	0			0-3 cmbs, 10YR 3/2 silty loam; 3-15 cmbs,	
27	8	15		10YR 5/8 silty clay	
27	9	16		0-16 cmbs, 10YR 5/8 silty clay	
27	10	14		0-14 cmbs, 10YR 5/8 silty clay	
27	11	0	Ø	, ,	slope
27	12	15		0-15 cmbs, 10YR 5/8 silty clay	-
27	13	0	Ø		creek
27	14	13		0-4 cmbs, 10YR 4/4 silty loam; 4-13 cmbs, 10YR 5/8 silty clay	
27	15	19		0-19 cmbs, 10YR 5/8 silty clay	
27	16	17		0-5 cmbs, 10YR 5/2 silty loam; 5-17 cmbs, 10YR 5/8 silty clay	
27	17	17		0-17 cmbs, 10YR 5/8 silty clay	
27	18	15		0-15 cmbs, 10YR 5/8 silty clay	
27	19	0	Ø		road
27	20	14		0-14 cmbs, 10YR 5/8 silty clay	
27	21	12		0-3 cmbs, 10YR 6/1 silty clay loam; 3-12 cmbs, 10YR 5/8 silty clay	
27	22	0	Ø		pond
27	23	0	Ø		pond
27	24	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	
27	25	18		0-18 cmbs, 10YR 5/8 silty clay	
28	1	18		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/6 hydric silty clay	
28	2	16		0-4 cmbs, 10YR 4/4 hydric silty clay loam; 4-16 cmbs, 10YR 5/8 hydric clay	
28	3	24		0-7 cmbs, 10YR 4/4 hydric silty clay; 7-24 cmbs, 10YR 5/8 compact clay	
28	4	25		0-8 cmbs, 10YR 4/3 silty clay; 8-25 cmbs, 10YR 5/8 compact silty clay	
28	5	0	Ø		drainage, pond
28	6	0	Ø		pond
28	7	0	Ø		drainage
28	8	23		0-8 cmbs, 10YR 3/4 silty clay; 8-23 cmbs, 10YR 5/8 clay	-
28	9	29		0-4 cmbs, 10YR 4/4 silty clay loam; 4-29 cmbs, 10YR 5/6 silty clay	
28	10	34		0-18 cmbs, 10YR 4/4 silty clay loam; 18-34 cmbs, 10YR 5/6 silty clay	near drainage
28	11	19		0-8 cmbs, 10YR 4/4 silty clay loam; 8-19 cmbs, 10YR 5/8 silty clay	saturated
28	12	22		0-6 cmbs, 10YR 4/4 silty clay loam; 6-22 cmbs, 10YR 5/6 clay	saturated
28	13	24	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-24 cmbs, 10YR 5/6 silty clay	hydric
28	14	17	۵	0-3 cmbs, 10YR 3/4 silty clay loam; 3-17 cmbs, 10YR 5/8 + 6/3 mottled silty clay	saturated

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
		, ,		0-2 cmbs, 10YR 3/4 silty clay loam; 2-12	saturated, water @ 20
28	15	24		cmbs, 10YR 5/6 silty clay; 12-24 cmbs,	,
				10YR 5/8 silty clay	cmbs
28	16	27		0-6 cmbs, 10YR 3/4 silty clay loam; 6-27	
20	10	21	7	cmbs, 10YR 5/8 silty clay	
28	17	0	Ø		drainage
28	18	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17	
26	10	17]	cmbs, 10YR 5/8 silty clay	
28	19	16		0-2 cmbs, 10YR 5/4 silty clay loam; 2-16	
20	1)	10)	cmbs, 10YR 5/8 silty clay	
28	20	15		0-4 cmbs, 10YR 4/4 silty clay loam; 4-15	saturated, water @ 15
20	20	13	•	cmbs, 10YR 5/8 silty clay	cmbs
28	21	17		0-7 cmbs, 10YR 4/4 silty clay loam; 7-17	saturated
		1,		cmbs, 10YR 5/8 silty clay	Saturated
28	22	16		0-5 cmbs, 10YR 4/4 silty clay loam; 5-16	saturated
				cmbs, 10YR 5/8 silty clay	Saturate o
28	23	14		0-2 cmbs, 10YR 4/4 silty clay; 2-14 cmbs,	
20		10		10YR 5/8 silty clay	
29	1	18		0-18 cmbs, 10YR 5/6 saturated silty clay	
29	2	27		0-17 cmbs, 10YR 5/8 silty clay loam; 17-27	
				cmbs, 10YR 5/6 silty clay	
29	3	19		0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
				cmbs, 10YR 5/8 compact silty clay loam	
20	4	10		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18	
29	4	18		cmbs, 10YR 5/6 compact silty clay loam + gravel	
				gravei 0-4 cmbs, 10YR 4/4 silty clay loam; 4 cmbs,	
29	5	4		rock / gravel impasse	
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
29	6	16		cmbs, 10YR 5/8 silty clay	
				0-11 cmbs, 10YR 4/4 silty clay loam; 11-21	
29	7	21		cmbs, 10YR 6/6 silty clay	
29	8	0	Ø		creek
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-21	
29	9	21		cmbs, 10YR 5/6 silty clay	
20	10	10		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	
29	10	18		cmbs, 10YR 6/4 hydric clay	
29	11	14		0-4 cmbs, 10YR 4/4 silty clay loam; 4-14	
29	11	14		cmbs, 10YR 5/6 hydric clay	
29	12	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
47	12	10	7	cmbs, 10YR 5/6 hydric clay	
				0-3 cmbs, 10YR 4/4 silty clay loam; 3-12	
29	13	21		cmbs, 10YR 5/6 hydric silty clay; 12-21	
				cmbs, 10YR 6/6 hydric clay	
29	14	14		0-14 cmbs, 10YR 5/6 hydric silty clay	
29	15	18		0-8 cmbs, 10YR 5/6 compact silty clay; 8-	
			-	18 cmbs, 10YR 6/6 clay	
29	16	15		0-4 cmbs, 10YR 4/4 silty clay loam; 4-15	
			1	cmbs, 10YR 5/6 saturated silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
20	1.7	, ,		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
29	17	14		cmbs, 10YR 6/4 hydric silty clay	
20	10	15		0-3 cmbs, 10YR 4/4 silty clay loam; 3-15	
29	18	15		cmbs, 10YR 5/6 saturated silty clay	
29	19	18		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	
29	19	10	_	cmbs, 10YR 6/4 saturated silty clay	
29	20	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
29	20	10	-	cmbs, 10YR 6/2 + 6/8 mottled silty clay 0-4 cmos, 10YR 4/4 snty cray roam; 4-14	
29	21	23			
				0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	
29	22	24		cmbs, 10YR 5/6 silty clay; 14-24 cmbs,	
				10YR 6/6 clay	
29	23	22		0-11 cmbs, 10YR 4/4 silty clay loam; 11-22	
2)	23	22	_	cmbs, 10YR 5/8 silty clay / clay	
29	24	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
	2-7	10	_	cmbs, 10YR 5/6 compact silty clay	
30	1	21		0-4 cmbs, 10YR 4/4 silty clay loam; 4-21	
	-		_	cmbs, 10YR 6/4 silty clay	
30	2	31		0-12 cmbs, 10YR 4/4 silty clay loam; 12-31	
			_	cmbs, 10YR 6/4 silty clay	
30	3	30		0-14 cmbs, 10YR 4/4 silty clay loam; 14-30	
		4.0		cmbs, 10YR 6/4 silty clay	
30	4	40		0-40 cmbs, 10YR 4/4 silty clay loam	
30	5	20		0-3 cmbs, 10YR 4/4 silty clay loam; 3-20	water @ 20 cmbs
			_	cmbs, 10YR 6/6 silty clay	
30	6	26		0-4 cmbs, 10YR 4/4 silty clay loam; 4-26	
				cmbs, 10YR 6/6 silty clay	
30	7	30		0-10 cmbs, 10YR 6/4 silty clay loam; 10-30	
20	0	20		cmbs, 10YR 6/6 silty clay	
30	8	30		0-30 cmbs, 10YR 6/6 silty clay	
30	9	18		0-18 cmbs, 10YR 6/6 silty clay; 18 cmbs,	water @ 18 cmbs
				water	
30	10	19		0-4 cmbs, 10YR 4/6 silty clay loam; 4-19	
				cmbs, 10YR 6/6 silty clay	
30	11	20		0-4 cmbs, 10YR 4/6 silty clay loam; 4-20	
20	10	21		cmbs, 10YR 6/4 clay	
30	12	21		0-21 cmbs, 10YR 6/6 silty clay	
30	13	0	Ø	0.4 and a 10VD 4/C all 1 1 1 2 2 4 20	standing water
30	14	29		0-4 cmbs, 10YR 4/6 silty clay loam; 4-29	water @ 26 cmbs
				cmbs, 10YR 6/6 silty clay	
30	15	24		0-8 cmbs, 10YR 4/6 silty clay loam; 8-24	water @ 24 cmbs
20	1.0	0	~	cmbs, 10YR 6/6 silty clay	
30	16	0	Ø	0.12 cm h = 10VD 4/6 clt = 1 = 1 = 1 = 12 21	creek
30	17	31		0-12 cmbs, 10YR 4/6 silty clay loam; 12-31	
20	10		C	cmbs, 10YR 6/6 silty clay	
30	18	0	Ø		eroded gulley
20	10	20		0.20 ambs 10VD 6/9 =:14== =1===	large pile of concrete
30	19	30		0-30 cmbs, 10YR 6/8 silty clay	rubble, modern debris
30	20	8		0-8 cmbs, 10YR 4/4 silty clay loam	hit concrete debris
30	∠U	0	J	0-0 cmbs, 10 i K 4/4 sitty clay loani	int concrete debris

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
30	21	12		0-12 cmbs, 10YR 4/6 + 6/4 silty clay loam	gravel
30	22	16		0-16 cmbs, 10YR 4/4 silty clay loam; 16 cmbs, water	water @ 16 cmbs
30	23	14		0-14 cmbs, 10YR 4/4 silty clay loam; 14 cmbs, water	water @ 14 cmbs
30	24	18		0-18 cmbs, 10YR 6/8 silty clay	
31	1	18		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
31	2	20		0-9 cmbs, 10YR 4/4 silty clay loam; 9-20 cmbs, 10YR 5/8 silty clay	
31	3	21	0	0-8 cmbs, 10YR 3/4 silty clay loam; 8-21 cmbs, 10YR 5/8 silty clay	
31	4	18	۵	0-7 cmbs, 10YR 3/4 silty clay loam; 7-18 cmbs, 10YR 5/8 silty clay	
31	5	24		0-11 cmbs, 10YR 3/4 silty clay loam; 11-24 cmbs, 10YR 5/8 silty clay	
31	6	0	Ø		drainage
31	7	19		0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/8 silty clay	
31	8	18		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/8 silty clay	
31	9	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay	
31	10	22		0-3 cmbs, 10YR 4/4 silty clay loam; 3-22 cmbs, 10YR 5/8 silty clay	
31	11	18		0-2 cmbs, 10YR 4/4 silty clay loam; 2-18 cmbs, 10YR 5/8 silty clay	
31	12	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
31	13	23		0-2 cmbs, 10YR 3/4 silty clay loam; 2-23 cmbs, 10YR 5/8 silty clay	
31	14	18		0-2 cmbs, 10YR 4/4 silty clay loam; 2-18 cmbs, 10YR 5/8 silty clay	
31	15	19		0-3 cmbs, 10YR 3/4 silty clay loam; 3-19 cmbs, 10YR 5/8 silty clay	
31	16	23		0-4 cmbs, 10YR 4/4 silty clay loam; 4-23 cmbs, 10YR 5/8 silty clay	
31	17	15		0-2 cmbs, 10YR 4/4 silty clay loam; 2-15 cmbs, 10YR 5/8 clay	
31	18	18		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/8 clay	
31	19	16	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 clay	
31	20	21		0-3 cmbs, 10YR 4/4 silty clay loam; 3-20 cmbs, 10YR 5/8 silty clay	
31	21	21		0-5 cmbs, 10YR 4/4 silty clay loam; 5-21 cmbs, 10YR 5/8 silty clay	
31	22	0	Ø	-	drainage
31	23	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 5/6 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
32	1	17		0-6 cmbs, 10YR 5/4 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	
32	2	16		0-5 cmbs, 10YR 5/4 silty clay loam; 5-16 cmbs, 10YR 5/8 silty clay	
32	3	15		0-4 cmbs, 10YR 5/4 silty clay loam; 4-15 cmbs, 10YR 5/8 silty clay	
32	4	0	Ø		trash pile, cement slabs
32	5	0	Ø		trash pile, cement slabs
32	6	0	Ø		cement slabs, giant pile
32	7	18	۵	0-6 cmbs, 10YR 5/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
32	8	17	۵	0-6 cmbs, 10YR 5/4 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	
32	9	18	<u> </u>	0-7 cmbs, 10YR 5/4 silty clay loam; 7-18 cmbs, 10YR 5/8 silty clay	
32	10	13		0-13 cmbs, 10YR 5/8 silty clay	
32	11	16		0-4 cmbs, 10YR 5/1 silty clay loam; 4-16 cmbs, 10YR 5/8 silty clay	
32	12	16	۵	0-3 cmbs, 10YR 5/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
32	13	18		0-6 cmbs, 10YR 5/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
32	14	22	۵	0-3 cmbs, 10YR 5/1 silty loam; 3-12 cmbs, 10YR 5/3 silty clay loam; 12-22 cmbs, 10YR 5/8 silty clay	
32	15	12		0-12 cmbs, 10YR 5/8 silty clay	
32	16	14		0-3 cmbs, 10YR 5/3 silty clay loam; 3-14 cmbs, 10YR 5/8 silty clay	
32	17	19	۵	0-4 cmbs, 10YR 5/1 silty loam; 4-8 cmbs, 10YR 5/4 silty clay loam; 8-19 cmbs, 10YR 5/8 silty clay	
32	18	17		0-6 cmbs, 10YR 5/1 silty loam; 6-17 cmbs, 10YR 5/8 silty clay	
32	19	14	٥	0-3 cmbs, 10YR 5/1 silty loam; 3-14 cmbs, 10YR 5/8 silty clay	
32	20	13	٥	0-2 cmbs, 10YR 5/1 silty loam; 2-13 cmbs, 10YR 5/8 silty clay	
32	21	14	۵	0-3 cmbs, 10YR 5/1 silty loam; 3-14 cmbs, 10YR 5/8 silty clay	
32	22	16	۵	0-4 cmbs, 10YR 5/1 silty loam; 4-16 cmbs, 10YR 5/8 silty clay	
32	23	14	۵	0-3 cmbs, 10YR 5/1 silty loam; 3-14 cmbs, 10YR 5/8 clay	
32	24	12		0-12 cmbs, 10YR 6/2 clay	saturated
32	25	16		0-16 cmbs, 10YR 5/8 silty clay	
33	1	20	۵	0-9 cmbs, 10YR 4/4 silty clay loam; 9-20 cmbs, 10YR 5/6 silty clay	

	Shovel	Max			
Transect	test	depth (cm)	Status	Soil Description	Comments
		(CIII)		0-11 cmbs, 10YR 4/4 silty clay loam; 11-24	
33	2	24		cmbs, 10 YR $6/2 + 5/6$ mottled silty clay	
				loam	
22	2	10		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18	1
33	3	18		cmbs, 10YR 5/6 silty clay	saturated
33	4	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
33	4	1 /	_	cmbs, 10 YR $6/4 + 5/6$ silty clay	
33	5	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
33	3			cmbs, 10YR 5/6 + 6/4 silty clay	
33	6	0	Ø		creek
33	7	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
33	,	10		cmbs, 10YR 5/8 silty clay / clay	
33	8	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17	
				cmbs, 10YR 5/8 compact silty clay	
33	9	16		0-16 cmbs, 10YR 5/6 + 6/4 silty clay	
33	10	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
				cmbs, 10YR 5/8 hydric silty clay	
33	11	18		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18	
				cmbs, 10YR 5/8 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-14	
33	12	14		cmbs, 10 YR 5/6 compact silty clay	
				0-13 cmbs, 10YR 5/6 + 6/2 mottled silty	
33	13	13		clay	saturated
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
33	14	16		cmbs, 10YR 5/6 silty clay	
22				0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
33	15	17		cmbs, 10YR 5/6 hydric silty clay	
22	1.0	1.0		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
33	16	16		cmbs, 10YR 5/6 hydric silty clay	
33	17	19		0-9 cmbs, 10YR 4/4 silty clay loam; 9-19	
33	1 /	19		cmbs, 10YR 5/6 hydric silty clay	
33	18	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
33	10	10	_	cmbs, 10YR 5/8 saturated silty clay	
33	19	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
				cmbs, 10YR 5/8 compact silty clay	
33	20	18		0-5 cmbs, 10YR 4/4 silty clay loam; 5-18 cmbs, 10YR 5/8 silty clay	
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
33	21	17		cmbs, 10 YR 5/8 silty clay	
			_	0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
33	22	16		cmbs, 10YR 5/8 clay	
				0-9 cmbs, 10YR 5/6 silty clay loam; 9-21	
33	23	21		cmbs, $10 \text{YR} 5/8 + 6/2$ mottled compact silty	
				clay loam	
33	24	0	Ø		slope
33	25	0	Ø		slope, forest trail
				0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	-
33	26	14		cmbs, 10YR 5/8 compact silty clay	
34	1	16		0-16 cmbs, 10YR 6/4 silty clay	possible old track
34	2	0	Ø		standing water

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
34	3	20		0-20 cmbs, 10YR 6/4 + 8/3 silty clay	
34	4	0	Ø		creek
34	5	12		0-12 cmbs, 10YR 6/6 silty clay; 12 cmbs, roots	
34	6	20		0-20 cmbs, 10YR 6/6 silty clay	
34	7	18		0-10 cmbs, 10YR 6/6 silty clay	
34	8	0	Ø		small eroded drainage
34	9	16		0-16 cmbs, 10YR 6/6 silty clay	
34	10	20		0-4 cmbs, 10YR 4/6 silty clay loam; 4-20 cmbs, 10YR 6/6 silty clay	
34	11	21		0-21 cmbs, 10YR 6/6 silty clay	
34	12	0	Ø		eroded wash
34	13	21		0-4 cmbs, 10YR 4/4 silty clay loam; 4-21 cmbs, 10YR 5/6 silty clay	
34	14	15		0-15 cmbs, 10YR 6/4 silty clay	
34	15	20		0-20 cmbs, 10YR 6/4 silty clay	
34	16	0	Ø		slope
34	17	0	Ø		slope
34	18	0	Ø		slope
34	19	16		0-16 cmbs, 10YR 6/4 silty clay	
34	20	0	Ø		slope
34	21	20		0-20 cmbs, 10YR 6/4 silty clay	
34	22	10		0-10 cmbs, 10YR 5/4 silty clay	
34	23	0	Ø		eroded wash
34	24	0	Ø		slope
35	1	0	Ø		frequently flooded
35	2	0	Ø		standing water
35	3	0	Ø		frequently flooded
35	4	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 6/4 silty clay	
35	5	31		0-31 cmbs, 10YR 6/8 silty clay	
35	6	12		0-5 cmbs, 10YR 4/4 silty clay loam; 5-12 cmbs, 10YR 6/6 silty clay; 12 cmbs, water	
35	7	0	Ø		frequently flooded
35	8	21		0-8 cmbs, 10YR 4/4 silty clay loam; 8-21 cmbs, 10YR 5/6 silty clay	
35	9	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 6/4 silty clay	
35	10	18		0-18 cmbs, 10YR 6/8 silty clay	
35	11	0	Ø		slope
35	12	0	Ø		slope
35	13	21		0-2 cmbs, 10YR 4/6 silty clay loam; 2-21 cmbs, 10YR 6/6 silty clay	
35	14	18		0-18 cmbs, 10YR 6/6 silty clay	
35	15	21		0-21 cmbs, 10YR 6/6 silty clay	
35	16	14		0-14 cmbs, 10YR 6/6 silty clay	
35	17	26		0-26 cmbs, 10YR 6/6 silty clay	

35	18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10	(cm) 24 19 21 20 0 0 0 26 0 0 26 0 21 26 0 21		0-24 cmbs, 10YR 6/6 silty clay 0-19 cmbs, 10YR 6/6 silty clay 0-2 cmbs, 10YR 4/6 silty clay loam; 2-21 cmbs, 10YR 6/4 silty clay 0-20 cmbs, 10YR 6/4 silty clay; 20 cmbs, roots 0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 6/6 silty clay loam; 3-26 cmbs, 10YR 6/6 + 8/2 cilty clay	berm frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry drainage
35 2 35 2 35 2 35 2 35 35 2 35 36 36 36 36 36 36 36 36 36 36 36 36 36	20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10	21 20 0 0 0 26 0 0 26 0 21 26 0 21 26		0-2 cmbs, 10YR 4/6 silty clay loam; 2-21 cmbs, 10YR 6/4 silty clay 0-20 cmbs, 10YR 6/4 silty clay; 20 cmbs, roots 0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 35 2 35 2 35 36 36 36 36 36 36 36 36 36 36 36 36 36	21 22 23 24 25 1 2 3 4 5 6 7 8 9 10	20 0 0 0 26 0 0 0 26 0 21 26 0 21 26		0-20 cmbs, 10YR 6/4 silty clay; 20 cmbs, roots 0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 35 2 35 2 35 36 36 36 36 36 36 36 36 36 36 36 36 36	21 22 23 24 25 1 2 3 4 5 6 7 8 9 10	20 0 0 0 26 0 0 0 26 0 21 26 0 21 26		0-20 cmbs, 10YR 6/4 silty clay; 20 cmbs, roots 0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 35 2 35 2 36 3 36 3 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	22 23 24 25 1 2 3 4 5 6 7 8 9	0 0 0 26 0 0 0 26 0 21 26 0 21	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 35 2 35 2 36 3 36 3 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	22 23 24 25 1 2 3 4 5 6 7 8 9	0 0 0 26 0 0 0 26 0 21 26 0 21	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-26 cmbs, 10YR 6/6 + 8/2 clay 0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 35 2 36 3 36 3 38 3	23 24 25 1 2 3 4 5 6 7 8 9	0 0 26 0 0 0 26 0 21 26 0 21	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 35 2 36 3 36 3 38 3	24 25 1 2 3 4 5 6 7 8 9	0 26 0 0 0 26 0 21 26 0 20	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded creek frequently flooded, old quarry slope, edge of quarry
35 2 36 36 36 36 36 36 36 36 36 36 36 36 36 3	25 1 2 3 4 5 6 7 8 9	26 0 0 0 26 0 21 26 0 20	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	creek frequently flooded, old quarry slope, edge of quarry
36 1 36 1	1 2 3 4 5 6 7 8 9	0 0 0 26 0 21 26 0 220	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-18 cmbs, 10YR 6/6 silty clay 0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded, old quarry slope, edge of quarry
36 2 36 3 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	2 3 4 5 6 7 8 9	0 0 26 0 21 26 0 20	Ø Ø Ø Ø Ø Ø Ø Ø Ø	0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	frequently flooded, old quarry slope, edge of quarry
36 3 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	3 4 5 6 7 8 9 10	0 26 0 21 26 0 20	Ø	0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	old quarry slope, edge of quarry
36 3 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	3 4 5 6 7 8 9 10	0 26 0 21 26 0 20	Ø	0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	slope, edge of quarry
36 4 36 3 36 3 36 3 36 3 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	4 5 6 7 8 9	26 0 21 26 0 20	Ø	0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	
36 36 36 6 36 36 36 36 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	5 6 7 8 9	0 21 26 0 20	Ø	0-21 cmbs, 10YR 6/6 silty clay 0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	drainage
36 6 36 36 36 36 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	6 7 8 9 10	21 26 0 20	o Ø	0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	drainage
36	7 8 9 10	26 0 20	Ø	0-3 cmbs, 10YR 4/4 silty clay loam; 3-26	
36 8 36 9 36 1 36 1 36 1 36 1 36 1 36 1 36 1	8 9 10	0 20	Ø		
36 8 36 9 36 1 36 1 36 1 36 1 36 1 36 1 36 1	8 9 10	0 20	Ø	ombo 10VD 6/6 + 0/2 oiltr -1	
36 9 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	9 10	20		cmbs, 10 YR $6/6 + 8/2$ silty clay	
36 1 36 1 36 1 36 1 36 1 36 1 36 1 36 1	10				washed out, good vis
36 1 36 1 36 1 36 1 36 1 36 1 36 1				0-20 cmbs, 10YR 6/6 silty clay	
36 1 36 1 36 1 36 1 36 1		16		0-16 cmbs, 10YR 6/6 silty clay	
36 1 36 1 36 1 36 1	11	21		0-21 cmbs, 10YR 6/6 silty clay	
36 1 36 1 36 1 36 1	12	24		0-24 cmbs, 10YR 6/6 silty clay	
36 1 36 1 36 1	13	21		0-21 cmbs, 10YR 6/6 silty clay	
36 1 36 1	14	0	Ø	, , ,	slope
36 1	15	12		0-12 cmbs, 10YR 6/4 silty clay	wet
	16	20		0-20 cmbs, 10YR 6/6 silty clay	wet
	17	15		0-15 cmbs, 10YR 6/4 silty clay	wet
	18	0	Ø	o 13 cmos, 10 11 o/ 1 shty clay	Wet
				0-4 cmbs, 7.5YR 4/4 sandy clay loam; 4-16	
36 1	19	16		cmbs, 5YR 5/8 sandy clay	gravel throughout
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
37	1	16		cmbs, 10YR 5/3 hydric silty clay	
27	2	1.4		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
37	2	14		cmbs, 10YR 5/8 hydric silty clay / clay	
27	3	10	_	0-3 cmbs, 10YR 4/4 silty clay loam; 3-18	
37	3	18		cmbs, 10YR 5/6 hydric clay	
37	4	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	
37 -	4	10	7	cmbs, 10 YR $5/8 + 6/3$ saturated silty clay	
37	5	17		0-2 cmbs, 10YR 4/4 silty clay loam; 2-17	
	-	1,	_	cmbs, 10YR 5/8 hydric silty clay	
37	6	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
	-		-	cmbs, 10YR 5/8 hydric silty clay	
37	7	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
	1			cmbs, 10YR 5/6 compact silty clay loam	
37	+	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/2 mottled silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
37	9	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/6 clay	
37	10	18	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/6 + 6/2 silty clay	
37	11	19		0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/6 silty clay	
37	12	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 compact silty clay	
37	13	0	Ø		disturbed ATV trail
37	14	0	Ø		slope
37	15	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 + 6/2 silty clay	saturated
37	16	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/3 silty clay	
37	17	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 + 6/6 silty clay	
37	18	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/2 mottled silty clay	
37	19	15	0	0-3 cmbs, 10YR 4/4 silty clay loam; 3-15 cmbs, 10YR 5/6 + 6/2 + 6/6 mottled compact silty clay loam	
37	20	15	۵	0-3 cmbs, 10YR 4/4 silty clay loam; 3-15 cmbs, 10YR 5/8 + 6/1 + 6/6 mottled saturated silty clay	
37	21	16	۵	0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 + 6/1 + 6/6 mottled saturated silty clay	
37	22	18	٠	0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/6 + 6/2 mottled hydric silty clay	
37	23	0	Ø		standing water
37	24	0	Ø		drainage
37	25	17	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 + 6/3 mottled compact silty clay	
37	26	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/6 + 6/2 mottled silty clay	
37	27	0	Ø		slope
38	1	13		0-13 cmbs, 10YR 5/6 silty clay	
38	2	15		0-4 cmbs, 10YR 4/3 silty clay loam; 4-15 cmbs, 10YR 5/6 silty clay	
38	3	17		0-5 cmbs, 10YR 4/3 silty clay loam; 5-17 cmbs, 10YR 5/6 silty clay	
38	4	16		0-16 cmbs, 10YR 5/6 silty clay	
38	5	15		0-15 cmbs, 10YR 5/6 silty clay	
38	6	18	۵	0-6 cmbs, 10YR 5/2 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
38	7	16		0-4 cmbs, 10YR 5/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
38	8	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
38	9	16		0-4 cmbs, 10YR 5/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
38	10	14		0-2 cmbs, 10YR 5/2 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
38	11	17		0-5 cmbs, 10YR 5/2 silty clay loam; 5-17 cmbs, 10YR 5/6 silty clay	
38	12	14	٦	0-3 cmbs, 10YR 5/2 silty clay loam; 3-14 cmbs, 10YR 5/6 silty clay	
38	13	15		0-4 cmbs, 10YR 5/2 silty clay loam; 4-15 cmbs, 10YR 5/6 silty clay	
38	14	0	Ø		slope
38	15	0	Ø		slope
38	16	18		0-18 cmbs, 10YR 5/6 clay	saturated
38	17	16		0-16 cmbs, 10YR 5/6 silty clay	
38	18	15		0-3 cmbs, 10YR 5/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
38	19	14		0-14 cmbs, 10YR 5/6 silty clay	
38	20	15		0-3 cmbs, 10YR 5/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
38	21	16		0-4 cmbs, 10YR 5/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
38	22	18	٦	0-6 cmbs, 10YR 5/4 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
38	23	20		0-9 cmbs, 10YR 5/4 silty clay loam; 9-20 cmbs, 10YR 5/6 silty clay	
38	24	20		0-7 cmbs, 10YR 5/4 silty clay loam; 7-20 cmbs, 10YR 5/8 silty clay	
38	25	18		0-6 cmbs, 10YR 5/4 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
38	26	17	٦	0-5 cmbs, 10YR 5/4 silty clay loam; 5-17 cmbs, 10YR 5/6 silty clay	
38	27	25	٦	0-13 cmbs, 10YR 5/3 silty clay loam; 13-25 cmbs, 10YR 5/6 silty clay	
38	28	17	<u> </u>	0-6 cmbs, 10YR 5/4 silty clay loam; 6-17 cmbs, 10YR 5/8 clay	
38	29	0	Ø		slope
39	1	16		0-2 cmbs, 10YR 4/4 silty clay loam; 2-16 cmbs, 10YR 5/6 silty clay	
39	2	21		0-21 cmbs, 10YR 5/6 silty clay	
39	3	17	٦	0-2 cmbs, 10YR 3/4 silty clay loam; 2-17 cmbs, 10YR 5/6 silty clay	
39	4	18	٦	0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/6 silty clay	
39	5	19	٦	0-5 cmbs, 10YR 3/4 silty clay loam; 5-19 cmbs, 10YR 5/8 silty clay	
39	6	21		0-4 cmbs, 10YR 4/4 silty clay loam; 4-21 cmbs, 10YR 5/8 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
39	7	19		0-3 cmbs, 10YR 4/4 silty clay loam; 3-19 cmbs, 10YR 5/8 silty clay	
39	8	16		0-2 cmbs, 10YR 4/4 silty clay loam; 2-16 cmbs, 10YR 5/6 silty clay	
39	9	19		0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/6 silty clay	
39	10	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/8 silty clay	
39	11	0	Ø	, ,	slope
39	12	0	Ø		slope
39	13	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 5/8 silty clay	1
39	14	0	Ø		drainage
39	15	18		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
39	16	28		0-7 cmbs, 10YR 4/4 silty clay loam; 7-28 cmbs, 10YR 5/8 silty clay	
39	17	19		0-7 cmbs, 10YR 4/4 silty clay loam; 7-19 cmbs, 10YR 5/8 silty clay	
39	18	22		0-6 cmbs, 10YR 3/4 silty clay loam; 6-22 cmbs, 10YR 5/8 silty clay	
39	19	15	۵	0-7 cmbs, 10YR 3/3 silty clay loam; 7-15 cmbs, 10YR 5/8 silty clay; 15 cmbs, compact gravel	70% gravel
39	20	0	Ø		drainage
39	21	0	Ø		drainage, slope
39	22	21		0-4 cmbs, 10YR 4/4 silty clay loam; 4-21 cmbs, 10YR 5/8 silty clay	
39	23	18		0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
39	24	0	Ø		drainage, slope
39	25	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/8 silty clay	
39	26	0	Ø		slope
40	1	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
40	2	13		0-2 cmbs, 10YR 4/4 silty clay loam; 2-13 cmbs, 10YR 5/8 silty clay	
40	3	13		0-5 cmbs, 10YR 5/6 silty clay; 5-13 cmbs, 10YR 5/2 silty clay; 13 cmbs, water	
40	4	0	Ø		drainage
40	5	0	Ø		slope to creek
40	6	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay / clay	
40	7	0	Ø	-	slope to drainage
40	8	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/6 silty clay	
40	9	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 + 6/6 silty clay	few gravel

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
40	10	18		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18 cmbs, 10YR 5/6 silty clay / clay	
40	11	19		0-4 cmbs, 10YR 4/4 silty clay loam; 4-19 cmbs, 10YR 5/8 + 6/6 silty clay / clay	
40	12	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
40	13	18		cmbs, 10YR 5/8 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
40	14	0	Ø	cmbs, 10YR 5/8 silty clay	field of poison ivy
40	15	0	Ø		creek
40	16	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	CICCK
40	17	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/6 clay	
40	18	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 compact silty clay	
40	19	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 compact silty clay	
40	20	0	Ø	r and the second	slope
40	21	19		0-6 cmbs, 10YR 4/4 silty clay loam; 6-19 cmbs, 10YR 5/8 compact silty clay	
40	22	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/8 compact silty clay	
40	23	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
40	24	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
40	25	19		0-6 cmbs, 10YR 4/4 silty clay loam; 6-19 cmbs, 10YR 5/6 silty clay	
40	26	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/6 compact silty clay	
40	27	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/6 + 6/4 mottled silty clay	saturated
41	1	19		0-4 cmbs, 10YR 4/4 silty loam; 4-19 cmbs, 10YR 6/4 silty clay	
41	2	0	Ø		eroded wash, frequently flooded
41	3	16		0-16 cmbs, 10YR 6/6 silty clay	1
41	4	21		0-21 cmbs, 10YR 6/6 silty clay	
41	5	20		0-4 cmbs, 10YR 4/4 silty clay loam; 4-20 cmbs, 10YR 6/4 silty clay	
41	6	0	Ø		slope, quarry
41	7	0	Ø		quarry
41	8	0	Ø	0.10	slope
41	9	18	<u> </u>	0-18 cmbs, 10YR 6/6 silty clay	wet
41	10	0	Ø	0.17 amba 10VP (/4 : 1/4 - 1	gullied
41	11	17		0-17 cmbs, 10YR 6/4 silty clay	au11v
41	12	14	Ø	0.14 cmbs 10VP 6/6 silty alov	gully
41	13	14		0-14 cmbs, 10YR 6/6 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
41	14	24		0-24 cmbs, 10YR 6/6 silty clay	
41	15	0	Ø		gullied and eroded
41	16	0	Ø		gullied and eroded
41	17	21		0-6 cmbs, 10YR 4/4 silty clay; 6-21 cmbs, 10YR 6/6 silty clay	
41	18	20		0-20 cmbs, 10YR 6/6 silty clay	
41	19	16		0-16 cmbs, 10YR 6/6 silty clay	
41	20	19		0-19 cmbs, 10YR 6/6 silty clay	
41	21	20		0-20 cmbs, 10YR 6/6 silty clay	
41	22	20		0-20 cmbs, 10YR 6/6 silty clay	
41	23	18		0-18 cmbs, 10YR 6/6 silty clay	
41	24	6		0-6 cmbs, 5YR 6/6 silty clay	gravel, old road
41	25	0	Ø		slope
41	26	0	Ø		frequently flooded, eroded
42	1	14	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-14 cmbs, 10YR 5/6 + 6/2 + 6/6 mottled silty clay	
42	2	16	۵	0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/6 + 6/2 + 6/6 mottled silty clay	
42	3	11	۵	0-3 cmbs, 10YR 4/4 silty clay; 3-11 cmbs, 10YR 5/6 + 6/2 hydric silty clay; 11 cmbs, root impasse	
42	4	13	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-13 cmbs, 10YR 5/6 + 6/2 + 6/6 mottled silty clay	
42	5	0	Ø		slope to drainage
42	6	0	Ø		slope to drainage
42	7	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 + 6/1 saturated silty clay	saturated
42	8	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/3 mottled silty clay	
42	9	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/3 mottled silty clay	
42	10	14	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-14 cmbs, 10YR 5/6 + 6/3 silty clay; 14 cmbs, root impasse	
42	11	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/3 silty clay	
42	12	0	Ø		standing water
42	13	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/6 + 6/3 mottled clay	
42	14	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/6 + 6/3 mottled silty clay	
42	15	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 compact silty clay	
42	16	14	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/8 compact silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
42	17	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 + 6/6 silty clay	few gravel
42	18	18		0-7 cmbs, 10YR 4/4 silty clay loam; 7-18 cmbs, 10YR 5/8 clay	
42	19	17	۵	0-9 cmbs, 10YR 4/3 silty clay loam; 9-17 cmbs, 10YR 5/6 silty clay; 17 cmbs, root impasse 0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	
42	20	16	۵	cmbs, 10 YR $5/6 + 6/3 + 6/6$ mottled silty clay	
42	21	16	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/8 silty clay	
42	22	19		0-9 cmbs, 10YR 4/4 silty clay loam; 9-19 cmbs, 10YR 5/8 + 6/3 silty clay / clay	
42	23	0	Ø		drainage
42	24	0	Ø		slope to drainage
42	25	0	Ø		creek, drainage
42	26	0	Ø		slope to creek
42	27	16	٦	0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/4 + 5/8 silty clay	stope to creek
43	1	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
43	2	13	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-13 cmbs, 10YR 5/8 silty clay	
43	3	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 silty clay	
43	4	16		0-2 cmbs, 10YR 4/4 silty clay loam; 2-16 cmbs, 10YR 5/8 silty clay	
43	5	0	Ø		slope
43	6	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay	
43	7	13		0-2 cmbs, 10YR 4/4 silty clay loam; 2-13 cmbs, 10YR 5/6 silty clay	saturated
43	8	0	Ø		drainage
43	9	0	Ø		slope
43	10	12		0-2 cmbs, 10YR 4/4 silty clay loam; 2-12 cmbs, 10YR 5/8 silty clay	
43	11	0	Ø	, ,	slope to drainage
43	12	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay	
43	13	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
43	14	15		0-3 cmbs, 10YR 3/4 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
43	15	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 silty clay	
43	16	13		0-2 cmbs, 10YR 4/4 silty clay loam; 2-13 cmbs, 10YR 5/6 silty clay	
43	17	21	۵	0-7 cmbs, 10YR 4/4 silty clay loam; 7-21 cmbs, 10YR 5/8 silty clay	

		Max			
Transect	Shovel test	depth (cm)	Status	Soil Description	Comments
43	18	18		0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 5/8 silty clay	
43	19	18	۵	0-7 cmbs, 10YR 4/4 silty clay loam; 7-18 cmbs, 10YR 5/8 silty clay	
43	20	14		0-4 cmbs, 10YR 4/4 silty clay loam; 4-14 cmbs, 10YR 5/8 silty clay	
43	21	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/6 + 6/3 mottled silty clay	
43	22	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	
43	23	0	Ø		slope
44	1	15		0-4 cmbs, 10YR 4/2 silty clay loam; 4-15 cmbs, 10YR 5/6 silty clay	
44	2	18	۵	0-6 cmbs, 10YR 4/4 silty clay loam; 6-18 cmbs, 10YR 5/8 silty clay	
44	3	15		0-3 cmbs, 10YR 4/4 silty clay loam; 3-15 cmbs, 10YR 5/8 silty clay	
44	4	20		0-7 cmbs, 10YR 4/4 silty clay loam; 7-20 cmbs, 10YR 5/8 silty clay	
44	5	12		0-12 cmbs, 10YR 5/6 clay	
44	6	16		0-7 cmbs, 10YR 4/2 silty clay loam; 7-16 cmbs, 10YR 5/6 silty clay	
44	7	16		0-5 cmbs, 10YR 4/2 silty clay loam; 5-16 cmbs, 10YR 5/6 silty clay	
44	8	12	0	0-3 cmbs, 10YR 4/2 silty clay loam; 3-12 cmbs, 10YR 5/6 silty clay	
44	9	16		0-16 cmbs, 10YR 5/6 silty clay	
44	10	16	0	0-4 cmbs, 10YR 5/1 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
44	11	17	0	0-6 cmbs, 10YR 5/1 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
44	12	14		0-2 cmbs, 10YR 5/1 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
44	13	13		0-13 cmbs, 10YR 5/6 silty clay	
44	14	14		0-14 cmbs, 10YR 5/6 silty clay	
44	15	0	Ø		wetlands
44	16	0	Ø		wetlands
44	17	0	Ø		drainage
44	18	20		0-8 cmbs, 10YR 5/1 silty clay loam; 8-20 cmbs, 10YR 5/6 silty clay	20% gravel, bank of creek
44	19	16		0-4 cmbs, 10YR 5/1 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	20% gravel, bank of creek
44	20	17		0-6 cmbs, 10YR 5/1 silty clay loam; 6-17 cmbs, 10YR 5/8 clay	
44	21	14		0-3 cmbs, 10YR 5/1 silty clay loam; 3-14 cmbs, 10YR 5/8 clay	
44	22	17		0-17 cmbs, 10YR 5/6 silty clay	
44	23	11		0-11 cmbs, 10YR 6/1 + 5/6 mottled clay	
44	24	17	۵	0-6 cmbs, 10YR 5/4 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
44	25	17		0-4 cmbs, 10YR 5/4 silty clay loam; 4-17 cmbs, 10YR 5/6 silty clay	
44	26	16	۵	0-5 cmbs, 10YR 5/4 silty clay loam; 5-16 cmbs, 10YR 5/6 silty clay	
45	1	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/8 silty clay	
45	2	16	۵	0-3 cmbs, 10YR 3/3 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
45	3	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay	
45	4	21	۵	0-2 cmbs, 10YR 4/4 silty clay loam; 2-21 cmbs, 10YR 5/6 silty clay	
45	5	0	Ø		slope
45	6	18		0-7 cmbs, 10YR 3/4 silty clay loam; 7-18 cmbs, 10YR 5/8 silty clay	
45	7	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/6 silty clay	
46	1	15		0-3 cmbs, 10YR 5/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
46	2	14	0	0-2 cmbs, 10YR 5/2 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
46	3	0	Ø		slope
46	4	20		0-9 cmbs, 10YR 5/2 silty clay loam; 9-20 cmbs, 10YR 5/6 silty clay	on creek bank
46	5	16		0-3 cmbs, 10YR 5/2 silty clay loam; 3-16 cmbs, 10YR 5/6 silty clay	
46	6	0	Ø		slope
46	7	22		0-11 cmbs, 10YR 3/2 silty clay loam; 11-22 cmbs, 10YR 5/6 silty clay	
46	8	13		0-13 cmbs, 10YR 5/6 silty clay	
47	1	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 compact silty clay	
47	2	18	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 5/8 + 6/3 + 6/6 mottled silty clay	
47	3	20		0-6 cmbs, 10YR 4/4 silty clay loam; 6-20 cmbs, 10YR 5/8 silty clay	
47	4	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/6 compact silty clay	
47	5	17	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/6 + 6/3 + 6/6 silty clay	
47	6	0	Ø		slope
47	7	19	۵	0-11 cmbs, 10YR 4/4 silty clay loam; 11-19 cmbs, 10YR 5/4 + 6/3 compact silty clay loam; 19 cmbs, root impasse	
48	1	0	Ø		tram
48	2	0	Ø		eroded, good vis
48	3	0	Ø		dense vegetation
48	4	26	۵	0-4 cmbs, 10YR 4/4 silty loam; 4-26 cmbs, 10YR 6/6 silty clay	-

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
48	5	20		0-2 cmbs, 10YR 4/4 silty clay loam; 2-20 cmbs, 10YR 6/6 silty clay	eroded
48	6	0	Ø		eroded gulley
48	7	0	Ø		slope
49	1	0	Ø		heavily disturbed, treefall
49	2	18	۵	0-7 cmbs, 10YR 4/4 silty clay loam; 7-18 cmbs, 10YR 5/6 silty clay / clay	
49	3	14		0-14 cmbs, 10YR 5/6 hydric silty clay	tram heading 155 degrees
49	4	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/6 hydric silty clay	
49	5	0	Ø		slope to drainage
49	6	14		0-14 cmbs, 10YR 6/2 + 5/8 + 6/6 mottled compact silty clay loam	
49	7	0	Ø		slope
50	1	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
50	2	16		0-5 cmbs, 10YR 5/2 silty clay loam; 5-16 cmbs, 10YR 5/6 silty clay	
50	3	18		0-7 cmbs, 10YR 5/1 silty clay loam; 7-18 cmbs, 10YR 5/6 silty clay	
50	4	18		0-4 cmbs, 10YR 5/2 silty clay loam; 4-18 cmbs, 10YR 5/6 silty clay	
50	5	15		0-3 cmbs, 10YR 5/1 silty clay loam; 3-15 cmbs, 10YR 5/6 clay	
50	6	0	Ø		slope
50	7	0	Ø		wetlands
50	8	0	Ø		slope - steep dropoff
51	1	16		0-4 cmbs, 10YR 4/6 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/3 mottled silty clay	
51	2	18		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/8 + 6/3 mottled silty clay	
51	3	0	Ø		wetlands
51	4	0	Ø		slope to drainage
51	5	18		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18 cmbs, 10YR 5/6 silty clay	
51	6	16		0-2 cmbs, 10YR 4/4 silty clay loam; 2-16 cmbs, 10YR 5/8 silty clay	
51	7	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
51	8	0	Ø		drainage, water at surface
52	1	14		0-2 cmbs, 10YR 5/2 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
52	2	15		0-3 cmbs, 10YR 5/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
52	3	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
52	4	16		0-4 cmbs, 10YR 5/2 silty clay loam; 4-16	
				cmbs, 10YR 5/6 silty clay	
52	5	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17	
50	-	0	a	cmbs, 10YR 5/6 silty clay	414
52	6	0	Ø	0.6	wetlands
52	7	17		0-6 cmbs, 10YR 5/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
52	8	18		0-7 cmbs, 10YR 5/2 silty clay loam; 7-18 cmbs, 10YR 5/6 silty clay	
53	1	16		0-3 cmbs, 10YR 3/4 silty clay loam; 3-16	
				cmbs, 10YR 5/8 silty clay	
53	2	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
52	2	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17	
53	3	17		cmbs, 10YR 5/6 silty clay	
52	4	17		0-2 cmbs, 10YR 3/4 silty clay loam; 2-17	
53	4	17		cmbs, 10YR 5/6 silty clay	
52	5	10		0-3 cmbs, 10YR 4/4 silty clay loam; 3-18	
53	3	18		cmbs, 10YR 5/8 silty clay	
53	6	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
		1.		cmbs, 10YR 5/6 silty clay	
53	7	13		0-13 cmbs, 10YR 5/8 + 4/3 mottled silty clay	
~ 0	0			0-4 cmbs, 10YR 4/4 silty clay loam; 4-15	
53	8	15		cmbs, 10YR 5/8 silty clay	
54	1	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
J 4	1	1 /	-	cmbs, 10YR 5/8 hydric silty clay	
54	2	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14	
				cmbs, 10YR 5/8 hydric silty clay	
54	3	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
<i>5</i> 4	4	1.0		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	
54	4	16		cmbs, 10YR 5/6 compact silty clay	
54	5	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	
J -1	3	14	7	cmbs, 10YR 5/6 hydric silty clay	
54	6	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
				cmbs, 10YR 5/8 + 6/4 mottled silty clay 0-8 cmbs, 10YR 4/4 silty clay loam; 8-18	
54	7	18		cmbs, $10 \text{ YR} = 4/4 \text{ sinty ciary roam}$; $8-18 \text{ cmbs}$, $10 \text{ YR} = 5/6 + 6/3 + 6/8 \text{ silty clay}$	
				0-6 cmbs, 10YR 4/4 silty clay loam; 6-17	
54	8	17		cmbs, $10YR 5/6 + 6/3 + 6/8$ hydric silty	
				clay	
55	1	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16	
				cmbs, 10YR 5/8 silty clay	
55	2	0	Ø		slope
55	3	0	Ø		wetlands
55	4	19	۵	0-5 cmbs, 10YR 4/4 silty clay loam; 5-19 cmbs, 10YR 5/8 silty clay	
		4-		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
55	5	17		cmbs, 10YR 5/6 silty clay	

	gı ı	Max			
Transect	Shovel test	depth (cm)	Status	Soil Description	Comments
55	6	18		0-18 cmbs, 10YR 5/6 silty clay	
55	7	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
33	,	10		cmbs, 10YR 5/6 silty clay	
55	8	0	Ø		drainage, water at surface
56	1	15		0-3 cmbs, 10YR 3/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
56	2	15		0-3 cmbs, 10YR 3/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
56	3	18		0-7 cmbs, 10YR 3/2 silty clay loam; 7-18	
				cmbs, 10YR 5/6 silty clay 0-4 cmbs, 10YR 3/2 silty clay loam; 4-16	
56	4	16		cmbs, 10YR 5/6 silty clay	
				0-3 cmbs, 10 TR 3/0 sitty clay loam; 3-17	
56	5	17		cmbs, 10YR 5/6 silty clay	
56	6	13		0-13 cmbs, 10YR 6/6 clay	
				0-5 cmbs, 10YR 3/2 silty clay loam; 5-16	
56	7	16		cmbs, 10YR 5/6 silty clay	
56	8	1.5	П	0-4 cmbs, 10YR 3/2 silty clay loam; 4-15	
30	0	15		cmbs, 10YR 5/6 silty clay	
56	9	14		0-3 cmbs, 10YR 3/2 silty clay loam; 3-14	
30	,	17		cmbs, 10YR 5/6 silty clay	
57	1	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	
			_	cmbs, 10YR 5/8 hydric silty clay	
57	2	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 + 6/3 mottled silty clay	
				$0-11 \text{ cmbs}$, $10 \text{ FR} \frac{3}{8} + \frac{6}{3} \text{ inothed sitty clay}$; 11 cmbs ,	
57	3	11		root impasse	
	_			0-6 cmbs, 10YR 4/4 silty clay loam; 6-16	
57	4	16		cmbs, 10YR 5/6 compact silty clay	
57	_	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
57	5	17		cmbs, 10YR 5/8 compact silty clay	
57	6	17		0-2 cmbs, 10YR 4/4 silty clay loam; 2-17	
31	U	1 /		cmbs, 10YR 5/8 compact silty clay	
57	7	16		0-5 cmbs, 10YR 4/4 silty clay loam; 5-16	
				cmbs, 10YR 5/8 compact silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-14	
57	8	1.4		cmbs, 10YR 5/8 hydric silty clay; 14 cmbs	
37	0	14			
				root impasse 0-4 cmbs, 10YR 4/4 silty clay loam; 4-18	
57	9	18		cmbs, $10 \text{YR} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$	
		10	_	clay	
58	1	0	Ø		slope
	2	1.4		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	*
58	2	14		cmbs, 10YR 5/8 silty clay	
58	3	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	saturated
36	J	10	_	cmbs, 10YR 5/8 silty clay	Saturated
58	4	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	
			_	cmbs, 10YR 5/8 silty clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
58	5	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
58	6	17		0-5 cmbs, 10YR 4/4 silty clay loam; 5-17	
58	7	16		cmbs, 10YR 6/4 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-16	
58	8	18		cmbs, 10YR 5/6 silty clay 0-18 cmbs, 10YR 5/8 + 6/4 mottled silty	
59	1	16	_	clay 0-3 cmbs, 10YR 3/2 silty clay loam; 3-16	
				cmbs, 10YR 5/6 silty clay 0-4 cmbs, 10YR 3/2 silty clay loam; 4-16	
59	2	16		cmbs, 10YR 5/6 silty clay 0-3 cmbs, 10YR 3/2 silty clay loam; 3-15	
59	3	15		cmbs, 10YR 5/6 silty clay	
59	4	0	Ø		wetlands
59	5	13		0-13 cmbs, 10YR 5/4 silty clay	saturated
59	6	15		0-3 cmbs, 10YR 3/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
59	7	16		0-4 cmbs, 10YR 3/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
59	8	17		0-6 cmbs, 10YR 3/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
59	9	16		0-5 cmbs, 10YR 3/2 silty clay loam; 5-16 cmbs, 10YR 5/6 silty clay	
59	10	16		0-4 cmbs, 10YR 3/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
60	1	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/6 silty clay	
60	2	17		0-2 cmbs, 10YR 4/4 silty clay loam; 2-17 cmbs, 10YR 5/8 silty clay	
60	3	16		0-1 cmbs, 10YR 4/4 silty clay loam; 1-16	
60	4	17		cmbs, 10YR 5/8 silty clay 0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
60	5	14		cmbs, 10YR 5/8 + 6/3 mottled silty clay 0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	
60	6	14		cmbs, 10YR 5/6 silty clay 0-1 cmbs, 10YR 4/4 silty clay loam; 1-14	
60	7	16		cmbs, 10YR 5/8 silty clay 0-6 cmbs, 10YR 4/4 silty clay loam; 6-16	
60	8	14	_	cmbs, 10YR 5/6 silty clay 0-14 cmbs, 10YR 5/8 silty clay loam	
60	9	17		0-3 cmbs, 10YR 4/4 silty clay loam; 3-17 cmbs, 10YR 5/8 silty clay	
60	10	17		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17 cmbs, 10YR 5/8 silty clay	
61	1	0	Ø	The same of the sa	wetland, standing water
61	2	14	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-14 cmbs, 10YR 5/6 clay	

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
61	3	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/8 silty clay	
61	4	0	Ø	omes, 10 111 e, 0 sney only	disturbed, ATV road
61	5	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/4 silty clay	, , , , , , , , , , , , , , , , , , , ,
61	6	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/3 silty clay	
61	7	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 + 6/3 clay	
61	8	0	Ø	emos, 10 TR 5/0 T 6/3 etay	ATV trail
61	9	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/2 mottled silty clay	
61	10	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 + 6/2 mottled silty clay	
62	1	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/8 silty clay	
62	2	14		0-2 cmbs, 10YR 4/4 silty clay loam; 2-14 cmbs, 10YR 5/8 hydric silty clay	
62	3	16		0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
62	4	16	۵	0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/6 compact silty clay	
62	5	12	۵	0-4 cmbs, 10YR 4/4 silty clay loam; 4-12 cmbs, 10YR 5/8 hydric silty clay; 12 cmbs, root impasse	
62	6	17		0-6 cmbs, 10YR 4/4 silty clay loam; 6-17 cmbs, 10YR 5/8 silty clay	
62	7	0	Ø	, , ,	lake, standing water
62	8	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/2 hydric silty clay	
62	9	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 + 6/2 hydric silty clay	
62	10	0	Ø		disturbed, ATV road
63	1	14		0-2 cmbs, 10YR 3/2 silty clay loam; 2-14 cmbs, 10YR 5/6 silty clay	
63	2	16		0-4 cmbs, 10YR 3/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
63	3	17		0-6 cmbs, 10YR 3/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
63	4	20		0-8 cmbs, 10YR 5/3 silty clay loam; 8-20 cmbs, 10YR 5/6 silty clay	
63	5	18		0-6 cmbs, 10YR 5/3 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
63	6	15		0-3 cmbs, 10YR 3/2 silty clay loam; 3-15 cmbs, 10YR 5/6 silty clay	
63	7	12		0-12 cmbs, 10YR 5/6 clay	
63	8	18		0-6 cmbs, 10YR 5/1 silty clay loam; 6-18 cmbs, 10YR 5/6 silty clay	
63	9	13		0-13 cmbs, 10YR 5/1 + 5/6 mottled clay	

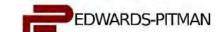
Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
C.1	1	1		0-4 cmbs, 10YR 4/4 silty clay loam; 4-14	
64	1	14		cmbs, 10YR 5/8 silty clay	
64	2	19		0-19 cmbs, 10YR 5/8 silty clay	
64	3	16		0-4 cmbs, 10YR 3/3 silty clay loam; 4-16	
04	3	10		cmbs, 10YR 5/8 silty clay	
64	4	14		0-2 cmbs, 10YR 3/4 silty clay loam; 2-14	
04	-	17]	cmbs, 10YR 5/8 silty clay	
64	5	14		0-3 cmbs, 10YR 3/4 silty clay loam; 3-14	
	_		_	cmbs, 10YR 5/6 silty clay	
64	6	15		0-3 cmbs, 10YR 4/4 silty clay loam; 3-15	
				cmbs, 10YR 5/8 silty clay 0-2 cmbs, 10YR 4/4 silty clay loam; 2-14	
64	7	14		cmbs, 10YR 5/8 silty clay	
64	8	0	Ø	cillos, 10 1 K 5/8 sifty clay	drainaga
64	9	0	Ø		drainage
	-		Ø		drainage
64	10	0			drainage
65	1	U	Ø	0.4 ambs 10VD 4/4 silty alay laam, 4.14	drainage
65	2	14		0-4 cmbs, 10YR 4/4 silty clay loam; 4-14 cmbs, 10YR 5/8 silty clay	
				0-4 cmbs, 10YR 4/4 silty clay loam; 4-15	
65	3	15		cmbs, 10YR 5/6 silty clay	
65	4	0	Ø	emos, 10 1 K 5/0 shty clay	drainage
65	5	0	Ø		drainage
				0-3 cmbs, 10YR 4/4 silty clay loam; 3-16	urumuge
65	6	16		cmbs, 10YR 5/6 silty clay	
	_	1.5		0-4 cmbs, 10YR 4/4 silty clay loam; 4-17	
65	7	17		cmbs, 10YR 5/8 silty clay	
65	0	12		0-2 cmbs, 10YR 4/4 silty clay loam; 2-13	
65	8	13		cmbs, 10YR 5/8 silty clay	
65	9	12		0-2 cmbs, 10YR 4/4 silty clay loam; 2-12	
	,]	cmbs, 10YR 5/8 silty clay	
65	10	14		0-14 cmbs, 10YR 5/8 silty clay	
66	1	0	Ø		wetlands
66	2	0	Ø		slope to wetlands
66	3	17		0-5 cmbs, 10YR 4/3 silty clay loam; 5-17	
				cmbs, 10YR 5/4 silty clay	
66	4	14		0-14 cmbs, 10YR 5/6 silty clay	
66	5	18		0-6 cmbs, 10YR 3/2 silty clay loam; 6-18	
				cmbs, 10YR 5/6 silty clay	1-
66	6	0	Ø	0.4 cmbs 10VD 2/2 cites -11	creek
66	7	16		0-4 cmbs, 10YR 3/2 silty clay loam; 4-16 cmbs, 10YR 5/6 silty clay	
			0-3 cmbs, 10YR 3/6 silty clay loam; 3-17		
66	8	17		cmbs, 10YR 5/6 silty clay	
				0-4 cmbs, 10 YR 3/2 silty clay loam; 4-15	
66	9	15		cmbs, 10YR 5/6 silty clay	
	4.0	4.0		0-6 cmbs, 10YR 3/2 silty clay loam; 6-18	
66	10	18		cmbs, 10YR 5/6 silty clay	
67	1	0	Ø		wetland

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
67	2	0	Ø		slope of tram heading 190 degrees
67	3	16	0	0-3 cmbs, 10YR 4/4 silty clay loam; 3-16 cmbs, 10YR 5/8 silty clay	
67	4	16		0-4 cmbs, 10YR 4/4 silty clay loam; 4-16 cmbs, 10YR 5/8 silty clay	
67	5	19	-	0-2 cmbs, 10YR 4/4 silty clay loam; 2-19 cmbs, 10YR 5/6 compact silty clay loam	
67	6	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 silty clay	
67	7	16		0-6 cmbs, 10YR 4/4 silty clay loam; 6-16 cmbs, 10YR 5/8 + 6/3 silty clay	
67	8	0	Ø		drainage
67	9	0	Ø		disturbed by large machinery
67	10	14		0-3 cmbs, 10YR 4/4 silty clay loam; 3-14 cmbs, 10YR 5/8 silty clay	
68	1	12		0-12 cmbs, 10YR 5/6 silty clay	
68	2	20		0-8 cmbs, 10YR 3/2 silty clay loam; 8-20 cmbs, 10YR 5/6 silty clay	
68	3	19		0-7 cmbs, 10YR 3/2 silty clay loam; 7-19 cmbs, 10YR 5/6 silty clay	
68	4	17		0-5 cmbs, 10YR 3/2 silty clay loam; 5-17 cmbs, 10YR 5/6 silty clay	near stream
68	5	17		0-6 cmbs, 10YR 3/2 silty clay loam; 6-17 cmbs, 10YR 5/6 silty clay	
68	6	18		0-7 cmbs, 10YR 3/2 silty clay loam; 7-18 cmbs, 10YR 5/6 silty clay	
68	7	13		0-13 cmbs, 10YR 5/6 silty clay	
68	8	15	0	0-7 cmbs, 10YR 3/2 silty clay loam; 7-15 cmbs, 10YR 5/6 silty clay	
68	9	12		0-12 cmbs, 10YR 5/6 silty clay	
68	10	0	Ø		pond
68	11	0	Ø		pond
FS4	22-16	16		0-4 cmbs, 10YR 3/6 silty clay loam; 4-16 cmbs, 10YR 5/6 + 6/4 mottled silty clay	
FS4	Datum (21-4)	9		0-5 cmbs, 10YR 4/4 silty clay loam; 5-9 cmbs, 10YR 5/6 silty clay loam + compact gravel	
FS4	E10	7		0-6 cmbs, 10YR 3/1 silty loam; 6-7 cmbs, 10YR 5/6 silty clay; 7 cmbs, compact gravel	
FS4	E20	11		0-6 cmbs, 10YR 4/4 silty clay loam; 6-11 cmbs, 10YR 5/6 silty clay loam; 11 cmbs, compact gravel	80% gravel
FS4	E35	20		0-6 cmbs, 10YR 4/4 silty clay loam; 6-20 cmbs, 10YR 5/6 silty clay / clay	large (plastic?) conduit ~ 17 cmbs
FS4	N10	28	0	0-13 cmbs, 10YR 4/4 silty clay loam; 13-28 cmbs, 10YR 5/6 silty clay	few gravel

Transect	Shovel test	Max depth (cm)	Status	Soil Description	Comments
FS4	N20	40		0-30 cmbs, 10YR 5/2 silty clay loam; 30-40 cmbs, 10YR 5/6 silty clay	
FS4	N20 E25	36		0-14 cmbs, 10YR 4/4 silty clay loam; 14-36 cmbs, 10YR 5/6 silty clay loam	
FS4	N20 E35	18	-	0-4 cmbs, 10YR 4/4 silty clay loam; 4-18 cmbs, 10YR 5/6 silty clay	
FS4	N20 E45	24		0-7 cmbs, 10YR 4/4 silty clay; 7-24 cmbs, 10YR 5/6 + 6/4 silty clay / clay	
FS4	N20 E55	16		0-5 cmbs, 10YR 4/4 silty clay loam; 5-16 cmbs, 10YR 5/8 silty clay	
FS4	N30 E35	27		0-16 cmbs, 10YR 4/4 silty loam; 16-27 cmbs, 10YR 5/6 silty clay	clear bottle glass 0-8 cmbs
FS4	N35 E10	18		0-8 cmbs, 10YR 5/2 silty clay loam; 8-18 cmbs, 10YR 5/6 silty clay	
FS4	N40 E15	15		0-5 cmbs, 10YR 5/2 silty clay loam; 5-15 cmbs, 10YR 5/6 silty clay	
FS4	N40 E25	16		0-6 cmbs, 10YR 5/2 silty clay loam; 6-16 cmbs, 10YR 5/6 silty clay	
FS4	N40 E5	21		0-9 cmbs, 10YR 4/4 silty clay loam; 9-21 cmbs, 10YR 5/8 + 6/4 mottled silty clay	
FS4	N45 E10	16	0	0-6 cmbs, 10YR 5/2 silty clay loam; 6-16 cmbs, 10YR 5/6 silty clay	
FS4	N50 E35	24		0-12 cmbs, 10YR 4/4 silty clay loam; 12-24 cmbs, 10YR 5/6 + 6/4 silty clay	
FS4	N55 E10	17		0-7 cmbs, 10YR 5/2 silty clay loam; 7-17 cmbs, 10YR 5/6 silty clay	

ATTACHMENT 7

Noise and Noise Compatible Land Use Information


Noise Assessment Report

Memphis Shelby County Airport Authority Holmes Road Land Release

Prepared for:

EnSafe Inc. 308 North Peters Road, Suite #200 Knoxville, TN 37922

Prepared by:

Edwards-Pitman Environmental, Inc. 2700 Cumberland Parkway, Suite 300 Atlanta, GA 30339

February 25, 2021

1.0 Introduction

The affected environment evaluated for noise and noise related impacts in this report is identified as the Proposed Action site and surrounding land uses. The approximately 245-acre Proposed Action site is located approximately 1 mile south of the Memphis Shelby County Airport (MEM) on the southeast corner of East Holmes Road and Swinnea Road and north of the Tennessee/Mississippi State line, in Memphis, Shelby County, Tennessee. A Proposed Site Plan identifies the potential for approximately 1.5 million square feet of facility space at the site with approximately 300,000 square feet of additional space allotted for future growth, if needed (Figure 1 in Attachment 1). The site is predominantly wooded and vacant, and land use along Holmes Road includes four churches, a cemetery, single-family residential, a military base, and Zodiac Park. These land uses are shown on Figure 2 in Attachment 1.

As the principle noise source for this project corridor is vehicular traffic along Holmes Road, the Federal Highway Administration (FHWA) Traffic Noise Model (TNM) Version 2.5 was selected to model changes to the noise environment caused by increased traffic along Holmes Road. While TNM Version 3.0 was released for use last year, the software is still under development (see Attachment 2 for Correspondence). Holmes Road was considered the primary transportation route for projected increased traffic volumes and large trucks. Adjoining and area residential streets were assumed not to be the source of high traffic volumes or large trucks.

This report documents the results of a noise analysis completed to predict the effects that the proposed project would have on surrounding land uses.

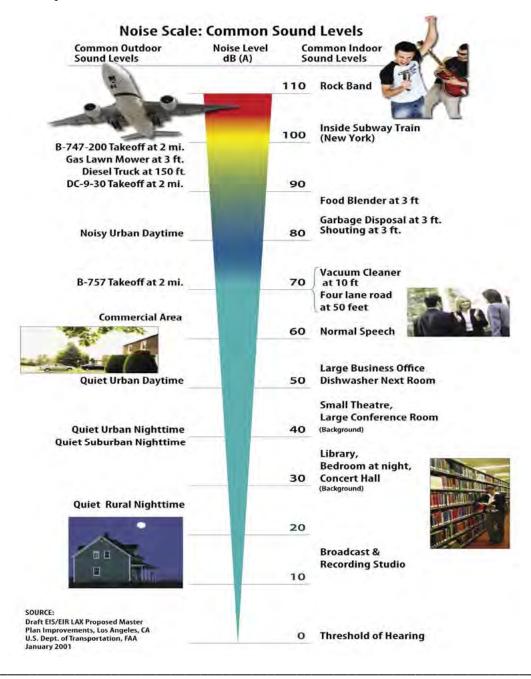
2.0 Background

The study area is made up of four churches, a cemetery, single-family residential, a military base, and Zodiac Park.

The principal source of noise in the study area is vehicular traffic, including automobiles and trucks. As an existing transportation corridor, most adjacent land uses are exposed to at least moderate noise levels.

Noise is typically defined as unwanted or undesirable sound. The basic parameters of noise that affect humans are:

- (1) intensity or level,
- (2) frequency content, and
- (3) variation with time.


The first parameter is determined by the level of sound, which is expressed in units of decibels (dB). By using this scale, the range of normally encountered sound can be expressed by values between 0 and 120 dB. On a relative basis, a 3-dB change in sound level generally represents a barely perceptible change in a common outdoor setting, to someone with average hearing. A 5-dB positive change presents a "noticeable" change, and a 10-dB positive change is typically perceived as a doubling in the loudness while a 10-dB decrease in noise levels is perceived as a 50 percent reduction in loudness.

The frequency of noise is related to the tone or pitch of the sound and is expressed in terms of cycles per second called hertz (Hz). The human ear can detect a wide range of frequencies from about 20 Hz to 17,000 Hz. However, because the sensitivity of human hearing varies with frequency, the A-weighting system is commonly used. Sound levels measured using this weighting system are called "A-weighted" sound levels

and are expressed in decibel notation as "dBA." The A-weighted sound level is widely accepted as a proper unit for describing environmental noise.

Because environmental noise fluctuates from moment to moment, it is common practice to condense all of this information into a single number called the "equivalent" sound level (Leq). The Leq is a measure of the average sound energy during a specified period of time (typically 1 hour or 24 hours). The Leq is defined as the constant level that, over a given period of time, transmits the same amount of acoustical energy to the receiver as the actual time-varying sound. Studies have shown that Leq is well correlated with human annoyance to sound, and therefore, this descriptor is widely used for environmental noise impact assessment. The Leq measured over a 1-hour period is the hourly Leq (1-hour), which is used to analyze highway noise impacts and abatement.

Many factors affect noise. Traffic noise level at a site depends on both site geometry (distance, land cover, topography, etc.) and traffic characteristics (volume, vehicle type, speed, truck numbers, etc.) of roadways. As an example, for a straight, at-grade roadway with a steady stream of vehicles, the Leq noise level decreases with distance from the roadway. Generally, in areas where the land between the roadway and the receptor site is primarily grass, lawn, or other sound absorptive material, the noise level decreases at a rate of 4.5 dBA per a doubling of the distance. Conversely, in more urban areas with concrete, the noise level drops off at a much slower rate—typically around 3 dBA per a doubling of the distance. These drop-off rates assume vehicle travel speeds remain constant and flat open terrain occurs between the receptor and the roadway. Higher drop off rates will typically occur in areas where there is excess shielding caused by building rows or variations in the terrain.

Assuming similar vehicle mix and travel speeds, a doubling in traffic volume over a given period of time produces a doubling in the sound energy. A doubling in sound energy corresponds to a barely perceptible 3-dBA increase in noise level. At locations where traffic volumes and noise levels are already high, a large change in traffic volume is required to cause a perceptible change in the noise level.

Noise levels from trucks are much greater than noise levels from automobiles. The noise generated by a single heavy truck can be as loud as 10 automobiles. Consequently, at a given constant travel speed, noise level changes are more sensitive to the distance of nearby truck lanes and/or to changes in truck volumes than changes in overall traffic flow. However, travel speeds do play a factor, and on a roadway that is carrying a given volume of traffic, road-traffic noise levels increase by approximately 5 to 6 dBA as the speed increases from 30 to 45 mph, and by another 3 dBA as the speed increases to 55 mph.

3.0 Methodology

Three field measurements were collected on May 29, 2020 from two locations along Holmes Road between 7:15 AM - 8:50 PM. These field measurement sites are depicted on Figure 2 in Attachment 1. The sites were chosen based on close proximity to areas of human use and clear line-of-sight to the traffic noise source. Noise measurement sites included two church properties located along the northern side of Holmes Road. Copies of the field notes are provided in Attachment 3. Field measurements indicate existing noise levels ranged, at the time measurements were taken, between **60.0** and **63.2** dBA.

Land use and terrain were assessed during the time of field measurement collection. The study area includes four churches, a military base located to the northwest, Memorial Park Cemetery located to the west, single-family residential subdivisions located to the east, and Zodiac Park located to the east (see Figure 2 in Attachment 1). Terrain surrounding Holmes Road was considered generally level, and no features that would obscure line-of sight to the traffic noise source or influence the calculation of local sound projections, such as berms, bodies of water, or existing noise barriers, were identified for inclusion in the traffic noise model.

Field measurements were recorded using a laboratory calibrated Bruel & Kjær Model 2238 sound level meter. These measurements were taken for 15 minutes at each location. The locations of field measurements and the observed sound levels are provided in Table 1. Field measurements were compared with TNM-modeled noise levels to confirm the applicability of the model for this analysis. Traffic counts, by vehicle type (cars, medium trucks, and heavy trucks) were taken along Holmes Road during each field measurement. In addition, posted vehicle speeds of 40 mph were observed at all field measurement locations. Total traffic counts were input into the TNM to determine if the model is accurately predicting sound levels along the corridor. The TNM modeled results for the field measurements indicated existing

noise levels between **58.0** and **63.2** dBA, and the comparisons of field measurements to modeled levels are shown in Table 1 below.

A difference of approximately three decibels is generally considered an acceptable range to consider the model for use in predicting future noise levels. Because each of the field measurements were within the accepted three-decibel range of the model, the model is considered applicable for use in analysis of noise levels within the study area.

Table 1: Existing Field Measurements and TNM Results (dBA Lea)

Field Receiver #	Time Range	Field Measurement	TNM Calculation	Difference
Field Measurement #1	7:15 AM - 7:30 AM	63.1	63.2	0.1
Field Measurement #2	7:45 AM - 8:00 AM	63.2	62.4	-0.8
Field Measurement #3	8:35 AM – 8:50 AM	60.0	58.0	-2.0

Roadways were digitized in ArcMap version 10.6 from 30-centimeter resolution 2019 ESRI world aerial imagery with elevations obtained from 10-meter resolution National Elevation Dataset (NED) Digital Elevation Models (DEM). Hourly 2017 traffic counts with percentage medium and heavy trucks for Holmes Road (traffic count station number 000291) were provided by the Tennessee Department of Transportation (TDOT) [see Attachment 2]. While AADT (Annual Average Daily Traffic) is available for more recent years, 2017 traffic counts are the most recent hourly counts recorded by TDOT, and 2017 peak hour traffic was used to represent a worst-case scenario for this study. Traffic was distributed evenly across Holmes Road westbound and eastbound thru lanes, and traffic was not modeled on turn lanes. The GIS-derived roadway geometries were imported into TNM, and the number of automobiles, medium trucks, and heavy trucks and the posted travel speed for Holmes Road were input into the model. Noise generated from sources other than traffic is not included in the model.

An Environmental Assessment (EA) was recently prepared for a proposed land release along Ketchum Road, approximately 5 miles north of the Holmes Road site, for the construction of an 819,000 sq. ft. distribution warehouse. As part of this EA, a traffic noise study was completed to model the potential change in the local noise environment attributed to the increase in traffic associated with the proposed development. The study was completed with the assumption that routine operation of the distribution was assumed to include 120 distribution trucks per day, and approximately 100 autos per day for employees accessing the distribution warehouse. Additionally, worst case traffic volumes under the Build condition were calculated with the assumption that 50% of these trucks, assumed all to be heavy trucks (i.e. tractor trailers), and 50% of autos would be added to the No-Build condition hourly traffic volumes along Ketchum Road. The Proposed Site Plan along Holmes Road identifies the potential for approximately 1.5 million sq. ft. of facility space at the site with approximately 300,000 sq. ft. of additional space allotted for future growth if needed (Figure 1 in Attachment 1). As projected traffic data associated with a potential Holmes Road distribution facility is not available, increase in traffic along Holmes Road due to operations of a

distribution facility was assumed to be twice that of the proposed Ketchum Road development, as a Holmes Road distribution facility at the proposed site could be 1,500,000–1,800,000 sq. ft., approximately twice the size of the 819,000 sq. ft. Ketchum Road facility.

Under the No-Build condition, a total of 1108 vehicles including 56 medium and 78 heavy trucks were distributed along the Holmes Road eastbound and westbound lanes to project the No-Build noise levels (see Table 2 below for No-Build inputs). Under the Build condition, routine operation of the distribution warehouse was assumed to include approximately 240 distribution trucks per day, and approximately 200 autos per day for employees accessing the distribution warehouse. Worst case traffic volumes were calculated with the assumption that 50% of these trucks, assumed to all be heavy trucks (i.e. tractor trailers), and 50% of autos would be added to the No-Build condition hourly traffic volumes along Holmes Road. A total of 1328 vehicles including 56 medium and 198 heavy trucks were distributed along the Holmes Road eastbound and westbound lanes to project the hourly traffic noise levels under the Build condition (see Table 3 on page 6 for Build inputs).

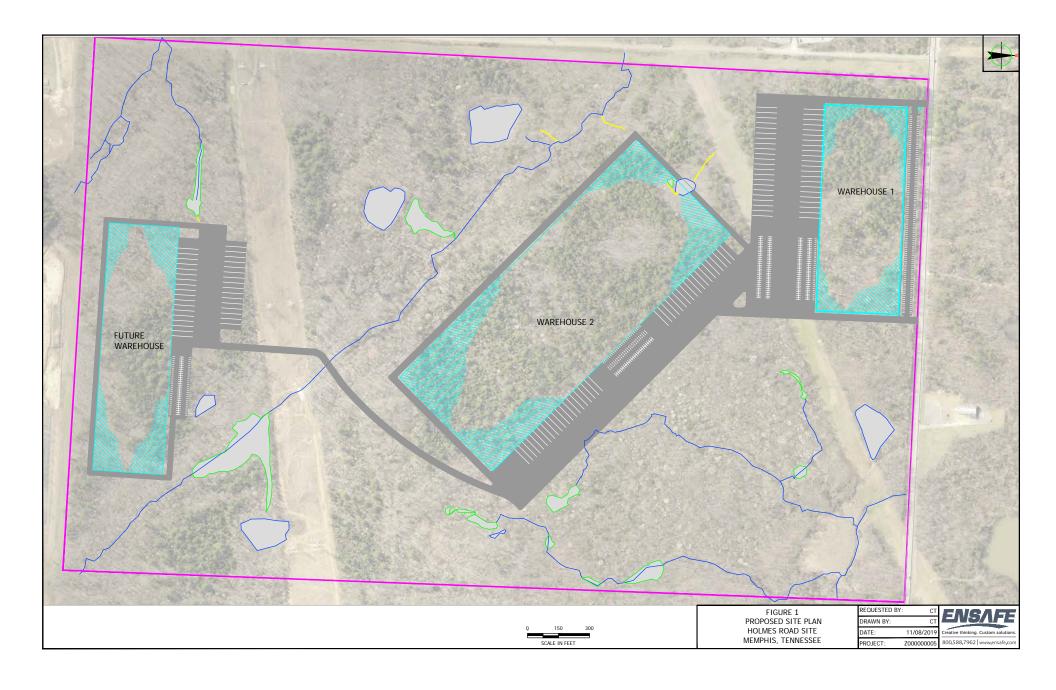
To create noise contours with projected noise levels in the Build and No-Build conditions, a 250-foot cell grid was created for the area surrounding Holmes Road with a receiver placed at the center of each cell to capture the local projected sound level (see Figures 3A and 3B in Attachment 1). Sound levels were calculated in TNM for the Build and No-Build traffic projections, and the receiver features were then converted to a 250-foot cell raster from which 5 dBA step contours were generated. Yearly Day-Night Average Sound Levels are the preferred unit of noise level measurement according to Appendix A of 14 CFR part 150, Airport Noise Compatibility Planning. However, note that this analysis assumes that 100% of new site generated trips approach the site from the west, via Airways Boulevard and I-55, rather than being distributed to access the site from both the east and the west. With this assumption, the land use assessed for traffic noise effects attributed to operations of the proposed facility was restricted to areas directly north and west of the proposed facility (see Figure 2 in Attachment 1). Land use in this area consists of a military base, church, cemetery, and undeveloped land. The absence of residential development along this traffic corridor precludes application of Day-Night noise penalization, as the Day-Night weighting generally applies to residential land use where increased traffic noise between 11 pm - 7 am could potentially be more impactful than daytime hours. Therefore, this study omitted Day-Night noise weighting and analyzed the potential effect of increased traffic on the local noise environment during peak hour PM traffic conditions. Results are shown in dBA without Day-Night noise penalization, which is also the generally preferred method for traffic noise studies where vehicular traffic is the predominant noise source.

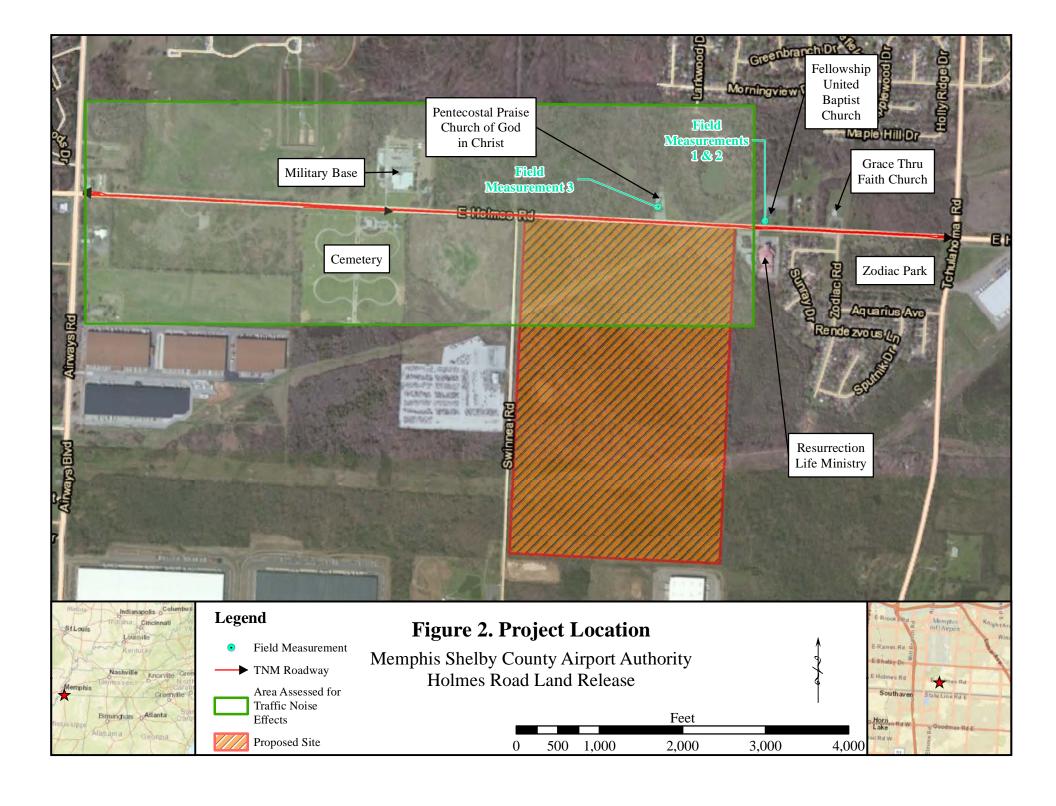
Table 2: Model Inputs No-Build

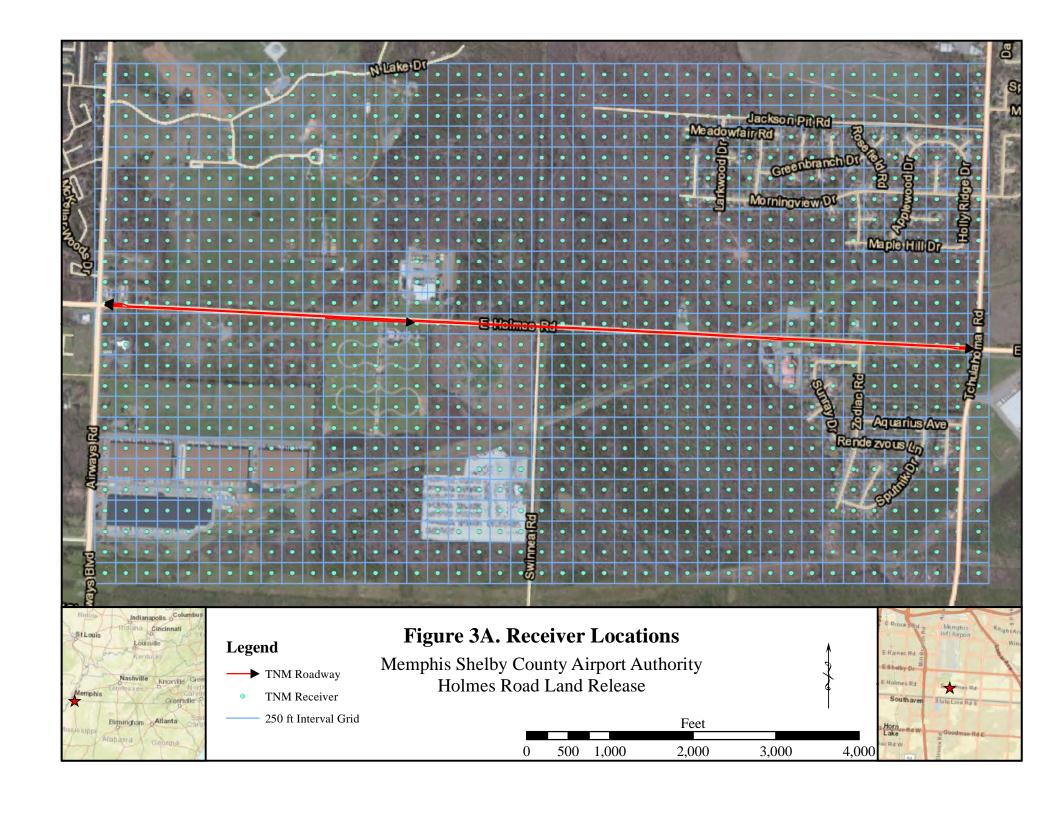
Road	Direction	Lane Width Input	Total DHV	Cars	Medium Trucks	Heavy Trucks
Holmes Rd EB	EB	12'	554	487	28	39
Holmes Rd EB LT	EB	12'	N/A	N/A	N/A	N/A
Holmes Rd EB RT	EB	12'	N/A	N/A	N/A	N/A
Holmes Rd WB	WB	12'	554	487	28	39
Holmes Rd WB LT	WB	12'	N/A	N/A	N/A	N/A

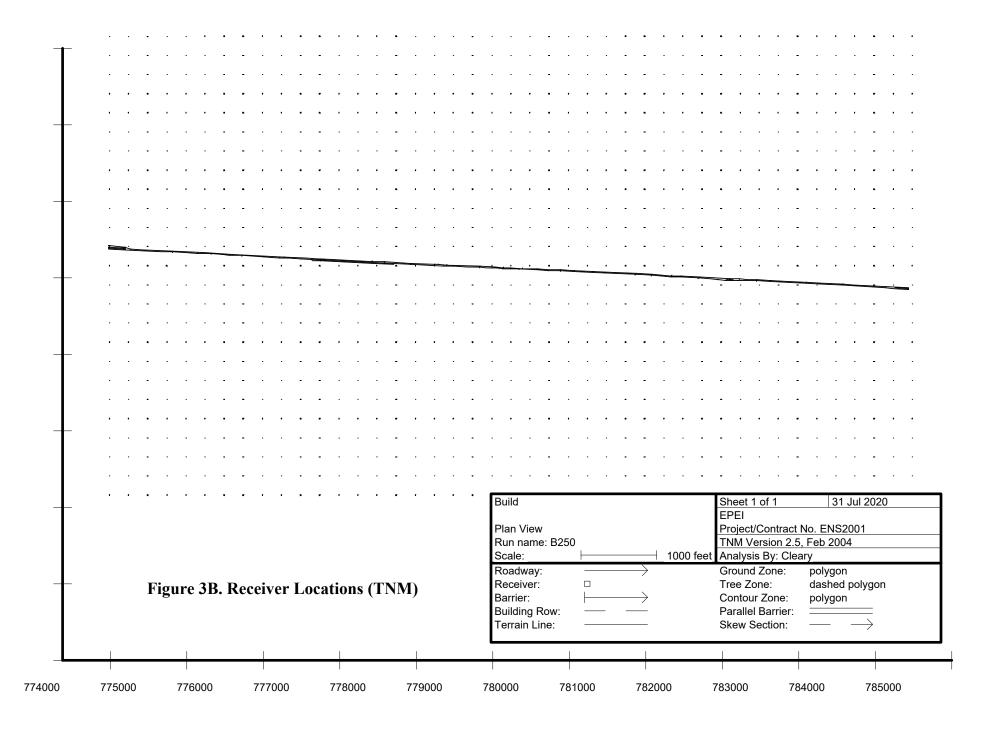
Road	Direction	Lane Width Input	Total DHV	Cars	Medium Trucks	Heavy Trucks
Holmes Rd WB LT IN	WB	12'	N/A	N/A	N/A	N/A
Holmes Rd WB LT OUT	WB	12'	N/A	N/A	N/A	N/A

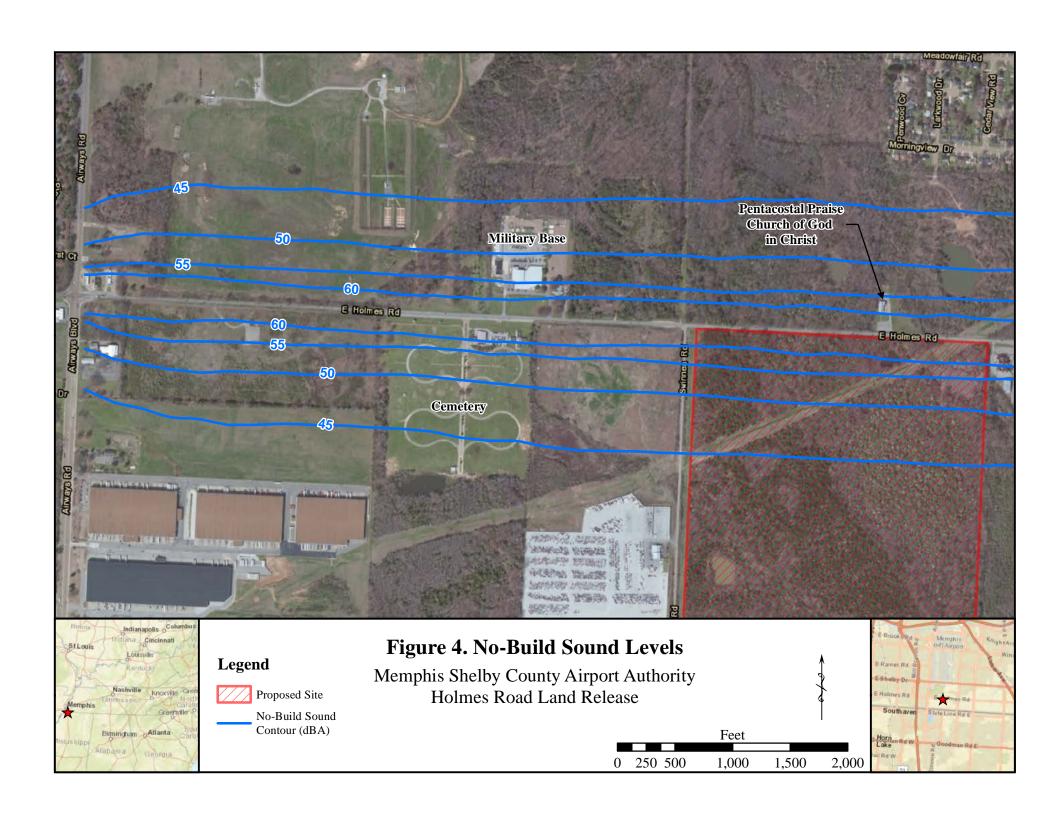
Table 3: Model Inputs Build

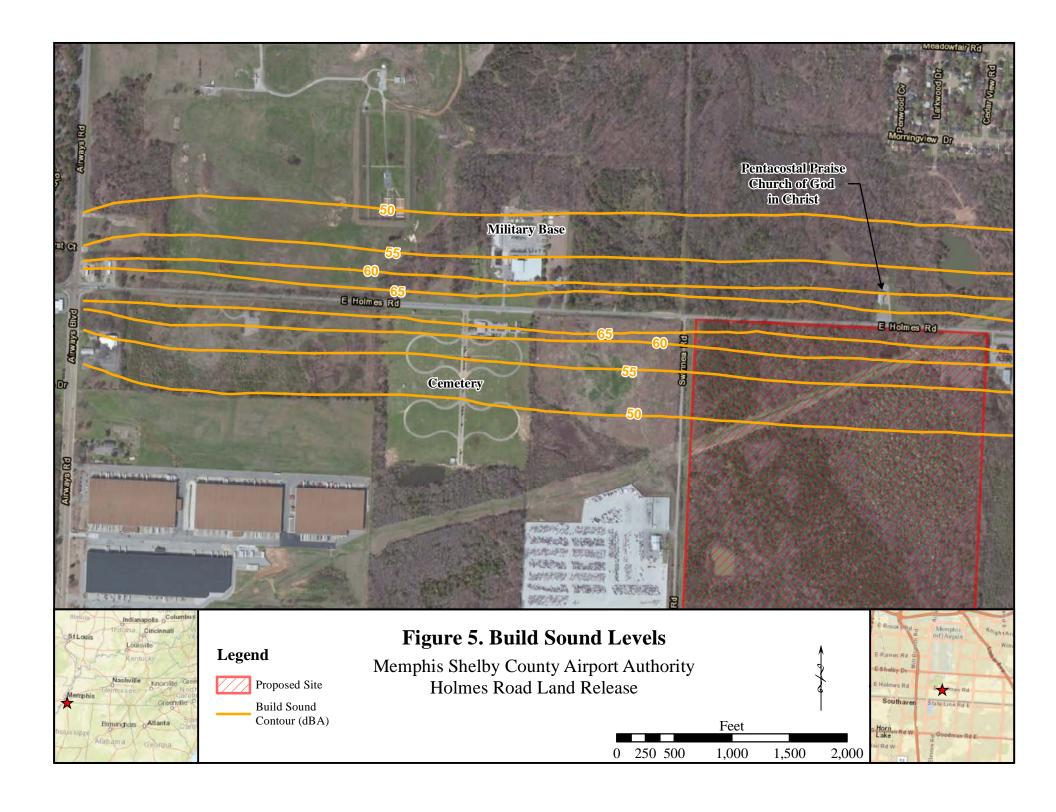

Road	Direction	Lane Width Input	Total DHV	Cars		Heavy Trucks
Holmes Rd EB	EB	12'	664	537	28	99
Holmes Rd EB LT	EB	12'	N/A	N/A	N/A	N/A
Holmes Rd EB RT	EB	12'	N/A	N/A	N/A	N/A
Holmes Rd WB	WB	12'	664	537	28	99
Holmes Rd WB LT	WB	12'	N/A	N/A	N/A	N/A
Holmes Rd WB LT IN	WB	12'	N/A	N/A	N/A	N/A
Holmes Rd WB LT OUT	WB	12'	N/A	N/A	N/A	N/A


4.0 Results


The projected Build and No-Build condition sound contours are shown in Figures 4 and 5 in Attachment 1. Sound contours for the No-Build condition for the study area surrounding Holmes Road ranged from 45 to 60 dBA, and sound contours for the Build condition ranged from 50 to 65 dBA. Station counts taken in 2017 were the most recent data available from TDOT at the time of this study, and peak hour traffic counts were used for the No-Build condition traffic noise model and to provide the base for the Build condition traffic projections. Routine operation of the proposed distribution facility was assumed to include 240 distribution trucks per day and approximately 200 autos per day for employees accessing the distribution warehouse. With the assumption 50% of the proposed development's heavy truck and automobile capacity would be added to the No-Build condition hourly traffic volumes along Holmes Road, the Build condition would result in increased sound levels to surrounding land use.


Prepared By:	andrew Cleary	2/25/2021	
	116/12	Date	
QA/QC:	Josh Conkant	2/25/2021	
		Date	


Attachment 1 Figures



Attachment 2 Correspondence

Andrew Cleary

From: William Bowlby <wbowlby@bowlbyassociates.com>

Sent: Monday, June 15, 2020 2:27 PM

To: Andrew Cleary

Cc: Geoff; Darlene Reiter; Rennie Williamson **Subject:** RE: 64-bit Windows and TNM 2.5 Contours

Andrew,

Doing well, thanks. You?

You need a Windows XP emulator because the NMPLOT contouring program is indeed a DOS program (and used in the old FAA INM noise prediction model. I'm asking Geoff to share more on that. You could also create your own contours with TNM 2.5 by inputting a grid of receiver points and eyeballing in the lines – or look for a 3rd party program that generates contour lines from a grid file. Your could check Wasmer Consulting, which created the NMPLOT program. Last time I looked, I think they had some plotting options.

TNM 3.0 does color-gradient contours, but doesn't have a legend as to what the colors represent. However, you can roll the cursor over the gradient and see the numeric values.

We've done fairly extensive testing of TNM 3.0 and don't feel it's ready for project use yet – crashes frequently during input, causing you to have to restart from scratch, plus other issues. We've provided lots of comments to the Volpe Center, which is working on a next version. I'd recommend waiting until it comes out, which might be by the end of the year or later (guessing). We're holding off on TNM 3 training courses until that version is released.

Good luck, Bill

William Bowlby, Ph.D., P.E., Principal Engineer
Bowlby & Associates, Inc.
2505 21st Avenue South, Suite 300
Nashville, TN 37212
wbowlby@bowlbyassociates.com
www.bowlbyassociates.com

From: Andrew Cleary

Sent: Monday, June 15, 2020 8:42 AM

To: William Bowlby <wbowlby@bowlbyassociates.com>

Subject: 64-bit Windows and TNM 2.5 Contours

Hi Bill,

Hope you are doing well. This is one of your class of 17' alumni reaching out with a question regarding TNM 2.5 noise contours. All our office computers run Windows 10 (64-bit), and I need to generate noise contours for a project. If I am not mistaken, the contours module is tied to MS DOS, which is not supported by 64-bit Windows. Do you have a suggested work around? For this current project, FAA but the noise source in question is vehicular traffic, I may be able to use 3.0 and GIS to create the contours. However, I have been told

SCDOT will require noise contours on a few projects we have coming up, and I expect their people are not yet trained/comfortable with 3.0. It would be great if we could find a way to create contours while sticking to 2.5.

Any thoughts you might have would be greatly appreciated!

Andrew Cleary | GIS Specialist Edwards-Pitman

Certified Woman-Owned Small Business (DBE, FBE, SBE, SBA, WBENC, WOSB) 2700 Cumberland Parkway Suite 300 | Atlanta, GA 30339

direct: 678-932-2207 | main: 770.333.9484 | acleary@edwards-pitman.com

www.edwards-pitman.com

Georgia | South Carolina | Florida

Andrew Cleary

From: Christopher Lynch < Christopher.Lynch@tn.gov>

Sent: Monday, June 8, 2020 1:11 PM

To: Andrew Cleary

Cc: Kristin Lehman; David Pearce

Subject: RE: Traffic data request (station number 000291)

Mr. Cleary,

This count was estimated in both 2018 & 2019. Would you like the hourly count for 2017? I'd be happy to send that to you. The truck percentages are:

Passenger Vehicles—88% Single-Unit Trucks—5% Multi-Unit Trucks—7%

I look forward to hearing back from you. Have a good afternoon. Thank you

Chris Lynch | GIS Technician Long Range Planning Division Data Management James K. Polk Building, Suite 1000 505 Deaderick Street, Nashville, TN 37243

Traffic Info. Line: 615-741-0959 | O: 615-253-5322

Christopher.Lynch@tn.gov

www.tn.gov/tdot

From: Andrew Cleary <acleary@edwards-pitman.com>

Sent: Monday, June 8, 2020 11:38 AM

To: Christopher Lynch < Christopher. Lynch@tn.gov>

Cc: Kristin Lehman <klehman@Ensafe.com>; David Pearce <dpearce@edwards-pitman.com>

Subject: [EXTERNAL] Traffic data request (station number 000291)

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

Chris,

Kristin suggested I contact you regarding a traffic data request for Holmes Road. I have attached the station location from the TDOT GIS page. I am looking for the most recent DHV or hourly counts for this location as well as percentages for auto, medium, and heavy trucks. Thanks in advance and please let me know if I can provide any further information.

Andrew Cleary | GIS Specialist **Edwards-Pitman**

Certified Woman-Owned Small Business (DBE, FBE, SBE, SBA, WBENC, WOSB) 2700 Cumberland Parkway Suite 300 | Atlanta, GA 30339 direct: 678-932-2207 | main: 770.333.9484 | acleary@edwards-pitman.com

www.edwards-pitman.com

Georgia | South Carolina | Florida

COVERAGE COUNT DATA WITH 24 HOUR TOTALS

Station Number: Start Date: Start Time: Direction:	000291 08 / 14 08 : 00 6	County: End Date: End Time:	79 Shelby 08 / 15 / 2017 08 : 00
<u>Time</u>			
08:00 - 09:00	496		
09:00 - 10:00	488		
10:00 - 11:00	608		
11:00 - 12:00	651		
12:00 - 13:00	686		
13:00 - 14:00	1,069		
14:00 - 15:00	1,067		
15:00 - 16:00	973		
16:00 - 17:00	923		
17:00 - 18:00	565		
18:00 - 19:00	424		
19:00 - 20:00	324		
20:00 - 21:00	317		
21:00 - 22:00	353		
22:00 - 23:00	274		
23:00 - 24:00	181		
24:00 - 01:00	108		
01:00 - 02:00	78		
02:00 - 03:00	158		
03:00 - 04:00	172		
04:00 - 05:00	684		
05:00 - 06:00	976		
06:00 - 07:00	1,048		
07:00 - 08:00	763		

Total: 13,386x Variation Factor: 0.96 = 12,851 x Truck Factor: 0.99 = AADT: 12,722.0

Peak AM 05:30 - 06:30	Peak Total 1072	Peak Hour Factor 0.93	Peak PM 13:15 - 14:15	Peak Total 1108	Peak Hour Factor 0.92
Peak AM %	Dir Dist AM %	Peak PM %	Dir Dist PM %	Daily Peak %	Daily Dir Dist %
8	64	8	51	8	51

Attachment 3 Field Notes and Validation Input and Output for TNM Runs

Field Measurement 1

		Noise Assessm	Charles Committee		
Project Name	Holmes	Rel Proj	ect Data	Date:	5/2
Project No.	EN5200	21	Cour	Date:	en
		Samo	ling Data		0
Measurement No.	1	15 minute	7:15	to	63,1
	Bruel & Kjaer 22	sample period	1.75 1.	LeqA ated: 21October2011	
2.411		rated: Date/	5/28/2020	Initials/ac	
		Monther	Conditions		
1-0	· 0/ 9/				-
47, Clor	aly, The	humidety, 4 n	nph west		
		Tr	affic		
Road Name:	Holm	es Rd.	anic	Posted Speed Li	mit: 4
Г	15	min			
E	B WBNB SB	EBWB NB SB	EB (WB) NB SE	Hourly EB)WB NB SB	
Cars	60	95	240	380	
Med Trucks	0		0	4	
Heavy Trucks	6	9	24	360	
Motorcycle					
Bus					
		Natar (C			
* 411			ite Sketch		
* ctellows	ups United	Baptist Cl	nurch		
	•				
) (
	7. 71	WB		<u> </u>	
	Holman Rd		EB.	11	
	Holmas Rd		EB _	11	
	Holmes Rd		EB	11	
	Holmes Rd		EB	11	

INPUT: ROADWAYS				ENS2001

EPEI					6 August 202	20	Roadway	geometries	are the sa	ame for all	field
Cleary					TNM 2.5	I	validation				
NPUT: ROADWAYS							Average p	avement typ	e shall be i	∣ used unles	 Si
PROJECT/CONTRACT:	ENS2001						a State hic	hway agend	y substant	iates the us	se
RUN:	FM1						_	nt type with	•		
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cont	rol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct
									Affected		
	ft			ft	ft	ft		mph	%		
Holmes Rd EB	12.0	point54	54	773,960.4	269,378.5	337.20)			Average	
		point55	55	774,158.5	269,370.5	346.50)			Average	
		point56	56	774,406.4	269,360.4	352.20)			Average	
		point57	57	774,651.7	269,349.8	357.80)			Average	
		point58	58	774,793.4	269,343.3	359.60				Average	
		point59	59	774,983.8	269,334.2	361.10)			Average	
		point60	60	775,127.8	269,327.3	361.30)			Average	
		point61	61	775,207.7	269,323.5	363.20)			Average	
		point62	62	775,304.3	269,318.3	364.50)			Average	
		point63	63	775,446.6	269,310.5	359.40)			Average	
		point64	64	775,536.5	269,305.7	355.00				Average	
		point65	65	775,708.3	269,296.5	347.90)			Average	
		point66	66		· ·	337.60				Average	
		point67	67	776,309.0	269,264.7	335.40)			Average	
		point68	68	776,470.9	269,256.2	333.50)			Average	
		point69	69	-,	269,244.8					Average	
		point70	70	776,731.5	269,242.7	337.20)			Average	
		point71	71	·	· ·					Average	
		point72	72		269,185.6					Average	
		point73	73	· ·						Average	
		point74	74	, , , , , , , , , , , , , , , , , , ,		350.10				Average	
		point75	75	·		352.60				Average	
		point76	76		· ·	347.40				Average	
		point77	77	· · · · · · · · · · · · · · · · · · ·	·					Average	
		point78	78	778,981.8	269,134.9	347.80				Average	

INPUT: ROADWAYS				ENS20	01

INFUI. KOADWAIS						ENSZ	001
		point79	79	779,036.5	269,132.3	347.00	Average
		point80	80	779,067.9	269,130.9	345.30	Average
		point81	81	779,112.7	269,128.8	343.40	Average
		point82	82	779,161.4	269,126.5	342.50	Average
		point83	83	779,195.2	269,124.9	340.70	Average
		point84	84	779,330.5	269,118.9	343.10	Average
		point85	85	779,561.5	269,108.9	352.90	Average
		point86	86	779,711.6	269,102.8	359.40	Average
		point87	87	779,868.6	269,095.9	358.90	Average
		point88	88	780,044.7	269,087.7	354.90	Average
		point89	89	780,291.9	269,074.9	362.00	Average
		point90	90	780,565.3	269,061.7	347.80	Average
		point91	91	780,851.4	269,047.9	346.50	Average
		point92	92	781,063.4	269,036.0	336.50	Average
		point93	93	781,318.6	269,021.9	329.50	Average
		point94	94	781,447.6	269,015.1	333.50	Average
		point95	95	781,674.7	269,002.1	339.70	Average
		point96	96	781,825.3	268,994.6	349.40	Average
		point97	97	781,932.2	268,985.5	355.90	Average
		point98	98	782,036.8	268,974.2	359.30	Average
		point99	99	782,110.6	268,970.3	360.70	Average
		point100	100	782,194.3	268,970.8	361.90	Average
		point101	101	782,301.1	268,970.8	362.50	Average
		point102	102	782,343.5	268,970.2	362.70	Average
		point103	103	782,437.5	268,966.4	367.10	Average
		point104	104	782,612.7	268,957.2	370.90	Average
		point105	105	782,832.9	268,945.1	369.90	Average
		point106	106	783,082.4	268,932.3	368.40	Average
		point107	107	783,297.2	268,921.5	369.50	Average
		point108	108	783,560.1	268,909.9	370.20	Average
		point109	109	784,116.0	268,882.1	377.50	Average
		point110	110	784,220.7	268,865.9	375.90	Average
		point111	111	784,418.1	268,856.0	378.80	
Holmes Rd EB LT	12.0	point112	112	784,239.8	268,876.7	375.90	Average
		point113	113	784,419.0	268,867.7	379.70	
Holmes Rd EB RT	12.0	point114	114	776,613.4	269,232.7	339.30	Average
		point115	115	776,687.5	269,228.8	339.50	Average
		point116	116	776,730.7	269,226.7	339.70	Average
		point117	117	777,422.6	269,192.7	324.40	Average

6 A

INPUT: ROADWAYS	ENS2001

		point118	118	777,689.6	269,179.9	326.40		
Holmes Rd WB	12.0	point119	119	784,419.3	268,879.0	379.70		Average
		point120	120	783,702.5	268,914.8	372.20		Average
		point121	121	783,567.9	268,921.5	369.80		Average
		point122	122	783,297.8	268,933.5	369.50		Average
		point123	123	783,083.0	268,944.3	368.70		Average
		point124	124	782,833.6	268,957.1	370.30		Average
		point125	125	782,613.3	268,969.2	370.90		Average
		point126	126	782,438.1	268,978.4	367.10		Average
		point127	127	782,315.0	268,983.4	362.50		Average
		point128	128	782,208.3	268,989.3	362.00		Average
		point129	129	782,083.6	268,994.4	360.60		Average
		point130	130	781,891.6	269,003.2	353.40		Average
		point131	131	781,675.3	269,014.1	339.70		Average
		point132	132	781,448.2	269,027.1	333.10		Average
		point133	133	781,319.3	269,033.9	329.50		Average
		point134	134	781,064.0	269,048.0	336.50		Average
		point135	135	780,852.0	269,059.9	346.50		Average
		point136	136	780,565.9	269,073.6	348.30		Average
		point137	137	780,292.5	269,086.9	362.00		Average
		point138	138	780,045.3	269,099.7	354.90		Average
		point139	139	779,869.1	269,107.9	358.90		Average
		point140	140	779,712.1	269,114.8	359.10		Average
		point141	141	779,562.0	269,120.9	354.00		Average
		point142	142	779,368.8	269,129.2	345.00		Average
		point143	143	779,210.8	269,136.2	340.40		Average
		point144	144	779,194.3	269,137.0	340.70		Average
		point145	145	779,115.3	269,140.7	343.40		Average
		point146	146	779,017.6	269,145.2	347.00		Average
		point147	147	778,819.0	269,154.5	345.30		Average
		point148	148	778,378.1	269,175.0	344.40		Average
		point149	149	778,268.4	269,180.3	341.50		Average
		point150	150	778,220.7	269,182.6	340.00		Average
		point151	151	777,902.0	269,197.8	331.70		Average
		point152	152	777,563.7	269,213.9	324.50		Average
		point153	153	777,404.0	269,221.6	323.80		Average
		point154	154	776,729.5	269,254.8	337.20		Average
		point155	155	776,690.9	269,256.7	337.00		Average
		point156	156	776,542.1	269,264.5	334.50		Average

INPUT: ROADWAYS ENS2001

INI OI. NOADMAIO						L11	102001		
		point157	157	776,257.2	269,279.5	334.90		Average	
		point158	158	775,574.2	269,315.6	353.90		Average	
		point159	159	775,223.9	269,334.7	363.20		Average	
		point160	160	774,710.4	269,359.3	358.10		Average	
		point161	161	774,402.7	269,372.6	356.10		Average	
		point162	162	774,243.6	269,379.0	348.70		Average	
		point163	163	774,171.9	269,406.1	345.70		Average	
		point164	164	773,961.5	269,424.6	338.20			
Holmes Rd WB LT	12.0	point165	165	782,128.8	268,981.4	361.50		Average	
		point166	166	782,082.6	268,983.3	360.40		Average	
		point167	167	782,045.4	268,985.0	359.30			
Holmes Rd WB LT IN	12.0	point168	168	774,176.5	269,381.8	346.50		Average	
		point169	169	773,960.8	269,390.5	337.20			
Holmes Rd WB LT OUT	12.0	point170	170	774,175.6	269,393.8	346.50		Average	
		point171	171	773,961.3	269,402.5	338.20			

INPUT: RECEIVERS								ENS2001			
EPEI						6 August	2020				
Cleary						TNM 2.5	I				
INPUT: RECEIVERS											
PROJECT/CONTRACT:	ENS2	001			'						
RUN:	FM1										
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	1	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
FM1		1 1	782,169.1	269,066.7	366.13	4.92	63.10	66	15.0	7.	.0 Y

INPUT: TRAFFIC FOR LAeq1h Volumes						E	NS2001		i			
EPEI .				6 Augu	ust 2020)						
Cleary				TNM 2		•						
Oldar y				- 114101 2	.0							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	ENS2001											
RUN:	FM1											
Roadway	Points											
Name	Name	No.	Segmen	it								
			Autos		MTruck	(S	HTrucks	;	Buses	-	Motorcy	/cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Holmes Rd EB	point54	54	380	40		4 40	36	40	C	0	0) (
	point55	55	380	40		4 40	36	40	C	0	0) C
	point56	56	380	40		4 40	36	40	C	0	0) C
	point57	57	380	40		4 40	36	40	C	0	0) (
	point58	58	380	40		4 40	36	40	C	0	0) (
	point59	59	380	40		4 40	36	40	C	0	0) C
	point60	60	380	40		4 40	36	40	C	0	0) C
	point61	61	380	40		4 40	36	40	C	0	0) C
	point62	62	380	40		4 40	36	40	C	0	0) C
	point63	63	380	40		4 40	36	40	C	0	0) C
	point64	64				4 40				0	0) C
	point65	65				4 40				0	_	
	point66	66				4 40				0		
	point67	67				4 40				0	-	
	point68	68				4 40				_	_	
	point69	69				4 40						
	point70	70				4 40						
	point71	71				4 40				_		_
	point72	72				4 40					_	_
	point73	73				4 40						
	point74	74				4 40						
	point75	75	380	40		4 40	36	40	C	0	0) C

point76

INPUT: TRAFFIC FOR LAeq1h Volumes						EI	NS2001					
•	point77	77	380	40	4	40	36	40	0	0	0	C
	point78	78	380	40	4	40	36	40	0	0	0	C
	point79	79	380	40	4	40	36	40	0	0	0	C
	point80	80	380	40	4	40	36	40	0	0	0	C
	point81	81	380	40	4	40	36	40	0	0	0	C
	point82	82	380	40	4	40	36	40	0	0	0	C
	point83	83	380	40	4	40	36	40	0	0	0	C
	point84	84	380	40	4	40	36	40	0	0	0	C
	point85	85	380	40	4	40	36	40	0	0	0	(
	point86	86	380	40	4	40	36	40	0	0	0	C
	point87	87	380	40	4	40	36	40	0	0	0	C
	point88	88	380	40	4	40	36	40	0	0	0	C
	point89	89	380	40	4	40	36	40	0	0	0	(
	point90	90	380	40	4	40	36	40	0	0	0	C
	point91	91	380	40	4	40	36	40	0	0	0	C
	point92	92	380	40	4	40	36	40	0	0	0	(
	point93	93	380	40	4	40	36	40	0	0	0	(
	point94	94	380	40	4	40	36	40	0	0	0	C
	point95	95	380	40	4	40	36	40	0	0	0	C
	point96	96	380	40	4	40	36	40	0	0	0	(
	point97	97	380	40	4	40	36	40	0	0	0	(
	point98	98	380	40	4	40	36	40	0	0	0	(
	point99	99	380	40	4	40	36	40	0	0	0	(
	point100	100	380	40	4	40	36	40	0	0	0	(
	point101	101	380	40	4	40	36	40	0	0	0	(
	point102	102	380	40	4	40	36	40	0	0	0	(
	point103	103	380	40	4	40	36	40	0	0	0	(
	point104	104	380	40	4	40	36	40	0	0	0	(
	point105	105	380	40	4	40	36	40	0	0	0	(
	point106	106	380	40	4	40	36	40	0	0	0	(
	point107	107	380	40	4	40	36	40	0	0		
	point108	108	380	40	4	40	36	40	0	0	0	(
	point109	109	380	40	4	40	36	40	0	0	0	(
	point110	110	380	40	4	40	36	40	0	0	0	(
	point111	111										
Holmes Rd EB LT	point112	112	0	0	0	0	0	0	0	0	0	C

NPUT: TRAFFIC FOR LAeq1h	Volumes					ENS	2001					
•	point113	113										
Holmes Rd EB RT	point114	114	0	0	0	0	0	0	0	0	0	
	point115	115	0	0	0	0	0	0	0	0	0	
	point116	116	0	0	0	0	0	0	0	0	0	
	point117	117	0	0	0	0	0	0	0	0	0	
	point118	118										
Holmes Rd WB	point119	119	240	40	0	0	24	40	0	0	0	
	point120	120	240	40	0	0	24	40	0	0	0	
	point121	121	240	40	0	0	24	40	0	0	0	
	point122	122	240	40	0	0	24	40	0	0	0	
	point123	123	240	40	0	0	24	40	0	0	0	
	point124	124	240	40	0	0	24	40	0	0	0	
	point125	125	240	40	0	0	24	40	0	0	0	
	point126	126	240	40	0	0	24	40	0	0	0	
	point127	127	240	40	0	0	24	40	0	0	0	
	point128	128	240	40	0	0	24	40	0	0	0	
	point129	129	240	40	0	0	24	40	0	0	0	
	point130	130	240	40	0	0	24	40	0	0	0	
	point131	131	240	40	0	0	24	40	0	0	0	
	point132	132	240	40	0	0	24	40	0	0	0	
	point133	133	240	40	0	0	24	40	0	0	0	
	point134	134	240	40	0	0	24	40	0	0	0	
	point135	135	240	40	0	0	24	40	0	0	0	
	point136	136	240	40	0	0	24	40	0	0	0	
	point137	137	240	40	0	0	24	40	0	0	0	
	point138	138	240	40	0	0	24	40	0	0	0	
	point139	139	240	40	0	0	24	40	0	0	0	
	point140	140	240	40	0	0	24	40	0	0	0	
	point141	141	240	40	0	0	24	40	0	0	0	
	point142	142	240	40	0	0	24	40	0	0	0	
	point143	143	240	40	0	0	24	40	0	0	0	
	point144	144	240	40	0	0	24	40	0	0	0	
	point145	145	240	40	0	0	24	40	0	0	0	
	point146	146	240	40	0	0	24	40	0	0	0	
	point147	147	240	40	0	0	24	40	0	0	0	
	point148	148	240	40	0	0	24	40	0	0	0	

INPUT: TRAFFIC FOR LAeq1h Volumes						El	NS2001					
	point149	149	240	40	0	0	24	40	0	0	0	0
	point150	150	240	40	0	0	24	40	0	0	0	0
	point151	151	240	40	0	0	24	40	0	0	0	0
	point152	152	240	40	0	0	24	40	0	0	0	0
	point153	153	240	40	0	0	24	40	0	0	0	0
	point154	154	240	40	0	0	24	40	0	0	0	0
	point155	155	240	40	0	0	24	40	0	0	0	0
	point156	156	240	40	0	0	24	40	0	0	0	0
	point157	157	240	40	0	0	24	40	0	0	0	0
	point158	158	240	40	0	0	24	40	0	0	0	0
	point159	159	240	40	0	0	24	40	0	0	0	0
	point160	160	240	40	0	0	24	40	0	0	0	0
	point161	161	240	40	0	0	24	40	0	0	0	0
	point162	162	240	40	0	0	24	40	0	0	0	0
	point163	163	240	40	0	0	24	40	0	0	0	0
	point164	164										
Holmes Rd WB LT	point165	165	0	0	0	0	0	0	0	0	0	0
	point166	166	0	0	0	0	0	0	0	0	0	0
	point167	167										
Holmes Rd WB LT IN	point168	168	0	0	0	0	0	0	0	0	0	0
	point169	169										
Holmes Rd WB LT OUT	point170	170	0	0	0	0	0	0	0	0	0	0
	point171	171										

RESULTS: SOUND LEVELS				ENS2001	

EPEI							6 August	2020					
Cleary							TNM 2.5	2020					
Ciedi y							_ TNW 2.5 Calculate	d with TN	M 2 E				
RESULTS: SOUND LEVELS							Calculate	u with th	IVI 2.5				
		=11000											
PROJECT/CONTRACT:		ENS20	01										
RUN:		FM1											
BARRIER DESIGN:		INPUT	HEIGHTS						pavement typ				
									nighway agend	-		se	
ATMOSPHERICS:		68 deg	F, 50% RH	I				of a diffe	erent type with	n approval of I	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrie	r			
			LAeq1h	LAeq1h		Increase over	r existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ted
							Sub'l Inc	<u> </u>	-			minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
FM1	1	1	1 63.1	63.2	2	66 0.	1 15	5	63.	2 0.0)	7	-7.
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected			1 0.0	0.0) (0.0							
All Impacted		(0.0	0.0) (0.0							
All that meet NR Goal			0.0	0.0) (0.0							

Field Measurement 2

		100000000000000000000000000000000000000	nt Field Data S	heet	
Project Name	Holmes	Rd	ect Data	Date:	5/29/20
Project No.	EM& Z	001	Count	01 11	/
		Sampl	ing Data	0	
Measurement No.	2	15 minute sample period:	1.47.	LegA	63.2
SLM: B	Bruel & Kjaer 223		0.00	ited: 21October2011	,,,,
	Field Calibra	ited: Date/	5/28/2020	Initials/ac	
		Weather	Conditions		
67°,	Cloudy,	96% hum	iclity, 4 m	ysh siw	
	0 /		affic		
Road Name: _	Holme	s Rel	affic	Posted Speed Limi	t: 40
_	15 n		ш		
E	-	EB WB NB SB	EB WB)NB SB	OUTLY (EB)WB NB SB	
Cars	4(0	161	184	404	
Med Trucks	0	0	0	0	
Heavy Trucks	14	1	56	4	
Motorcycle					
Bus					
		Notes/Ci	to Cleatel		
	- W-1		te Sketch	,	_
5 2 22 2	1. 11.:+			h	
* Fellow	ship wind	2042 32			
*Fellow	ship binda				
*Fellow	ship binda				
*Fellow	ship binda				
*Fellow	ship binda				
*Fellow	Holmes	n l w	B ~>>		
*Fellow.		n l w			
*Fellow.		n l w	B ~>>		
*Fellow.		n l w	B ~>>		
*Fellow.	Holmes	n l w	B ~>>		

INPUT: RECEIVERS								ENS2001			
EPEI						6 August 2	2020				
Cleary						TNM 2.5	1				
INPUT: RECEIVERS											
PROJECT/CONTRACT:	ENS2	001									
RUN:	FM2				_						
Receiver											
Name	No.	#DUs C	oordinates	(ground)		Height	Input Sou	nd Levels a	and Criteria	3	Active
		X		Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
		ft		ft	ft	ft	dBA	dBA	dB	dB	
FM2	1	1	782,169.1	269,066.7	366.13	4.92	63.20	66	15.0	7.0	Y

INPUT: TRAFFIC FOR LAeq1h Volumes							ENS2001							
EPEI				_	ıst 2020									
Cleary				TNM 2	.5									
INPUT: TRAFFIC FOR LAeq1h Volumes														
PROJECT/CONTRACT:	ENS2001													
RUN:	FM2													
Roadway	Points													
Name	Name	No.	Segmen	ıt										
			Autos	utos		MTrucks		HTrucks			Motorcycles			
			V	S	V	S	V	S	V	S	V	S		
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph		
Holmes Rd EB	point54	54	404	40	0	0	4	40	0	0	0	0		
	point55	55	404	40	0	0	4	40	0	0	0	0		
	point56	56	404	40	0	0	4	40	0	0	0	0		
	point57	57	404	40	0	0	4	40	0	0	0	0		
	point58	58			0	0	4		0		0	0		
	point59	59			0	0	4		0		0	0		
	point60	60			0	_		_	0					
	point61	61			0	_			0					
	point62	62			0				0					
	point63	63			0				0					
	point64	64			0				0					
	point65	65			0				0		_			
	point66	66			0			_	0		_	_		
	point67	67			0			_	0					
	point68	68			0				0					
	point69	69			0				0		_			
	point70	70			0				0					
	point71	71			0	_		_	0			_		
	point72	72			0				0					
	point73	73			0	_		_	0	_				
	point74	74			0				0					
	point75	75			0				0					
	point76	76	404	40	0	0	4	40	0	0	0	0		

NPUT: TRAFFIC FOR LAeq1h Volun	nes					ENS:	2001					
•	point77	77	404	40	0	0	4	40	0	0	0	(
	point78	78	404	40	0	0	4	40	0	0	0	(
	point79	79	404	40	0	0	4	40	0	0	0	(
	point80	80	404	40	0	0	4	40	0	0	0	(
	point81	81	404	40	0	0	4	40	0	0	0	(
	point82	82	404	40	0	0	4	40	0	0	0	(
	point83	83	404	40	0	0	4	40	0	0	0	(
	point84	84	404	40	0	0	4	40	0	0	0	(
	point85	85	404	40	0	0	4	40	0	0	0	(
	point86	86	404	40	0	0	4	40	0	0	0	(
	point87	87	404	40	0	0	4	40	0	0	0	(
	point88	88	404	40	0	0	4	40	0	0	0	(
	point89	89	404	40	0	0	4	40	0	0	0	(
	point90	90	404	40	0	0	4	40	0	0	0	(
	point91	91	404	40	0	0	4	40	0	0	0	(
	point92	92	404	40	0	0	4	40	0	0	0	
	point93	93	404	40	0	0	4	40	0	0	0	
	point94	94	404	40	0	0	4	40	0	0	0	(
	point95	95	404	40	0	0	4	40	0	0	0	(
	point96	96	404	40	0	0	4	40	0	0	0	(
	point97	97	404	40	0	0	4	40	0	0	0	(
	point98	98	404	40	0	0	4	40	0	0	0	
	point99	99	404	40	0	0	4	40	0	0	0	
	point100	100	404	40	0	0	4	40	0	0	0	
	point101	101	404	40	0	0	4	40	0	0	0	
	point102	102	404	40	0	0	4	40	0	0	0	
	point103	103	404	40	0	0	4	40	0	0	0	
	point104	104	404	40	0	0	4	40	0	0	0	
	point105	105	404	40	0	0	4	40	0	0	0	
	point106	106	404	40	0	0	4	40	0	0	0	
	point107	107	404	40	0	0	4	40	0	0	0	
	point108	108	404	40	0	0	4	40	0	0	0	
	point109	109	404	40	0	0	4	40	0	0	0	
	point110	110	404	40	0	0	4	40	0	0	0	(
	point111	111										
Holmes Rd EB LT	point112	112	0	0	0	0	0	0	0	0	0	(

	olumes						NS2001					
	point113	113										
Holmes Rd EB RT	point114	114	0	0	0	0	0	0	0	0	0	(
	point115	115	0	0	0	0	0	0	0	0	0	(
	point116	116	0	0	0	0	0	0	0	0	0	(
	point117	117	0	0	0	0	0	0	0	0	0	(
	point118	118										
Holmes Rd WB	point119	119	184	40	0	0	56	40	0	0	0	
	point120	120	184	40	0	0	56	40	0	0	0	
	point121	121	184	40	0	0	56	40	0	0	0	-
	point122	122	184	40	0	0	56	40	0	0	0	(
	point123	123	184	40	0	0	56	40	0	0	0	
	point124	124	184	40	0	0	56	40	0	0	0	
	point125	125	184	40	0	0	56	40	0	0	0	
	point126	126	184	40	0	0	56	40	0	0	0	(
	point127	127	184	40	0	0	56	40	0	0	0	(
	point128	128	184	40	0	0	56	40	0	0	0	(
	point129	129	184	40	0	0	56	40	0	0	0	(
	point130	130	184	40	0	0	56	40	0	0	0	(
	point131	131	184	40	0	0	56	40	0	0	0	(
	point132	132	184	40	0	0	56	40	0	0	0	
	point133	133	184	40	0	0	56	40	0	0	0	
	point134	134	184	40	0	0	56	40	0	0	0	(
	point135	135	184	40	0	0	56	40	0	0	0	
	point136	136	184	40	0	0	56	40	0	0	0	
	point137	137	184	40	0	0	56	40	0	0	0	
	point138	138	184	40	0	0	56	40	0	0	0	
	point139	139	184	40	0	0	56	40	0	0	0	
	point140	140	184	40	0	0	56	40	0	0	0	
	point141	141	184	40	0	0	56	40	0	0	0	
	point142	142	184	40	0	0	56	40	0	0	0	
	point143	143	184	40	0	0	56	40	0	0	0	(
	point144	144	184	40	0	0	56	40	0	0	0	(
	point145	145	184	40	0	0	56	40	0	0	0	(
	point146	146	184	40	0	0	56	40	0	0	0	(
	point147	147	184	40	0	0	56	40	0	0	0	(
	point148	148	184	40	0	0	56	40	0	0	0	(

INPUT: TRAFFIC FOR LAeq1h Volumes						El	NS2001					
	point149	149	184	40	0	0	56	40	0	0	0	0
	point150	150	184	40	0	0	56	40	0	0	0	0
	point151	151	184	40	0	0	56	40	0	0	0	0
	point152	152	184	40	0	0	56	40	0	0	0	0
	point153	153	184	40	0	0	56	40	0	0	0	0
	point154	154	184	40	0	0	56	40	0	0	0	0
	point155	155	184	40	0	0	56	40	0	0	0	0
	point156	156	184	40	0	0	56	40	0	0	0	0
	point157	157	184	40	0	0	56	40	0	0	0	0
	point158	158	184	40	0	0	56	40	0	0	0	0
	point159	159	184	40	0	0	56	40	0	0	0	0
	point160	160	184	40	0	0	56	40	0	0	0	0
	point161	161	184	40	0	0	56	40	0	0	0	0
	point162	162	184	40	0	0	56	40	0	0	0	0
	point163	163	184	40	0	0	56	40	0	0	0	0
	point164	164										
Holmes Rd WB LT	point165	165	0	0	0	0	0	0	0	0	0	0
	point166	166	0	0	0	0	0	0	0	0	0	0
	point167	167										
Holmes Rd WB LT IN	point168	168	0	0	0	0	0	0	0	0	0	0
	point169	169										
Holmes Rd WB LT OUT	point170	170	0	0	0	0	0	0	0	0	0	0
	point171	171										

RESULTS: SOUND LEVELS						ENS2001					
EPEI						6 August	2020				
Cleary						TNM 2.5					
						Calculated	d with TNN	/ 1 2.5			
RESULTS: SOUND LEVELS											
PROJECT/CONTRACT:	ENS20	01									
RUN:	FM2										
BARRIER DESIGN:	INPUT	HEIGHTS					Average	pavement type	shall be use	ed unless	
							-	ghway agenc			
ATMOSPHERICS:	68 deg	F, 50% RH						rent type with			
Receiver											
Name No.	#DUs	Existing	No Barrier					With Barrier	_		
		LAeq1h	LAeq1h		Increase over	existing	Type	Calculated	Noise Redu	ction	
			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
FM2	1 1	63.2	62.4	4 66	-0.8	15		62.4	0.0)	7 -7.0
Dwelling Units	# DUs	Noise Red	duction								
		Min	Avg	Max							
		dB	dB	dB							
All Selected	1	0.0	0.0	0.0							
All Impacted	C	0.0	0.0	0.0							
All that meet NR Goal	(0.0	0.0	0.0							

Field Measurement 3

	180	A STATE OF THE STATE OF	nt Field Data S	heet	
roject Name	Holmes		ect Data	Date: 5/	29/
Project No.	EM& 2		Count	Date: <u>5/</u> y: <u>Shelby</u>	
-	Di Viv		•		
easurement	2	15 minute	0177	to	
No.	Bruel & Kjaer 223	sample period	- 17.	LeqA 60	.0
OLIVI. L	Field Calibra		5/28/2020	Initials/O-C	
		Weather	Conditions		
68° el	owely, 92%	midity,	Ce mph mu	-	
	0)	1/			
nd Name:	Holmes		affic	Posted Speed Limit:	40
id Name.	PUO (VINUS	192		rosted Speed Lillint	10
	15 n		the same of the sa	lourly	
Cars	B (WB) NB SB	B WB NB SB	EB(WB)NB SB	EBWB NB SB	
Med Trucks	2	1	9	4	
eavy Trucks	10	7	40	28	
Motorcycle					
Bus					
		Notes/S	ite Sketch		
entacos	tal hurch	€ EB WB →	, Holme	es Rel	

INPUT: RECEIVERS		ENS2001									
EPEI						6 August	2020				
Cleary						TNM 2.5	I				
INPUT: RECEIVERS											
PROJECT/CONTRACT:	ENS200	1									
RUN:	FM3										
Receiver											
Name	No. #	DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteri	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
FM3	1	1	780,877.3	269,230.	1 333.92	2 4.92	60.00	66	15.0	7.0) Y

INPUT: TRAFFIC FOR LAeq1h Volumes						E	NS2001						_
EPEI .				6 Augi	ust 2020								
Cleary				TNM 2									_
													_
INPUT: TRAFFIC FOR LAeq1h Volumes													_
PROJECT/CONTRACT:	ENS2001												
RUN:	FM3												
Roadway	Points												=
Name	Name	No.	Segmen	t									_
			Autos		MTruck	S	HTrucks	;	Buses		Motoro	cycles	
			V	S	V	S	V	S	V	S	V	S	
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	
Holmes Rd EB	point54	54	228	40	4	40	28	40	0	0		0	(
	point55	55	228	40	4	40	28	40	0	0		0	(
	point56	56	228	40	4	40	28	40	0	0		0	(
	point57	57		40						0		0	(
	point58	58		40			_		_			0	(
	point59	59		40								0	(
	point60	60		40		_						0	(
	point61	61		40		_	_		_	_		0	(
	point62	62		40								0	(
	point63	63		40		_	_			_		0	(
	point64	64		40								0	(
	point65	65		40		_			_			0	(
	point66	66		40								0	(
	point67	67 68		40 40								0	(
	point68	69		40		_						0	(
	point70	70		40								0	(
	point71	71		40		_						0	(
	point71	72		40						_		0	(
	point72	73		40								0	(
	point74	74		40		_						0	(
													_`

point75

point76

NPUT: TRAFFIC FOR LAeq1h Volumes						EN	S2001					
•	point77	77	228	40	4	40	28	40	0	0	0	0
	point78	78	228	40	4	40	28	40	0	0	0	C
	point79	79	228	40	4	40	28	40	0	0	0	C
	point80	80	228	40	4	40	28	40	0	0	0	C
	point81	81	228	40	4	40	28	40	0	0	0	C
	point82	82	228	40	4	40	28	40	0	0	0	C
	point83	83	228	40	4	40	28	40	0	0	0	C
	point84	84	228	40	4	40	28	40	0	0	0	C
	point85	85	228	40	4	40	28	40	0	0	0	C
	point86	86	228	40	4	40	28	40	0	0	0	C
	point87	87	228	40	4	40	28	40	0	0	0	C
	point88	88	228	40	4	40	28	40	0	0	0	C
	point89	89	228	40	4	40	28	40	0	0	0	C
	point90	90	228	40	4	40	28	40	0	0	0	(
	point91	91	228	40	4	40	28	40	0	0	0	(
	point92	92	228	40	4	40	28	40	0	0	0	(
	point93	93	228	40	4	40	28	40	0	0	0	(
	point94	94	228	40	4	40	28	40	0	0	0	(
	point95	95	228	40	4	40	28	40	0	0	0	(
	point96	96	228	40	4	40	28	40	0	0	0	(
	point97	97	228	40	4	40	28	40	0	0	0	(
	point98	98	228	40	4	40	28	40	0	0	0	(
	point99	99	228	40	4	40	28	40	0	0	0	(
	point100	100	228	40	4	40	28	40	0	0	0	(
	point101	101	228	40	4	40	28	40	0	0	0	(
	point102	102	228	40	4	40	28	40	0	0	0	(
	point103	103	228	40	4	40	28	40	0	0	0	(
	point104	104	228	40	4	40	28	40	0	0	0	(
	point105	105	228	40	4	40	28	40	0	0	0	(
	point106	106	228	40	4	40	28	40	0	0	0	(
	point107	107	228	40	4	40	28	40	0	0	0	(
	point108	108	228	40	4	40	28	40	0	0	0	(
	point109	109	228	40	4	40	28	40	0	0	0	(
	point110	110	228	40	4	40	28	40	0	0	0	(
	point111	111										
Holmes Rd EB LT	point112	112	0	0	0	0	0	0	0	0	0	C

INPUT: TRAFFIC FOR LAeq1h Volumes	INPUT:	TRAFFIC	FOR LAed	11h Volumes
-----------------------------------	--------	----------------	----------	-------------

ENS2001

	point113	113										
Holmes Rd EB RT	point114	114	0	0	0	0	0	0	0	0	0	0
	point115	115	0	0	0	0	0	0	0	0	0	0
	point116	116	0	0	0	0	0	0	0	0	0	0
	point117	117	0	0	0	0	0	0	0	0	0	0
	point118	118										
Holmes Rd WB	point119	119	164	40	8	40	40	40	0	0	0	0
	point120	120	164	40	8	40	40	40	0	0	0	0
	point121	121	164	40	8	40	40	40	0	0	0	0
	point122	122	164	40	8	40	40	40	0	0	0	0
	point123	123	164	40	8	40	40	40	0	0	0	0
	point124	124	164	40	8	40	40	40	0	0	0	0
	point125	125	164	40	8	40	40	40	0	0	0	0
	point126	126	164	40	8	40	40	40	0	0	0	0
	point127	127	164	40	8	40	40	40	0	0	0	0
	point128	128	164	40	8	40	40	40	0	0	0	0
	point129	129	164	40	8	40	40	40	0	0	0	0
	point130	130	164	40	8	40	40	40	0	0	0	0
	point131	131	164	40	8	40	40	40	0	0	0	0
	point132	132	164	40	8	40	40	40	0	0	0	0
	point133	133	164	40	8	40	40	40	0	0	0	C
	point134	134	164	40	8	40	40	40	0	0	0	0
	point135	135	164	40	8	40	40	40	0	0	0	0
	point136	136	164	40	8	40	40	40	0	0	0	0
	point137	137	164	40	8	40	40	40	0	0	0	0
	point138	138	164	40	8	40	40	40	0	0	0	0
	point139	139	164	40	8	40	40	40	0	0	0	0
	point140	140	164	40	8	40	40	40	0	0	0	0
	point141	141	164	40	8	40	40	40	0	0	0	0
	point142	142	164	40	8	40	40	40	0	0	0	0
	point143	143	164	40	8	40	40	40	0	0	0	0
	point144	144	164	40	8	40	40	40	0	0	0	0
	point145	145	164	40	8	40	40	40	0	0	0	C
	point146	146	164	40	8	40	40	40	0	0	0	C
	point147	147	164	40	8	40	40	40	0	0	0	C
	point148	148	164	40	8	40	40	40	0	0	0	0

INPUT: TRAFFIC FOR LAeq1h Volumes						EN	IS2001					
	point149	149	164	40	8	40	40	40	0	0	0	0
	point150	150	164	40	8	40	40	40	0	0	0	0
	point151	151	164	40	8	40	40	40	0	0	0	0
	point152	152	164	40	8	40	40	40	0	0	0	0
	point153	153	164	40	8	40	40	40	0	0	0	0
	point154	154	164	40	8	40	40	40	0	0	0	0
	point155	155	164	40	8	40	40	40	0	0	0	0
	point156	156	164	40	8	40	40	40	0	0	0	0
	point157	157	164	40	8	40	40	40	0	0	0	0
	point158	158	164	40	8	40	40	40	0	0	0	0
	point159	159	164	40	8	40	40	40	0	0	0	0
	point160	160	164	40	8	40	40	40	0	0	0	0
	point161	161	164	40	8	40	40	40	0	0	0	0
	point162	162	164	40	8	40	40	40	0	0	0	0
	point163	163	164	40	8	40	40	40	0	0	0	0
	point164	164										
Holmes Rd WB LT	point165	165	0	0	0	0	0	0	0	0	0	0
	point166	166	0	0	0	0	0	0	0	0	0	0
	point167	167										
Holmes Rd WB LT IN	point168	168	0	0	0	0	0	0	0	0	0	0
	point169	169										
Holmes Rd WB LT OUT	point170	170	0	0	0	0	0	0	0	0	0	0
	point171	171										

RESULTS: SOUND LEVELS

EPEI								6 August	2020				
								_	2020				
Cleary								TNM 2.5					
								Calculate	d with TNI	M 2.5			
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		ENS20	001										
RUN:		FM3											
BARRIER DESIGN:		INPU	T HEIGHTS						Average	pavement typ	e shall be us	ed unless	
									a State h	ighway agend	y substantiat	es the use	
ATMOSPHERICS:		68 de	g F, 50% RI	+					of a diffe	rent type with	approval of	FHWA.	
Receiver													
Name	No.	#DUs	Existing	No Barrier						With Barrier	•		
			LAeq1h	LAeq1h			Increase over	existing	Type	Calculated	Noise Redu	ction	
				Calculated	Crit'n		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
					İ			Sub'l Inc					minus
													Goal
			dBA	dBA	dBA		dB	dB		dBA	dB	dB	dB
FM3		1	1 60.0	58.0	ס	66	-2.0	15	·	58.0	0.0)	7 -7
Dwelling Units		# DUs	Noise Re	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected			1 0.0	0.0	ו	0.0							
All Impacted			0.0	0.0	ס	0.0							
All that meet NR Goal			0.0	0.0)	0.0							

ENS2001

Attachment 4 TNM Files Receiver Input

INPUT: RECEIVERS								ENS2001			
EPEI Cleary						6 August :		eceiver inpo o-Build and			ıe
INPUT: RECEIVERS											
PROJECT/CONTRACT:	ENS20	01									
RUN:	NoBui	ld									
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	and Criteri	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
1	1	1	773,968.4	266,164.6	362.97	4.92	60.00	66	15.0	7.0	Y
2	1734	1	774,218.4	266,164.6	360.46	4.92	0.00	66	15.0	7.0) Y
3	1735	1	774,468.4	266,164.6	355.22	4.92	0.00	66	15.0	7.0) Y
4	1736	1	774,718.4	266,164.6	341.20	4.92	0.00	66	15.0	7.0) Y
5	1737	1	774,968.4	266,164.6	352.26	4.92	0.00	66	15.0	7.0) Y
6	1738	1	775,218.4	266,164.6	341.81	4.92	0.00	66	15.0	7.0) Y
7	1739	1	775,468.4	266,164.6	349.92	4.92	0.00	66	15.0	7.0) Y
8	1740	1	775,718.4	266,164.6	350.47	4.92	0.00	66	15.0	7.0) Y
9	1741	1	775,968.4	266,164.6	342.52	4.92	0.00	66	15.0	7.0	Y
10	1742	1	776,218.4	266,164.6	358.35	4.92	0.00	66	15.0	7.0	
11	1743		776,468.4	266,164.6	363.52						
12	1744			,		4.92					
13	1745		,	*							
14	1746	1	,								
15	1747	1	,								
16	1748		,								
17	1749		,								
18	1750										
19	1751										
20	1752		-, -								
21	1753		-,			4.92					
22	1754	1	779,218.4	266,164.6	371.53	4.92	0.00	66	15.0	7.0) Y

INPUT: RECEIVERS						EN	S2001			
23	1755	1 779,468.4	266,164.6	376.81	4.92	0.00	66	15.0	7.0	Υ
24	1756	1 779,718.4	266,164.6	379.01	4.92	0.00	66	15.0	7.0	Υ
25	1757	1 779,968.4	266,164.6	378.38	4.92	0.00	66	15.0	7.0	Υ
26	1758	1 780,218.4	266,164.6	376.96	4.92	0.00	66	15.0	7.0	Υ
27	1759	1 780,468.4	266,164.6	370.67	4.92	0.00	66	15.0	7.0	Υ
28	1760	1 780,718.4	266,164.6	364.25	4.92	0.00	66	15.0	7.0	Υ
29	1761	1 780,968.4	266,164.6	369.71	4.92	0.00	66	15.0	7.0	Υ
30	1762	1 781,218.4	266,164.6	375.61	4.92	0.00	66	15.0	7.0	Υ
31	1763	1 781,468.4	266,164.6	386.59	4.92	0.00	66	15.0	7.0	Υ
32	1764	1 781,718.4	266,164.6	392.66	4.92	0.00	66	15.0	7.0	Υ
33	1765	1 781,968.4	266,164.6	390.80	4.92	0.00	66	15.0	7.0	Υ
34	1766	1 782,218.4	266,164.6	378.43	4.92	0.00	66	15.0	7.0	Υ
35	1767	1 782,468.4	266,164.6	365.54	4.92	0.00	66	15.0	7.0	Υ
36	1768	1 782,718.4	266,164.6	373.09	4.92	0.00	66	15.0	7.0	Υ
37	1769	1 782,968.4	266,164.6	378.29	4.92	0.00	66	15.0	7.0	Υ
38	1770	1 783,218.4	266,164.6	359.74	4.92	0.00	66	15.0	7.0	Υ
39	1771	1 783,468.4	266,164.6	368.46	4.92	0.00	66	15.0	7.0	Υ
40	1772	1 783,718.4	266,164.6	379.66	4.92	0.00	66	15.0	7.0	Υ
41	1773	1 783,968.4	266,164.6	386.66	4.92	0.00	66	15.0	7.0	Υ
42	1774	1 784,218.4	266,164.6	386.64	4.92	0.00	66	15.0	7.0	Υ
43	1775	1 784,468.4	266,164.6	395.59	4.92	0.00	66	15.0	7.0	Υ
44	1776	1 773,968.4	266,414.6	355.33	4.92	0.00	66	15.0	7.0	Υ
45	1777	1 774,218.4	266,414.6	352.94	4.92	0.00	66	15.0	7.0	Υ
46	1778	1 774,468.4	266,414.6	347.87	4.92	0.00	66	15.0	7.0	Υ
47	1779	1 774,718.4	266,414.6	347.65	4.92	0.00	66	15.0	7.0	Υ
48	1780	1 774,968.4	266,414.6	356.14	4.92	0.00	66	15.0	7.0	Υ
49	1781	1 775,218.4	266,414.6	348.15	4.92	0.00	66	15.0	7.0	Υ
50	1782	1 775,468.4	266,414.6	353.59	4.92	0.00	66	15.0	7.0	Υ
51	1783	1 775,718.4	266,414.6	356.06	4.92	0.00	66	15.0	7.0	Υ
52	1784	1 775,968.4	266,414.6	349.28	4.92	0.00	66	15.0	7.0	Υ
53	1785	1 776,218.4	266,414.6	348.10	4.92	0.00	66	15.0	7.0	Υ
54	1786	1 776,468.4	266,414.6	356.40	4.92	0.00	66	15.0	7.0	Υ
55	1787	1 776,718.4	266,414.6	364.53	4.92	0.00	66	15.0	7.0	Υ
56	1788	1 776,968.4	266,414.6	362.44	4.92	0.00	66	15.0	7.0	Υ
57	1789	1 777,218.4	266,414.6	351.20	4.92	0.00	66	15.0	7.0	Υ
58	1790	1 777,468.4	266,414.6	343.10	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							E	ENS2001			
59	1791	1	777,718.4	266,414.6	342.97	4.92	0.00	66	15.0	7.0	Υ
60	1792	1	777,968.4	266,414.6	343.94	4.92	0.00	66	15.0	7.0	Υ
61	1793	1	778,218.4	266,414.6	354.09	4.92	0.00	66	15.0	7.0	Υ
62	1794	1	778,468.4	266,414.6	369.28	4.92	0.00	66	15.0	7.0	Υ
63	1795	1	778,718.4	266,414.6	371.04	4.92	0.00	66	15.0	7.0	Υ
64	1796	1	778,968.4	266,414.6	377.44	4.92	0.00	66	15.0	7.0	Υ
65	1797	1	779,218.4	266,414.6	380.01	4.92	0.00	66	15.0	7.0	Υ
66	1798	1	779,468.4	266,414.6	379.16	4.92	0.00	66	15.0	7.0	Υ
67	1799	1	779,718.4	266,414.6	377.09	4.92	0.00	66	15.0	7.0	Υ
68	1800	1	779,968.4	266,414.6	371.87	4.92	0.00	66	15.0	7.0	Υ
69	1801	1	780,218.4	266,414.6	373.09	4.92	0.00	66	15.0	7.0	Υ
70	1802	1	780,468.4	266,414.6	362.14	4.92	0.00	66	15.0	7.0	Υ
71	1803	1	780,718.4	266,414.6	369.45	4.92	0.00	66	15.0	7.0	Υ
72	1804	1	780,968.4	266,414.6	380.16	4.92	0.00	66	15.0	7.0	Υ
73	1805	1	781,218.4	266,414.6	377.98	4.92	0.00	66	15.0	7.0	Υ
74	1806	1	781,468.4	266,414.6	380.75	4.92	0.00	66	15.0	7.0	Υ
75	1807	1	781,718.4	266,414.6	387.81	4.92	0.00	66	15.0	7.0	Υ
76	1808	1	781,968.4	266,414.6	368.94	4.92	0.00	66	15.0	7.0	Υ
77	1809	1	782,218.4	266,414.6	368.34	4.92	0.00	66	15.0	7.0	Υ
78	1810	1	782,468.4	266,414.6	356.49	4.92	0.00	66	15.0	7.0	Υ
79	1811	1	782,718.4	266,414.6	363.61	4.92	0.00	66	15.0	7.0	Υ
80	1812	1	782,968.4	266,414.6	373.47	4.92	0.00	66	15.0	7.0	Υ
81	1813	1	783,218.4	266,414.6	357.86	4.92	0.00	66	15.0	7.0	Υ
82	1814	1	783,468.4	266,414.6	372.77	4.92	0.00	66	15.0	7.0	Υ
83	1815	1	783,718.4	266,414.6	381.25	4.92	0.00	66	15.0	7.0	Υ
84	1816	1	783,968.4	266,414.6	388.06	4.92	0.00	66	15.0	7.0	Υ
85	1817	1	784,218.4	266,414.6	388.50	4.92	0.00	66	15.0	7.0	Υ
86	1818	1	784,468.4	266,414.6	395.25	4.92	0.00	66	15.0	7.0	Υ
87	1819	1	773,968.4	266,664.6	352.52	4.92	0.00	66	15.0	7.0	Υ
88	1820	1	774,218.4	266,664.6	353.95	4.92	0.00	66	15.0	7.0	Υ
89	1821	1	774,468.4	266,664.6	353.79	4.92	0.00	66	15.0	7.0	Υ
90	1822	1	774,718.4	266,664.6	353.98	4.92	0.00	66	15.0	7.0	Υ
91	1823	1	774,968.4	266,664.6	355.59	4.92	0.00	66	15.0	7.0	Υ
92	1824	1	775,218.4	266,664.6	358.61	4.92	0.00	66	15.0	7.0	Υ
93	1825	1	775,468.4	266,664.6	362.64	4.92	0.00	66	15.0	7.0	Υ
94	1826	1	775,718.4	266,664.6	363.44	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
95	1827	1	775,968.4	266,664.6	357.74	4.92	0.00	66	15.0	7.0	Υ
96	1828	1	776,218.4	266,664.6	352.08	4.92	0.00	66	15.0	7.0	Υ
97	1829	1	776,468.4	266,664.6	355.17	4.92	0.00	66	15.0	7.0	Υ
98	1830	1	776,718.4	266,664.6	360.51	4.92	0.00	66	15.0	7.0	Υ
99	1831	1	776,968.4	266,664.6	364.57	4.92	0.00	66	15.0	7.0	Υ
100	1832	1	777,218.4	266,664.6	356.23	4.92	0.00	66	15.0	7.0	Υ
101	1833	1	777,468.4	266,664.6	359.64	4.92	0.00	66	15.0	7.0	Υ
102	1834	1	777,718.4	266,664.6	355.94	4.92	0.00	66	15.0	7.0	Υ
103	1835	1	777,968.4	266,664.6	359.43	4.92	0.00	66	15.0	7.0	Υ
104	1836	1	778,218.4	266,664.6	361.08	4.92	0.00	66	15.0	7.0	Υ
105	1837	1	778,468.4	266,664.6	365.58	4.92	0.00	66	15.0	7.0	Υ
106	1838	1	778,718.4	266,664.6	370.08	4.92	0.00	66	15.0	7.0	Υ
107	1839	1	778,968.4	266,664.6	373.83	4.92	0.00	66	15.0	7.0	Υ
108	1840	1	779,218.4	266,664.6	373.09	4.92	0.00	66	15.0	7.0	Υ
109	1841	1	779,468.4	266,664.6	371.19	4.92	0.00	66	15.0	7.0	Υ
110	1842	1	779,718.4	266,664.6	373.34	4.92	0.00	66	15.0	7.0	Υ
111	1843	1	779,968.4	266,664.6	359.10	4.92	0.00	66	15.0	7.0	Υ
112	1844	1	780,218.4	266,664.6	357.29	4.92	0.00	66	15.0	7.0	Υ
113	1845	1	780,468.4	266,664.6	361.59	4.92	0.00	66	15.0	7.0	Υ
114	1846	1	780,718.4	266,664.6	376.20	4.92	0.00	66	15.0	7.0	Υ
115	1847	1	780,968.4	266,664.6	382.61	4.92	0.00	66	15.0	7.0	Υ
116	1848	1	781,218.4	266,664.6	386.15	4.92	0.00	66	15.0	7.0	Υ
117	1849	1	781,468.4	266,664.6	375.72	4.92	0.00	66	15.0	7.0	Υ
118	1851	1	781,718.4	266,664.6	390.14	4.92	0.00	66	15.0	7.0	Υ
119	1852	1	781,968.4	266,664.6	382.31	4.92	0.00	66	15.0	7.0	Υ
120	1853	1	782,218.4	266,664.6	368.67	4.92	0.00	66	15.0	7.0	Υ
121	1854	1	782,468.4	266,664.6	353.54	4.92	0.00	66	15.0	7.0	Υ
122	1855	1	782,718.4	266,664.6	357.62	4.92	0.00	66	15.0	7.0	Υ
123	1856	1	782,968.4	266,664.6	368.31	4.92	0.00	66	15.0	7.0	Υ
124	1857	1	783,218.4	266,664.6	355.63	4.92	0.00	66	15.0	7.0	Υ
125	1858	1	783,468.4	266,664.6	368.60	4.92	0.00	66	15.0	7.0	Υ
126	1859	1	783,718.4	266,664.6	377.65	4.92	0.00	66	15.0	7.0	Υ
127	1860	1	783,968.4	266,664.6	381.93	4.92	0.00	66	15.0	7.0	Υ
128	1861	1	784,218.4	266,664.6	383.00	4.92	0.00	66	15.0	7.0	Υ
129	1862	1	784,468.4	266,664.6	393.86	4.92	0.00	66	15.0	7.0	Υ
130	1863	1	773,968.4	266,914.6	354.00	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
131	1864	1	774,218.4	266,914.6	354.89	4.92	0.00	66	15.0	7.0	Υ
132	1865	1	774,468.4	266,914.6	354.93	4.92	0.00	66	15.0	7.0	Υ
133	1866	1	774,718.4	266,914.6	354.79	4.92	0.00	66	15.0	7.0	Υ
134	1867	1	774,968.4	266,914.6	355.77	4.92	0.00	66	15.0	7.0	Υ
135	1868	1	775,218.4	266,914.6	358.86	4.92	0.00	66	15.0	7.0	Υ
136	1869	1	775,468.4	266,914.6	361.63	4.92	0.00	66	15.0	7.0	Υ
137	1870	1	775,718.4	266,914.6	365.58	4.92	0.00	66	15.0	7.0	Υ
138	1871	1	775,968.4	266,914.6	362.13	4.92	0.00	66	15.0	7.0	Υ
139	1872	1	776,218.4	266,914.6	356.21	4.92	0.00	66	15.0	7.0	Υ
140	1873	1	776,468.4	266,914.6	359.82	4.92	0.00	66	15.0	7.0	Υ
141	1874	1	776,718.4	266,914.6	354.39	4.92	0.00	66	15.0	7.0	Υ
142	1875	1	776,968.4	266,914.6	355.63	4.92	0.00	66	15.0	7.0	Υ
143	1876	1	777,218.4	266,914.6	359.31	4.92	0.00	66	15.0	7.0	Υ
144	1877	1	777,468.4	266,914.6	362.15	4.92	0.00	66	15.0	7.0	Υ
145	1878	1	777,718.4	266,914.6	357.47	4.92	0.00	66	15.0	7.0	Υ
146	1879	1	777,968.4	266,914.6	354.35	4.92	0.00	66	15.0	7.0	Υ
147	1880	1	778,218.4	266,914.6	356.78	4.92	0.00	66	15.0	7.0	Υ
148	1881	1	778,468.4	266,914.6	361.49	4.92	0.00	66	15.0	7.0	Υ
149	1882	1	778,718.4	266,914.6	365.75	4.92	0.00	66	15.0	7.0	Υ
150	1883	1	778,968.4	266,914.6	370.07	4.92	0.00	66	15.0	7.0	Υ
151	1884	1	779,218.4	266,914.6	370.27	4.92	0.00	66	15.0	7.0	Υ
152	1885	1	779,468.4	266,914.6	359.80	4.92	0.00	66	15.0	7.0	Υ
153	1886	1	779,718.4	266,914.6	364.17	4.92	0.00	66	15.0	7.0	Υ
154	1887	1	779,968.4	266,914.6	350.62	4.92	0.00	66	15.0	7.0	Υ
155	1888	1	780,218.4	266,914.6	364.85	4.92	0.00	66	15.0	7.0	Υ
156	1889	1	780,468.4	266,914.6	371.29	4.92	0.00	66	15.0	7.0	Υ
157	1890	1	780,718.4	266,914.6	371.26	4.92	0.00	66	15.0	7.0	Υ
158	1891	1	780,968.4	266,914.6	381.92	4.92	0.00	66	15.0	7.0	Υ
159	1892	1	781,218.4	266,914.6	370.05	4.92	0.00	66	15.0	7.0	Υ
160	1893	1	781,468.4	266,914.6	360.90	4.92	0.00	66	15.0	7.0	Υ
161	1894	1	781,718.4	266,914.6	386.02	4.92	0.00	66	15.0	7.0	Υ
162	1895	1	781,968.4	266,914.6	382.82	4.92	0.00	66	15.0	7.0	Υ
163	1896	1	782,218.4	266,914.6	371.33	4.92	0.00	66	15.0	7.0	Υ
164	1897	1	782,468.4	266,914.6	357.45	4.92	0.00	66	15.0	7.0	Υ
165	1898	1	782,718.4	266,914.6	353.73	4.92	0.00	66	15.0	7.0	Υ
166	1899	1	782,968.4	266,914.6	354.08	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
167	1900	1	783,218.4	266,914.6	354.32	4.92	0.00	66	15.0	7.0	Υ
168	1901	1	783,468.4	266,914.6	357.91	4.92	0.00	66	15.0	7.0	Υ
169	1902	1	783,718.4	266,914.6	363.93	4.92	0.00	66	15.0	7.0	Υ
170	1903	1	783,968.4	266,914.6	370.30	4.92	0.00	66	15.0	7.0	Υ
171	1904	1	784,218.4	266,914.6	377.50	4.92	0.00	66	15.0	7.0	Υ
172	1905	1	784,468.4	266,914.6	391.45	4.92	0.00	66	15.0	7.0	Υ
173	1906	1	773,968.4	267,164.6	348.10	4.92	0.00	66	15.0	7.0	Υ
174	1907	1	774,218.4	267,164.6	353.00	4.92	0.00	66	15.0	7.0	Υ
175	1908	1	774,468.4	267,164.6	352.67	4.92	0.00	66	15.0	7.0	Υ
176	1909	1	774,718.4	267,164.6	353.38	4.92	0.00	66	15.0	7.0	Υ
177	1910	1	774,968.4	267,164.6	353.76	4.92	0.00	66	15.0	7.0	Υ
178	1911	1	775,218.4	267,164.6	354.77	4.92	0.00	66	15.0	7.0	Υ
179	1912	1	775,468.4	267,164.6	354.90	4.92	0.00	66	15.0	7.0	Υ
180	1913	1	775,718.4	267,164.6	356.65	4.92	0.00	66	15.0	7.0	Υ
181	1914	1	775,968.4	267,164.6	359.76	4.92	0.00	66	15.0	7.0	Υ
182	1915	1	776,218.4	267,164.6	362.51	4.92	0.00	66	15.0	7.0	Υ
183	1916	1	776,468.4	267,164.6	362.81	4.92	0.00	66	15.0	7.0	Υ
184	1917	1	776,718.4	267,164.6	356.88	4.92	0.00	66	15.0	7.0	Υ
185	1918	1	776,968.4	267,164.6	344.42	4.92	0.00	66	15.0	7.0	Υ
186	1919	1	777,218.4	267,164.6	347.81	4.92	0.00	66	15.0	7.0	Υ
187	1920	1	777,468.4	267,164.6	359.54	4.92	0.00	66	15.0	7.0	Υ
188	1921	1	777,718.4	267,164.6	354.96	4.92	0.00	66	15.0	7.0	Υ
189	1922	1	777,968.4	267,164.6	348.40	4.92	0.00	66	15.0	7.0	Υ
190	1923	1	778,218.4	267,164.6	351.74	4.92	0.00	66	15.0	7.0	Υ
191	1924	1	778,468.4	267,164.6	356.71	4.92	0.00	66	15.0	7.0	Υ
192	1925	1	778,718.4	267,164.6	362.47	4.92	0.00	66	15.0	7.0	Υ
193	1926	1	778,968.4	267,164.6	369.55	4.92	0.00	66	15.0	7.0	Υ
194	1927	1	779,218.4	267,164.6	365.78	4.92	0.00	66	15.0	7.0	Υ
195	1928	1	779,468.4	267,164.6	359.71	4.92	0.00	66	15.0	7.0	Υ
196	1929	1	779,718.4	267,164.6	349.17	4.92	0.00	66	15.0	7.0	Υ
197	1930	1	779,968.4	267,164.6	359.58	4.92	0.00	66	15.0	7.0	Υ
198	1931	1	780,218.4	267,164.6	360.58	4.92	0.00	66	15.0	7.0	Υ
199	1932	1	780,468.4	267,164.6	368.60	4.92	0.00	66	15.0	7.0	Υ
200	1933	1	780,718.4	267,164.6	379.82	4.92	0.00	66	15.0	7.0	Υ
201	1934	1	780,968.4	267,164.6	380.51	4.92	0.00	66	15.0	7.0	Υ
202	1935	1	781,218.4	267,164.6	365.83	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
203	1936	1	781,468.4	267,164.6	358.74	4.92	0.00	66	15.0	7.0	Υ
204	1937	1	781,718.4	267,164.6	360.56	4.92	0.00	66	15.0	7.0	Υ
205	1938	1	781,968.4	267,164.6	379.82	4.92	0.00	66	15.0	7.0	Υ
206	1939	1	782,218.4	267,164.6	375.73	4.92	0.00	66	15.0	7.0	Υ
207	1940	1	782,468.4	267,164.6	362.04	4.92	0.00	66	15.0	7.0	Υ
208	1941	1	782,718.4	267,164.6	347.84	4.92	0.00	66	15.0	7.0	Υ
209	1942	1	782,968.4	267,164.6	351.69	4.92	0.00	66	15.0	7.0	Υ
210	1943	1	783,218.4	267,164.6	355.10	4.92	0.00	66	15.0	7.0	Υ
211	1944	1	783,468.4	267,164.6	359.76	4.92	0.00	66	15.0	7.0	Υ
212	1945	1	783,718.4	267,164.6	370.13	4.92	0.00	66	15.0	7.0	Υ
213	1946	1	783,968.4	267,164.6	373.13	4.92	0.00	66	15.0	7.0	Υ
214	1947	1	784,218.4	267,164.6	373.04	4.92	0.00	66	15.0	7.0	Υ
215	1948	1	784,468.4	267,164.6	387.35	4.92	0.00	66	15.0	7.0	Υ
216	1949	1	773,968.4	267,414.6	344.48	4.92	0.00	66	15.0	7.0	Υ
217	1950	1	774,218.4	267,414.6	353.45	4.92	0.00	66	15.0	7.0	Υ
218	1951	1	774,468.4	267,414.6	354.14	4.92	0.00	66	15.0	7.0	Υ
219	1952	1	774,718.4	267,414.6	353.55	4.92	0.00	66	15.0	7.0	Υ
220	1953	1	774,968.4	267,414.6	355.34	4.92	0.00	66	15.0	7.0	Υ
221	1954	1	775,218.4	267,414.6	356.04	4.92	0.00	66	15.0	7.0	Υ
222	1955	1	775,468.4	267,414.6	355.42	4.92	0.00	66	15.0	7.0	Υ
223	1956	1	775,718.4	267,414.6	357.81	4.92	0.00	66	15.0	7.0	Υ
224	1957	1	775,968.4	267,414.6	359.81	4.92	0.00	66	15.0	7.0	Υ
225	1958	1	776,218.4	267,414.6	362.33	4.92	0.00	66	15.0	7.0	Υ
226	1959	1	776,468.4	267,414.6	360.08	4.92	0.00	66	15.0	7.0	Υ
227	1960	1	776,718.4	267,414.6	353.53	4.92	0.00	66	15.0	7.0	Υ
228	1961	1	776,968.4	267,414.6	354.61	4.92	0.00	66	15.0	7.0	Υ
229	1962	1	777,218.4	267,414.6	340.85	4.92	0.00	66	15.0	7.0	Υ
230	1963	1	777,468.4	267,414.6	350.73	4.92	0.00	66	15.0	7.0	Υ
231	1964	1	777,718.4	267,414.6	345.90	4.92	0.00	66	15.0	7.0	Υ
232	1965	1	777,968.4	267,414.6	342.21	4.92	0.00	66	15.0	7.0	Υ
233	1966	1	778,218.4	267,414.6	344.70	4.92	0.00	66	15.0	7.0	Υ
234	1967	1	778,468.4	267,414.6	355.64	4.92	0.00	66	15.0	7.0	Υ
235	1968	1	778,718.4	267,414.6	361.55	4.92	0.00	66	15.0	7.0	Υ
236	1969	1	778,968.4	267,414.6	362.52	4.92	0.00	66	15.0	7.0	Υ
237	1970	1	779,218.4	267,414.6	357.19	4.92	0.00	66	15.0	7.0	Υ
238	1971	1	779,468.4	267,414.6	345.13	4.92	0.00	66	15.0	7.0	Υ
					l	- I					

1972 1 779,718,4 267,414,6 351,62 4.92 0.00 66 15.0 7.0 Y	INPUT: RECEIVERS							EN	IS2001			
1974 1 780,218.4 267,414.6 373.06 4.92 0.00 66 15.0 7.0 Y	239	1972	1	779,718.4	267,414.6	351.62	4.92			15.0	7.0	Υ
1975	240	1973	1	779,968.4	267,414.6	366.88	4.92	0.00	66	15.0	7.0	Υ
243 1976 1 780,718.4 267,414.6 375,66 4.92 0.00 66 15.0 7.0 Y 244 1977 1 780,968.4 267,414.6 353,21 4.92 0.00 66 15.0 7.0 Y 246 1978 1 781,218.4 267,414.6 363,23 4.92 0.00 66 15.0 7.0 Y 247 1980 1 781,718.4 267,414.6 360.60 4.92 0.00 66 15.0 7.0 Y 248 1981 1 781,988.4 267,414.6 363.17 4.92 0.00 66 15.0 7.0 Y 249 1982 1 782,218.4 267,414.6 363.56 4.92 0.00 66 15.0 7.0 Y 250 1983 1 782,218.4 267,414.6 353.19 4.92 0.00 66 15.0 7.0 Y 265 1983 1 <td>241</td> <td>1974</td> <td>1</td> <td>780,218.4</td> <td>267,414.6</td> <td>373.06</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	241	1974	1	780,218.4	267,414.6	373.06	4.92	0.00	66	15.0	7.0	Υ
244 1977 1 780,968.4 267,414.6 353.21 4.92 0.00 66 15.0 7.0 Y 245 1978 1 781,288.4 267,414.6 354.38 4.92 0.00 66 15.0 7.0 Y 246 1979 1 781,488.4 267,414.6 354.17 4.92 0.00 66 15.0 7.0 Y 247 1980 1 781,718.4 267,414.6 354.17 4.92 0.00 66 15.0 7.0 Y 248 1981 1 782,218.4 267,414.6 357.62 4.92 0.00 66 15.0 7.0 Y 250 1983 1 782,248.4 267,414.6 357.44 4.92 0.00 66 15.0 7.0 Y 251 1985 1 782,968.4 267,414.6 354.99 4.92 0.00 66 15.0 7.0 Y 265 1985 1 <td>242</td> <td>1975</td> <td>1</td> <td>780,468.4</td> <td>267,414.6</td> <td>373.23</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	242	1975	1	780,468.4	267,414.6	373.23	4.92	0.00	66	15.0	7.0	Υ
1978	243	1976	1	780,718.4	267,414.6	375.66	4.92	0.00	66	15.0	7.0	Υ
1979	244	1977	1	780,968.4	267,414.6	353.21	4.92	0.00	66	15.0	7.0	Υ
1980	245	1978	1	781,218.4	267,414.6	354.38	4.92	0.00	66	15.0	7.0	Υ
2448 1981 1 781,968.4 267,414.6 373.62 4.92 0.00 66 15.0 7.0 Y 249 1982 1 782,218.4 267,414.6 363.56 4.92 0.00 66 15.0 7.0 Y 250 1983 1 782,468.4 267,414.6 344.99 0.00 66 15.0 7.0 Y 251 1984 1 782,784.4 267,414.6 344.99 0.00 66 15.0 7.0 Y 252 1985 1 782,968.4 267,414.6 355.50 4.92 0.00 66 15.0 7.0 Y 253 1986 1 783,218.4 267,414.6 355.50 4.92 0.00 66 15.0 7.0 Y 254 1987 1 783,468.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 256 1988 1 783,968.4	246	1979	1	781,468.4	267,414.6	360.60	4.92	0.00	66	15.0	7.0	Υ
1982	247	1980	1	781,718.4	267,414.6	354.17	4.92	0.00	66	15.0	7.0	Υ
1983	248	1981	1	781,968.4	267,414.6	373.62	4.92	0.00	66	15.0	7.0	Υ
1984 1 782,718.4 267,414.6 344.99 4.92 0.00 66 15.0 7.0 Y 1985 1 782,988.4 267,414.6 353.19 4.92 0.00 66 15.0 7.0 Y 1986 1 783,218.4 267,414.6 355.50 4.92 0.00 66 15.0 7.0 Y 1987 1 783,488.4 267,414.6 359.26 4.92 0.00 66 15.0 7.0 Y 1988 1 783,718.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 1988 1 783,718.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 1986 1 998 1 783,968.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 1987 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 1988 1 1 784,468.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 1989 1 1 784,468.4 267,414.6 385.22 4.92 0.00 66 15.0 7.0 Y 1989 1 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 1980 1 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1980 1 1 774,488.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1980 1 1 774,988.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1980 1 1 774,988.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,218.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,218.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,968.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,968.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,968.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1980 1 1 775,968.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 776,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1980 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	249	1982	1	782,218.4	267,414.6	363.56	4.92	0.00	66	15.0	7.0	Υ
1985 1 782,968.4 267,414.6 353.19 4.92 0.00 66 15.0 7.0 Y 253 1986 1 783,218.4 267,414.6 355.50 4.92 0.00 66 15.0 7.0 Y 254 1987 1 783,468.4 267,414.6 359.26 4.92 0.00 66 15.0 7.0 Y 255 1988 1 783,718.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 256 1989 1 783,968.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 259 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1	250	1983	1	782,468.4	267,414.6	357.44	4.92	0.00	66	15.0	7.0	Υ
253 1986 1 783,218.4 267,414.6 355.50 4.92 0.00 66 15.0 7.0 Y 254 1987 1 783,468.4 267,414.6 359.26 4.92 0.00 66 15.0 7.0 Y 255 1988 1 783,718.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 256 1989 1 783,968.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 258 1991 1 784,468.4 267,414.6 385.22 4.92 0.00 66 15.0 7.0 Y 269 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 <td>251</td> <td>1984</td> <td>1</td> <td>782,718.4</td> <td>267,414.6</td> <td>344.99</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	251	1984	1	782,718.4	267,414.6	344.99	4.92	0.00	66	15.0	7.0	Υ
1987 1 783,468.4 267,414.6 359.26 4.92 0.00 66 15.0 7.0 Y 255 1988 1 783,718.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 256 1989 1 783,968.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 258 1991 1 784,468.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 259 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1 774,218.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 261 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 262 1995 1 774,718.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,968.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 264 1997 1 775,218.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,218.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,218.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 267 200 1 775,468.4 267,664.6 355.29 4.92 0.00 66 15.0 7.0 Y 268 200 1 1 775,468.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 269 200 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 269 200 1 776,468.4 267,664.6 355.29 4.92 0.00 66 15.0 7.0 Y 260 200 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 260 200 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 260 200 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 260 200 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 260 200 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 270 200 1 776,468.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 200 1 776,468.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 272 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 273 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 274 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 275 200 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 275 200 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 276 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 277 200 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 277 200 200 1 776,468.4 267,664.6 340.50 4.92 0.00 66 15.0 7.0 Y 278 2	252	1985	1	782,968.4	267,414.6	353.19	4.92	0.00	66	15.0	7.0	Υ
255 1988 1 783,718.4 267,414.6 369.75 4.92 0.00 66 15.0 7.0 Y 256 1989 1 783,968.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 258 1991 1 784,468.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 269 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 261 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 262 1995 <td>253</td> <td>1986</td> <td>1</td> <td>783,218.4</td> <td>267,414.6</td> <td>355.50</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	253	1986	1	783,218.4	267,414.6	355.50	4.92	0.00	66	15.0	7.0	Υ
256 1989 1 783,968.4 267,414.6 383.71 4.92 0.00 66 15.0 7.0 Y 257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 258 1991 1 784,468.4 267,414.6 385.22 4.92 0.00 66 15.0 7.0 Y 259 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 261 1995 1 774,718.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,718.4 267,664.6 355.36 4.92 0.00 66 15.0 7.0 Y 264 1997 <td>254</td> <td>1987</td> <td>1</td> <td>783,468.4</td> <td>267,414.6</td> <td>359.26</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	254	1987	1	783,468.4	267,414.6	359.26	4.92	0.00	66	15.0	7.0	Υ
257 1990 1 784,218.4 267,414.6 385.03 4.92 0.00 66 15.0 7.0 Y 258 1991 1 784,468.4 267,414.6 385.22 4.92 0.00 66 15.0 7.0 Y 259 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 261 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 262 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,968.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 265 1998 <td>255</td> <td>1988</td> <td>1</td> <td>783,718.4</td> <td>267,414.6</td> <td>369.75</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	255	1988	1	783,718.4	267,414.6	369.75	4.92	0.00	66	15.0	7.0	Υ
258 1991 1 784,468.4 267,414.6 385.22 4.92 0.00 66 15.0 7.0 Y 259 1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 260 1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 261 1994 1 774,718.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 262 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 266 1999 <td>256</td> <td>1989</td> <td>1</td> <td>783,968.4</td> <td>267,414.6</td> <td>383.71</td> <td>4.92</td> <td>0.00</td> <td>66</td> <td>15.0</td> <td>7.0</td> <td>Υ</td>	256	1989	1	783,968.4	267,414.6	383.71	4.92	0.00	66	15.0	7.0	Υ
1992 1 773,968.4 267,664.6 352.95 4.92 0.00 66 15.0 7.0 Y 1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 1999 1 775,718.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 1999 1 775,718.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 1999 1 775,718.4 267,664.6 355.27 4.92 0.00 66 15.0 7.0 Y 1998 1 776,218.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1999 1 776,218.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1998 1 776,218.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1999 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 344.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1998 1 776,468.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1998 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	257	1990	1	784,218.4	267,414.6	385.03	4.92	0.00	66	15.0	7.0	Υ
1993 1 774,218.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 1999 1 775,718.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 1998 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1999 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1999 1 776,218.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 1998 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1999 2001 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1999 2002 1 776,468.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1999 2003 1 776,718.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 1999 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 1999 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 1999 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1999 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1999 2005 1 777,218.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 1999 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1999 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1990 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1990 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1990 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y 1990 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	258	1991	1	784,468.4	267,414.6	385.22	4.92	0.00	66	15.0	7.0	Υ
261 1994 1 774,468.4 267,664.6 353.33 4.92 0.00 66 15.0 7.0 Y 262 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 264 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 367.76 4.92 0.00 66 15	259	1992	1	773,968.4	267,664.6	352.95	4.92	0.00	66	15.0	7.0	Υ
262 1995 1 774,718.4 267,664.6 353.36 4.92 0.00 66 15.0 7.0 Y 263 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 264 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15	260	1993	1	774,218.4	267,664.6	353.33	4.92	0.00	66	15.0	7.0	Υ
263 1996 1 774,968.4 267,664.6 355.18 4.92 0.00 66 15.0 7.0 Y 264 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15	261	1994	1	774,468.4	267,664.6	353.33	4.92	0.00	66	15.0	7.0	Υ
264 1997 1 775,218.4 267,664.6 355.19 4.92 0.00 66 15.0 7.0 Y 265 1998 1 775,468.4 267,664.6 355.23 4.92 0.00 66 15.0 7.0 Y 266 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 270 2003 1 776,748.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15	262	1995	1	774,718.4	267,664.6	353.36	4.92	0.00	66	15.0	7.0	Υ
1998	263	1996	1	774,968.4	267,664.6	355.18	4.92	0.00	66	15.0	7.0	Υ
266 1999 1 775,718.4 267,664.6 356.27 4.92 0.00 66 15.0 7.0 Y 267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 270 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15	264	1997	1	775,218.4	267,664.6	355.19	4.92	0.00	66	15.0	7.0	Υ
267 2000 1 775,968.4 267,664.6 360.15 4.92 0.00 66 15.0 7.0 Y 268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 270 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 Y 273 2006	265	1998	1	775,468.4	267,664.6	355.23	4.92	0.00	66	15.0	7.0	Υ
268 2001 1 776,218.4 267,664.6 360.11 4.92 0.00 66 15.0 7.0 Y 269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 270 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	266	1999	1	775,718.4	267,664.6	356.27	4.92	0.00	66	15.0	7.0	Υ
269 2002 1 776,468.4 267,664.6 357.76 4.92 0.00 66 15.0 7.0 Y 270 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	267	2000	1	775,968.4	267,664.6	360.15	4.92	0.00	66	15.0	7.0	Υ
270 2003 1 776,718.4 267,664.6 346.50 4.92 0.00 66 15.0 7.0 Y 271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	268	2001	1	776,218.4	267,664.6	360.11	4.92	0.00	66	15.0	7.0	Υ
271 2004 1 776,968.4 267,664.6 342.92 4.92 0.00 66 15.0 7.0 Y 272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	269	2002	1	776,468.4	267,664.6	357.76	4.92	0.00	66	15.0	7.0	Υ
272 2005 1 777,218.4 267,664.6 337.70 4.92 0.00 66 15.0 7.0 Y 273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	270	2003	1	776,718.4	267,664.6	346.50	4.92	0.00	66	15.0	7.0	Υ
273 2006 1 777,468.4 267,664.6 347.87 4.92 0.00 66 15.0 7.0 Y	271	2004	1	776,968.4	267,664.6	342.92	4.92	0.00	66	15.0	7.0	Υ
	272	2005	1	777,218.4	267,664.6	337.70	4.92	0.00	66	15.0	7.0	Υ
274 2007 1 777,718.4 267,664.6 342.64 4.92 0.00 66 15.0 7.0 Y	273	2006	1	777,468.4	267,664.6	347.87	4.92	0.00	66	15.0	7.0	Υ
	274	2007	1	777,718.4	267,664.6	342.64	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							ı	ENS2001			
275	2008	1	777,968.4	267,664.6	344.48	4.92	0.00	66	15.0	7.0	Υ
276	2009	1	778,218.4	267,664.6	337.16	4.92	0.00	66	15.0	7.0	Υ
277	2010	1	778,468.4	267,664.6	350.35	4.92	0.00	66	15.0	7.0	Υ
278	2011	1	778,718.4	267,664.6	353.41	4.92	0.00	66	15.0	7.0	Υ
279	2012	1	778,968.4	267,664.6	340.26	4.92	0.00	66	15.0	7.0	Υ
280	2013	1	779,218.4	267,664.6	340.77	4.92	0.00	66	15.0	7.0	Υ
281	2014	1	779,468.4	267,664.6	345.73	4.92	0.00	66	15.0	7.0	Υ
282	2015	1	779,718.4	267,664.6	360.10	4.92	0.00	66	15.0	7.0	Υ
283	2016	1	779,968.4	267,664.6	365.41	4.92	0.00	66	15.0	7.0	Υ
284	2017	1	780,218.4	267,664.6	375.59	4.92	0.00	66	15.0	7.0	Υ
285	2018	1	780,468.4	267,664.6	374.00	4.92	0.00	66	15.0	7.0	Υ
286	2019	1	780,718.4	267,664.6	351.92	4.92	0.00	66	15.0	7.0	Υ
287	2020	1	780,968.4	267,664.6	346.18	4.92	0.00	66	15.0	7.0	Υ
288	2021	1	781,218.4	267,664.6	352.20	4.92	0.00	66	15.0	7.0	Υ
289	2022	1	781,468.4	267,664.6	355.18	4.92	0.00	66	15.0	7.0	Υ
290	2023	1	781,718.4	267,664.6	345.94	4.92	0.00	66	15.0	7.0	Υ
291	2024	1	781,968.4	267,664.6	367.01	4.92	0.00	66	15.0	7.0	Υ
292	2025	1	782,218.4	267,664.6	352.36	4.92	0.00	66	15.0	7.0	Υ
293	2026	1	782,468.4	267,664.6	341.87	4.92	0.00	66	15.0	7.0	Υ
294	2027	1	782,718.4	267,664.6	349.46	4.92	0.00	66	15.0	7.0	Υ
295	2028	1	782,968.4	267,664.6	357.65	4.92	0.00	66	15.0	7.0	Υ
296	2029	1	783,218.4	267,664.6	366.02	4.92	0.00	66	15.0	7.0	Υ
297	2031	1	783,468.4	267,664.6	368.01	4.92	0.00	66	15.0	7.0	Υ
298	2032	1	783,718.4	267,664.6	366.53	4.92	0.00	66	15.0	7.0	Υ
299	2033	1	783,968.4	267,664.6	382.08	4.92	0.00	66	15.0	7.0	Υ
300	2034	1	784,218.4	267,664.6	390.00	4.92	0.00	66	15.0	7.0	Υ
301	2035	1	784,468.4	267,664.6	385.04	4.92	0.00	66	15.0	7.0	Υ
302	2036	1	773,968.4	267,914.6	352.32	4.92	0.00	66	15.0	7.0	Υ
303	2037	1	774,218.4	267,914.6	345.37	4.92	0.00	66	15.0	7.0	Υ
304	2038	1	774,468.4	267,914.6	341.60	4.92	0.00	66	15.0	7.0	Υ
305	2039	1	774,718.4	267,914.6	340.99	4.92	0.00	66	15.0	7.0	Υ
306	2040	1	774,968.4	267,914.6	344.35	4.92	0.00	66	15.0	7.0	Υ
307	2041	1	775,218.4	267,914.6	345.03	4.92	0.00	66	15.0	7.0	Υ
308	2042	1	775,468.4	267,914.6	350.58	4.92	0.00	66	15.0	7.0	Υ
309	2043	1	775,718.4	267,914.6	356.29	4.92	0.00	66	15.0	7.0	Υ
310	2044	1	775,968.4	267,914.6	361.95	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
311	2045	1	776,218.4	267,914.6	362.52	4.92	0.00	66	15.0	7.0	Υ
312	2046	1	776,468.4	267,914.6	360.83	4.92	0.00	66	15.0	7.0	Υ
313	2047	1	776,718.4	267,914.6	353.38	4.92	0.00	66	15.0	7.0	Υ
314	2048	1	776,968.4	267,914.6	345.93	4.92	0.00	66	15.0	7.0	Υ
315	2049	1	777,218.4	267,914.6	340.32	4.92	0.00	66	15.0	7.0	Υ
316	2050	1	777,468.4	267,914.6	340.49	4.92	0.00	66	15.0	7.0	Υ
317	2051	1	777,718.4	267,914.6	341.02	4.92	0.00	66	15.0	7.0	Υ
318	2052	1	777,968.4	267,914.6	339.66	4.92	0.00	66	15.0	7.0	Υ
319	2053	1	778,218.4	267,914.6	330.95	4.92	0.00	66	15.0	7.0	Υ
320	2054	1	778,468.4	267,914.6	333.78	4.92	0.00	66	15.0	7.0	Υ
321	2055	1	778,718.4	267,914.6	340.07	4.92	0.00	66	15.0	7.0	Υ
322	2056	1	778,968.4	267,914.6	340.11	4.92	0.00	66	15.0	7.0	Υ
323	2057	1	779,218.4	267,914.6	352.26	4.92	0.00	66	15.0	7.0	Υ
324	2058	1	779,468.4	267,914.6	360.72	4.92	0.00	66	15.0	7.0	Υ
325	2059	1	779,718.4	267,914.6	365.27	4.92	0.00	66	15.0	7.0	Υ
326	2060	1	779,968.4	267,914.6	371.09	4.92	0.00	66	15.0	7.0	Υ
327	2061	1	780,218.4	267,914.6	377.36	4.92	0.00	66	15.0	7.0	Υ
328	2062	1	780,468.4	267,914.6	368.58	4.92	0.00	66	15.0	7.0	Υ
329	2063	1	780,718.4	267,914.6	349.99	4.92	0.00	66	15.0	7.0	Υ
330	2064	1	780,968.4	267,914.6	343.13	4.92	0.00	66	15.0	7.0	Υ
331	2065	1	781,218.4	267,914.6	347.53	4.92	0.00	66	15.0	7.0	Υ
332	2066	1	781,468.4	267,914.6	349.64	4.92	0.00	66	15.0	7.0	Υ
333	2067	1	781,718.4	267,914.6	346.90	4.92	0.00	66	15.0	7.0	Υ
334	2068	1	781,968.4	267,914.6	357.68	4.92	0.00	66	15.0	7.0	Υ
335	2069	1	782,218.4	267,914.6	341.85	4.92	0.00	66	15.0	7.0	Υ
336	2070	1	782,468.4	267,914.6	345.22	4.92	0.00	66	15.0	7.0	Υ
337	2071	1	782,718.4	267,914.6	352.21	4.92	0.00	66	15.0	7.0	Υ
338	2072	1	782,968.4	267,914.6	366.25	4.92	0.00	66	15.0	7.0	Υ
339	2073	1	783,218.4	267,914.6	372.92	4.92	0.00	66	15.0	7.0	Υ
340	2074	1	783,468.4	267,914.6	376.86	4.92	0.00	66	15.0	7.0	Υ
341	2075	1	783,718.4	267,914.6	375.20	4.92	0.00	66	15.0	7.0	Υ
342	2076	1	783,968.4	267,914.6		4.92	0.00	66	15.0	7.0	Υ
343	2077	1	784,218.4	267,914.6	384.44	4.92	0.00	66	15.0	7.0	Υ
344	2078	1	784,468.4	267,914.6	373.44	4.92	0.00	66	15.0	7.0	Υ
345	2079	1	773,968.4	268,164.6	342.02	4.92	0.00	66	15.0	7.0	Υ
346	2080	1	774,218.4	268,164.6	339.66	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
347	2081	1	774,468.4	268,164.6	337.90	4.92	0.00	66	15.0	7.0	Υ
348	2082	1	774,718.4	268,164.6	340.72	4.92	0.00	66	15.0	7.0	Υ
349	2083	1	774,968.4	268,164.6	346.48	4.92	0.00	66	15.0	7.0	Υ
350	2084	1	775,218.4	268,164.6	348.84	4.92	0.00	66	15.0	7.0	Υ
351	2085	1	775,468.4	268,164.6	353.11	4.92	0.00	66	15.0	7.0	Υ
352	2086	1	775,718.4	268,164.6	360.58	4.92	0.00	66	15.0	7.0	Υ
353	2087	1	775,968.4	268,164.6	367.25	4.92	0.00	66	15.0	7.0	Υ
354	2088	1	776,218.4	268,164.6	370.24	4.92	0.00	66	15.0	7.0	Υ
355	2089	1	776,468.4	268,164.6	368.05	4.92	0.00	66	15.0	7.0	Υ
356	2090	1	776,718.4	268,164.6	350.21	4.92	0.00	66	15.0	7.0	Υ
357	2091	1	776,968.4	268,164.6	343.52	4.92	0.00	66	15.0	7.0	Υ
358	2092	1	777,218.4	268,164.6	336.29	4.92	0.00	66	15.0	7.0	Υ
359	2093	1	777,468.4	268,164.6	336.21	4.92	0.00	66	15.0	7.0	Υ
360	2094	1	777,718.4	268,164.6	336.98	4.92	0.00	66	15.0	7.0	Υ
361	2095	1	777,968.4	268,164.6	331.79	4.92	0.00	66	15.0	7.0	Υ
362	2096	1	778,218.4	268,164.6	336.16	4.92	0.00	66	15.0	7.0	Υ
363	2097	1	778,468.4	268,164.6	347.04	4.92	0.00	66	15.0	7.0	Υ
364	2098	1	778,718.4	268,164.6	352.07	4.92	0.00	66	15.0	7.0	Υ
365	2099	1	778,968.4	268,164.6	356.76	4.92	0.00	66	15.0	7.0	Υ
366	2100	1	779,218.4	268,164.6	356.74	4.92	0.00	66	15.0	7.0	Υ
367	2101	1	779,468.4	268,164.6	367.37	4.92	0.00	66	15.0	7.0	Υ
368	2102	1	779,718.4	268,164.6	375.18	4.92	0.00	66	15.0	7.0	Υ
369	2103	1	779,968.4	268,164.6	378.02	4.92	0.00	66	15.0	7.0	Υ
370	2104	1	780,218.4	268,164.6	373.70	4.92	0.00	66	15.0	7.0	Υ
371	2105	1	780,468.4	268,164.6	363.53	4.92	0.00	66	15.0	7.0	Υ
372	2106	1	780,718.4	268,164.6	347.03	4.92	0.00	66	15.0	7.0	Υ
373	2107	1	780,968.4	268,164.6	346.58	4.92	0.00	66	15.0	7.0	Υ
374	2108	1	781,218.4	268,164.6	350.74	4.92	0.00	66	15.0	7.0	Υ
375	2109	1	781,468.4	268,164.6	342.98	4.92	0.00	66	15.0	7.0	Υ
376	2110	1	781,718.4	268,164.6	339.49	4.92	0.00	66	15.0	7.0	Υ
377	2111	1	781,968.4	268,164.6	342.48	4.92	0.00	66	15.0	7.0	Y
378	2112	1	782,218.4	268,164.6	337.86	4.92	0.00	66	15.0	7.0	Υ
379	2113	1	782,468.4	268,164.6	349.35	4.92	0.00	66	15.0	7.0	Υ
380	2114	1	782,718.4	268,164.6	355.51	4.92	0.00	66	15.0	7.0	Υ
381	2116	1	782,968.4	268,164.6	368.09	4.92	0.00	66	15.0	7.0	Υ
382	2117	1	783,218.4	268,164.6	368.90	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
383	2118	1	783,468.4	268,164.6	369.38	4.92	0.00	66	15.0	7.0	Υ
384	2119	1	783,718.4	268,164.6	372.59	4.92	0.00	66	15.0	7.0	Υ
385	2120	1	783,968.4	268,164.6	380.89	4.92	0.00	66	15.0	7.0	Υ
386	2121	1	784,218.4	268,164.6	384.35	4.92	0.00	66	15.0	7.0	Υ
387	2122	1	784,468.4	268,164.6	373.46	4.92	0.00	66	15.0	7.0	Υ
388	2123	1	773,968.4	268,414.6	332.80	4.92	0.00	66	15.0	7.0	Υ
389	2124	1	774,218.4	268,414.6	333.03	4.92	0.00	66	15.0	7.0	Υ
390	2125	1	774,468.4	268,414.6	339.32	4.92	0.00	66	15.0	7.0	Υ
391	2126	1	774,718.4	268,414.6	349.45	4.92	0.00	66	15.0	7.0	Υ
392	2127	1	774,968.4	268,414.6	355.83	4.92	0.00	66	15.0	7.0	Υ
393	2128	1	775,218.4	268,414.6	357.83	4.92	0.00	66	15.0	7.0	Υ
394	2129	1	775,468.4	268,414.6	363.02	4.92	0.00	66	15.0	7.0	Υ
395	2130	1	775,718.4	268,414.6	369.29	4.92	0.00	66	15.0	7.0	Υ
396	2131	1	775,968.4	268,414.6	364.64	4.92	0.00	66	15.0	7.0	Υ
397	2132	1	776,218.4	268,414.6	364.41	4.92	0.00	66	15.0	7.0	Υ
398	2133	1	776,468.4	268,414.6	364.90	4.92	0.00	66	15.0	7.0	Υ
399	2134	1	776,718.4	268,414.6	349.54	4.92	0.00	66	15.0	7.0	Υ
400	2135	1	776,968.4	268,414.6	340.84	4.92	0.00	66	15.0	7.0	Υ
401	2136	1	777,218.4	268,414.6	334.39	4.92	0.00	66	15.0	7.0	Υ
402	2137	1	777,468.4	268,414.6	333.63	4.92	0.00	66	15.0	7.0	Υ
403	2138	1	777,718.4	268,414.6	333.14	4.92	0.00	66	15.0	7.0	Υ
404	2139	1	777,968.4	268,414.6	341.03	4.92	0.00	66	15.0	7.0	Υ
405	2140	1	778,218.4	268,414.6	344.30	4.92	0.00	66	15.0	7.0	Υ
406	2141	1	778,468.4	268,414.6	348.50	4.92	0.00	66	15.0	7.0	Υ
407	2142	1	778,718.4	268,414.6	355.82	4.92	0.00	66	15.0	7.0	Υ
408	2143	1	778,968.4	268,414.6	362.70	4.92	0.00	66	15.0	7.0	Υ
409	2144	1	779,218.4	268,414.6	369.01	4.92	0.00	66	15.0	7.0	Υ
410	2145	1	779,468.4	268,414.6	371.59	4.92	0.00	66	15.0	7.0	Υ
411	2146	1	779,718.4	268,414.6	374.68	4.92	0.00	66	15.0	7.0	Υ
412	2147	1	779,968.4	268,414.6	364.52	4.92	0.00	66	15.0	7.0	Υ
413	2148	1	780,218.4	268,414.6	371.76	4.92	0.00	66	15.0	7.0	Υ
414	2149	1	780,468.4	268,414.6	360.87	4.92	0.00	66	15.0	7.0	Υ
415	2150	1	780,718.4	268,414.6	341.12	4.92	0.00	66	15.0	7.0	Υ
416	2151	1	780,968.4	268,414.6	339.69	4.92	0.00	66	15.0	7.0	Υ
417	2152	1	781,218.4	268,414.6	334.64	4.92	0.00	66	15.0	7.0	Υ
418	2153	1	781,468.4	268,414.6	341.03	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							E	NS2001			
419	2154	1	781,718.4	268,414.6	335.27	4.92	0.00	66	15.0	7.0	Υ
420	2155	1	781,968.4	268,414.6	333.54	4.92	0.00	66	15.0	7.0	Υ
421	2156	1	782,218.4	268,414.6	348.06	4.92	0.00	66	15.0	7.0	Υ
422	2157	1	782,468.4	268,414.6	350.87	4.92	0.00	66	15.0	7.0	Υ
423	2158	1	782,718.4	268,414.6	352.77	4.92	0.00	66	15.0	7.0	Υ
424	2159	1	782,968.4	268,414.6	364.42	4.92	0.00	66	15.0	7.0	Υ
425	2160	1	783,218.4	268,414.6	365.56	4.92	0.00	66	15.0	7.0	Υ
426	2161	1	783,468.4	268,414.6	370.24	4.92	0.00	66	15.0	7.0	Υ
427	2162	1	783,718.4	268,414.6	375.28	4.92	0.00	66	15.0	7.0	Υ
428	2163	1	783,968.4	268,414.6	381.90	4.92	0.00	66	15.0	7.0	Υ
429	2164	1	784,218.4	268,414.6	383.46	4.92	0.00	66	15.0	7.0	Υ
430	2165	1	784,468.4	268,414.6	381.09	4.92	0.00	66	15.0	7.0	Υ
431	2166	1	773,968.4	268,664.6	332.11	4.92	0.00	66	15.0	7.0	Υ
432	2167	1	774,218.4	268,664.6	337.45	4.92	0.00	66	15.0	7.0	Υ
433	2168	1	774,468.4	268,664.6	345.27	4.92	0.00	66	15.0	7.0	Υ
434	2169	1	774,718.4	268,664.6	348.10	4.92	0.00	66	15.0	7.0	Υ
435	2170	1	774,968.4	268,664.6	357.72	4.92	0.00	66	15.0	7.0	Υ
436	2171	1	775,218.4	268,664.6	360.68	4.92	0.00	66	15.0	7.0	Υ
437	2172	1	775,468.4	268,664.6	364.06	4.92	0.00	66	15.0	7.0	Υ
438	2173	1	775,718.4	268,664.6	369.07	4.92	0.00	66	15.0	7.0	Υ
439	2174	1	775,968.4	268,664.6	346.01	4.92	0.00	66	15.0	7.0	Υ
440	2175	1	776,218.4	268,664.6	348.00	4.92	0.00	66	15.0	7.0	Υ
441	2176	1	776,468.4	268,664.6	352.69	4.92	0.00	66	15.0	7.0	Υ
442	2177	1	776,718.4	268,664.6	348.06	4.92	0.00	66	15.0	7.0	Υ
443	2178	1	776,968.4	268,664.6	339.12	4.92	0.00	66	15.0	7.0	Υ
444	2179	1	777,218.4	268,664.6	331.04	4.92	0.00	66	15.0	7.0	Υ
445	2180	1	777,468.4	268,664.6	331.03	4.92	0.00	66	15.0	7.0	Υ
446	2181	1	777,718.4	268,664.6	330.64	4.92	0.00	66	15.0	7.0	Υ
447	2182	1	777,968.4	268,664.6	343.35	4.92	0.00	66	15.0	7.0	Υ
448	2183	1	778,218.4	268,664.6	345.35	4.92	0.00	66	15.0	7.0	Υ
449	2184	1	778,468.4	268,664.6	348.15	4.92	0.00	66	15.0	7.0	Υ
450	2185	1	778,718.4	268,664.6	355.73	4.92	0.00	66	15.0	7.0	Υ
451	2186	1	778,968.4	268,664.6	361.22	4.92	0.00	66	15.0	7.0	Υ
452	2187	1	779,218.4	268,664.6	355.74	4.92	0.00	66	15.0	7.0	Υ
453	2188	1	779,468.4	268,664.6	367.00	4.92	0.00	66	15.0	7.0	Υ
454	2189	1	779,718.4	268,664.6	356.40	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
455	2190	1	779,968.4	268,664.6	365.03	4.92	0.00	66	15.0	7.0	Υ
456	2191	1	780,218.4	268,664.6	369.72	4.92	0.00	66	15.0	7.0	Υ
457	2192	1	780,468.4	268,664.6	368.46	4.92	0.00	66	15.0	7.0	Υ
458	2193	1	780,718.4	268,664.6	356.37	4.92	0.00	66	15.0	7.0	Υ
459	2194	1	780,968.4	268,664.6	347.84	4.92	0.00	66	15.0	7.0	Υ
460	2195	1	781,218.4	268,664.6	340.93	4.92	0.00	66	15.0	7.0	Υ
461	2196	1	781,468.4	268,664.6	333.86	4.92	0.00	66	15.0	7.0	Υ
462	2197	1	781,718.4	268,664.6	327.74	4.92	0.00	66	15.0	7.0	Υ
463	2198	1	781,968.4	268,664.6	342.24	4.92	0.00	66	15.0	7.0	Υ
464	2199	1	782,218.4	268,664.6	349.24	4.92	0.00	66	15.0	7.0	Υ
465	2200	1	782,468.4	268,664.6	358.20	4.92	0.00	66	15.0	7.0	Υ
466	2201	1	782,718.4	268,664.6	360.59	4.92	0.00	66	15.0	7.0	Υ
467	2202	1	782,968.4	268,664.6	361.71	4.92	0.00	66	15.0	7.0	Υ
468	2203	1	783,218.4	268,664.6	366.37	4.92	0.00	66	15.0	7.0	Υ
469	2204	1	783,468.4	268,664.6	372.54	4.92	0.00	66	15.0	7.0	Υ
470	2205	1	783,718.4	268,664.6	376.62	4.92	0.00	66	15.0	7.0	Υ
471	2206	1	783,968.4	268,664.6	379.95	4.92	0.00	66	15.0	7.0	Υ
472	2207	1	784,218.4	268,664.6	379.53	4.92	0.00	66	15.0	7.0	Υ
473	2208	1	784,468.4	268,664.6	377.32	4.92	0.00	66	15.0	7.0	Υ
474	2209	1	773,968.4	268,914.6	340.48	4.92	0.00	66	15.0	7.0	Υ
475	2210	1	774,218.4	268,914.6	343.52	4.92	0.00	66	15.0	7.0	Υ
476	2211	1	774,468.4	268,914.6	339.59	4.92	0.00	66	15.0	7.0	Υ
477	2212	1	774,718.4	268,914.6	350.92	4.92	0.00	66	15.0	7.0	Υ
478	2213	1	774,968.4	268,914.6	362.49	4.92	0.00	66	15.0	7.0	Υ
479	2214	1	775,218.4	268,914.6	369.09	4.92	0.00	66	15.0	7.0	Υ
480	2215	1	775,468.4	268,914.6	363.77	4.92	0.00	66	15.0	7.0	Υ
481	2216	1	775,718.4	268,914.6	358.26	4.92	0.00	66	15.0	7.0	Υ
482	2217	1	775,968.4	268,914.6	345.91	4.92	0.00	66	15.0	7.0	Υ
483	2218	1	776,218.4	268,914.6	339.59	4.92	0.00	66	15.0	7.0	Υ
484	2219	1	776,468.4	268,914.6	338.05	4.92	0.00	66	15.0	7.0	Υ
485	2220	1	776,718.4	268,914.6	346.31	4.92	0.00	66	15.0	7.0	Υ
486	2221	1	776,968.4	268,914.6	340.86	4.92	0.00	66	15.0	7.0	Υ
487	2222	1	777,218.4	268,914.6	329.64	4.92	0.00	66	15.0	7.0	Υ
488	2223	1	777,468.4	268,914.6	328.96	4.92	0.00	66	15.0	7.0	Υ
489	2224	1	777,718.4	268,914.6	328.05	4.92	0.00	66	15.0	7.0	Υ
490	2225	1	777,968.4	268,914.6	340.66	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
491	2226	1	778,218.4	268,914.6	350.72	4.92	0.00	66	15.0	7.0	Υ
492	2227	1	778,468.4	268,914.6	351.60	4.92	0.00	66	15.0	7.0	Υ
493	2228	1	778,718.4	268,914.6	358.10	4.92	0.00	66	15.0	7.0	Υ
494	2229	1	778,968.4	268,914.6	359.65	4.92	0.00	66	15.0	7.0	Υ
495	2230	1	779,218.4	268,914.6	344.76	4.92	0.00	66	15.0	7.0	Υ
496	2231	1	779,468.4	268,914.6	350.33	4.92	0.00	66	15.0	7.0	Υ
497	2232	1	779,718.4	268,914.6	352.90	4.92	0.00	66	15.0	7.0	Υ
498	2233	1	779,968.4	268,914.6	363.04	4.92	0.00	66	15.0	7.0	Υ
499	2234	1	780,218.4	268,914.6	363.45	4.92	0.00	66	15.0	7.0	Υ
500	2235	1	780,468.4	268,914.6	352.97	4.92	0.00	66	15.0	7.0	Υ
501	2236	1	780,718.4	268,914.6	360.99	4.92	0.00	66	15.0	7.0	Υ
502	2237	1	780,968.4	268,914.6	336.14	4.92	0.00	66	15.0	7.0	Υ
503	2238	1	781,218.4	268,914.6	332.20	4.92	0.00	66	15.0	7.0	Υ
504	2239	1	781,468.4	268,914.6	332.41	4.92	0.00	66	15.0	7.0	Υ
505	2240	1	781,718.4	268,914.6	337.73	4.92	0.00	66	15.0	7.0	Υ
506	2241	1	781,968.4	268,914.6	355.03	4.92	0.00	66	15.0	7.0	Υ
507	2242	1	782,218.4	268,914.6	358.62	4.92	0.00	66	15.0	7.0	Υ
508	2243	1	782,468.4	268,914.6	366.13	4.92	0.00	66	15.0	7.0	Υ
509	2244	1	782,718.4	268,914.6	369.77	4.92	0.00	66	15.0	7.0	Υ
510	2245	1	782,968.4	268,914.6	369.09	4.92	0.00	66	15.0	7.0	Υ
511	2246	1	783,218.4	268,914.6	368.55	4.92	0.00	66	15.0	7.0	Υ
514	2249	1	783,968.4	268,914.6	374.84	4.92	0.00	66	15.0	7.0	Υ
515	2250	1	784,218.4	268,914.6	376.07	4.92	0.00	66	15.0	7.0	Υ
516	2251	1	784,468.4	268,914.6	379.89	4.92	0.00	66	15.0	7.0	Υ
517	2252	1	773,968.4	269,164.6	332.53	4.92	0.00	66	15.0	7.0	Υ
518	2253	1	774,218.4	269,164.6	336.95	4.92	0.00	66	15.0	7.0	Υ
519	2254	1	774,468.4	269,164.6	342.93	4.92	0.00	66	15.0	7.0	Υ
520	2255	1	774,718.4	269,164.6	358.46	4.92	0.00	66	15.0	7.0	Υ
521	2256	1	774,968.4	269,164.6	364.51	4.92	0.00	66	15.0	7.0	Υ
522	2257	1	775,218.4	269,164.6	368.12	4.92	0.00	66	15.0	7.0	Υ
523	2258	1	775,468.4	269,164.6	362.55	4.92	0.00	66	15.0	7.0	Υ
524	2259	1	775,718.4	269,164.6	348.31	4.92	0.00	66	15.0	7.0	Υ
525	2260	1	775,968.4	269,164.6	343.90	4.92	0.00	66	15.0	7.0	Υ
526	2261	1	776,218.4	269,164.6	339.41	4.92	0.00	66	15.0	7.0	Υ
527	2262	1	776,468.4	269,164.6	333.47	4.92	0.00	66	15.0	7.0	Υ
528	2263	1	776,718.4	269,164.6	343.51	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	IS2001			
529	2264	1	776,968.4	269,164.6	340.21	4.92	0.00	66	15.0	7.0	Υ
530	2265	1	777,218.4	269,164.6	328.16	4.92	0.00	66	15.0	7.0	Υ
531	2266	1	777,468.4	269,164.6	324.97	4.92	0.00	66	15.0	7.0	Υ
532	2267	1	777,718.4	269,164.6	327.45	4.92	0.00	66	15.0	7.0	Υ
533	2268	1	777,968.4	269,164.6	334.41	4.92	0.00	66	15.0	7.0	Υ
534	2269	1	778,218.4	269,164.6	340.04	4.92	0.00	66	15.0	7.0	Υ
537	2272	1	778,968.4	269,164.6	345.31	4.92	0.00	66	15.0	7.0	Υ
538	2273	1	779,218.4	269,164.6	339.72	4.92	0.00	66	15.0	7.0	Υ
539	2274	1	779,468.4	269,164.6	353.69	4.92	0.00	66	15.0	7.0	Υ
540	2275	1	779,718.4	269,164.6	357.81	4.92	0.00	66	15.0	7.0	Υ
541	2276	1	779,968.4	269,164.6	347.88	4.92	0.00	66	15.0	7.0	Υ
542	2277	1	780,218.4	269,164.6	364.54	4.92	0.00	66	15.0	7.0	Υ
543	2278	1	780,468.4	269,164.6	356.98	4.92	0.00	66	15.0	7.0	Υ
544	2279	1	780,718.4	269,164.6	340.44	4.92	0.00	66	15.0	7.0	Υ
545	2280	1	780,968.4	269,164.6	333.24	4.92	0.00	66	15.0	7.0	Υ
546	2281	1	781,218.4	269,164.6	323.76	4.92	0.00	66	15.0	7.0	Υ
547	2282	1	781,468.4	269,164.6	333.00	4.92	0.00	66	15.0	7.0	Υ
548	2283	1	781,718.4	269,164.6	345.65	4.92	0.00	66	15.0	7.0	Υ
549	2284	1	781,968.4	269,164.6	366.01	4.92	0.00	66	15.0	7.0	Υ
550	2285	1	782,218.4	269,164.6	367.51	4.92	0.00	66	15.0	7.0	Υ
551	2286	1	782,468.4	269,164.6	367.18	4.92	0.00	66	15.0	7.0	Υ
552	2287	1	782,718.4	269,164.6	368.25	4.92	0.00	66	15.0	7.0	Υ
553	2288	1	782,968.4	269,164.6	358.70	4.92	0.00	66	15.0	7.0	Υ
554	2289	1	783,218.4	269,164.6	362.55	4.92	0.00	66	15.0	7.0	Υ
555	2290	1	783,468.4	269,164.6	356.16	4.92	0.00	66	15.0	7.0	Υ
556	2291	1	783,718.4	269,164.6	361.54	4.92	0.00	66	15.0	7.0	Υ
557	2292	1	783,968.4	269,164.6	356.65	4.92	0.00	66	15.0	7.0	Υ
558	2293	1	784,218.4	269,164.6	376.20	4.92	0.00	66	15.0	7.0	Υ
559	2294	1	784,468.4	269,164.6	381.88	4.92	0.00	66	15.0	7.0	Υ
560	2295	1	773,968.4	269,414.6	338.18	4.92	0.00	66	15.0	7.0	Υ
561	2296	1	774,218.4	269,414.6	346.52	4.92	0.00	66	15.0	7.0	Υ
562	2297	1	774,468.4	269,414.6	357.07	4.92	0.00	66	15.0	7.0	Υ
563	2298	1	774,718.4	269,414.6	355.48	4.92	0.00	66	15.0	7.0	Υ
564	2299	1	774,968.4	269,414.6	359.12	4.92	0.00	66	15.0	7.0	Υ
565	2300	1	775,218.4	269,414.6	361.18	4.92	0.00	66	15.0	7.0	Υ
566	2301	1	775,468.4	269,414.6	360.51	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
567	2302	1	775,718.4	269,414.6	357.85	4.92	0.00	66	15.0	7.0	Υ
568	2303	1	775,968.4	269,414.6	346.28	4.92	0.00	66	15.0	7.0	Υ
569	2304	1	776,218.4	269,414.6	341.66	4.92	0.00	66	15.0	7.0	Υ
570	2305	1	776,468.4	269,414.6	331.60	4.92	0.00	66	15.0	7.0	Υ
571	2306	1	776,718.4	269,414.6	329.71	4.92	0.00	66	15.0	7.0	Υ
572	2307	1	776,968.4	269,414.6	334.34	4.92	0.00	66	15.0	7.0	Υ
573	2308	1	777,218.4	269,414.6	333.46	4.92	0.00	66	15.0	7.0	Υ
574	2309	1	777,468.4	269,414.6	317.67	4.92	0.00	66	15.0	7.0	Υ
575	2310	1	777,718.4	269,414.6	324.46	4.92	0.00	66	15.0	7.0	Υ
576	2311	1	777,968.4	269,414.6	327.51	4.92	0.00	66	15.0	7.0	Υ
577	2312	1	778,218.4	269,414.6	342.71	4.92	0.00	66	15.0	7.0	Υ
578	2313	1	778,468.4	269,414.6	344.07	4.92	0.00	66	15.0	7.0	Υ
579	2314	1	778,718.4	269,414.6	341.55	4.92	0.00	66	15.0	7.0	Υ
580	2315	1	778,968.4	269,414.6	339.01	4.92	0.00	66	15.0	7.0	Υ
581	2316	1	779,218.4	269,414.6	346.61	4.92	0.00	66	15.0	7.0	Υ
582	2317	1	779,468.4	269,414.6	341.96	4.92	0.00	66	15.0	7.0	Υ
583	2318	1	779,718.4	269,414.6	337.85	4.92	0.00	66	15.0	7.0	Υ
584	2319	1	779,968.4	269,414.6	355.69	4.92	0.00	66	15.0	7.0	Υ
585	2320	1	780,218.4	269,414.6	359.98	4.92	0.00	66	15.0	7.0	Υ
586	2321	1	780,468.4	269,414.6	345.68	4.92	0.00	66	15.0	7.0	Υ
587	2322	1	780,718.4	269,414.6	346.35	4.92	0.00	66	15.0	7.0	Υ
588	2323	1	780,968.4	269,414.6	331.39	4.92	0.00	66	15.0	7.0	Υ
589	2324	1	781,218.4	269,414.6	323.30	4.92	0.00	66	15.0	7.0	Υ
590	2325	1	781,468.4	269,414.6	332.76	4.92	0.00	66	15.0	7.0	Υ
591	2326	1	781,718.4	269,414.6	335.35	4.92	0.00	66	15.0	7.0	Υ
592	2327	1	781,968.4	269,414.6	361.10	4.92	0.00	66	15.0	7.0	Υ
593	2328	1	782,218.4	269,414.6	362.66	4.92	0.00	66	15.0	7.0	Υ
594	2329	1	782,468.4	269,414.6	366.85	4.92	0.00	66	15.0	7.0	Υ
595	2330	1	782,718.4	269,414.6	363.07	4.92	0.00	66	15.0	7.0	Υ
596	2331	1	782,968.4	269,414.6	352.15	4.92	0.00	66	15.0	7.0	Υ
597	2332	1	783,218.4	269,414.6	353.51	4.92	0.00	66	15.0	7.0	Υ
598	2333	1	783,468.4	269,414.6	346.43	4.92	0.00	66	15.0	7.0	Υ
599	2334	1	783,718.4	269,414.6	349.90	4.92	0.00	66	15.0	7.0	Υ
600	2335	1	783,968.4	269,414.6	357.08	4.92	0.00	66	15.0	7.0	Υ
601	2336	1	784,218.4	269,414.6	367.76	4.92	0.00	66	15.0	7.0	Υ
602	2337	1	784,468.4	269,414.6	377.48	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
603	2338	1	773,968.4	269,664.6	344.00	4.92	0.00	66	15.0	7.0	Υ
604	2339	1	774,218.4	269,664.6	354.00	4.92	0.00	66	15.0	7.0	Υ
605	2340	1	774,468.4	269,664.6	355.75	4.92	0.00	66	15.0	7.0	Υ
606	2341	1	774,718.4	269,664.6	343.85	4.92	0.00	66	15.0	7.0	Υ
607	2342	1	774,968.4	269,664.6	352.43	4.92	0.00	66	15.0	7.0	Υ
608	2343	1	775,218.4	269,664.6	346.79	4.92	0.00	66	15.0	7.0	Υ
609	2344	1	775,468.4	269,664.6	349.21	4.92	0.00	66	15.0	7.0	Υ
610	2345	1	775,718.4	269,664.6	354.36	4.92	0.00	66	15.0	7.0	Υ
611	2346	1	775,968.4	269,664.6	352.41	4.92	0.00	66	15.0	7.0	Υ
612	2347	1	776,218.4	269,664.6	348.82	4.92	0.00	66	15.0	7.0	Υ
613	2348	1	776,468.4	269,664.6	328.75	4.92	0.00	66	15.0	7.0	Υ
614	2349	1	776,718.4	269,664.6	326.57	4.92	0.00	66	15.0	7.0	Υ
615	2350	1	776,968.4	269,664.6	322.21	4.92	0.00	66	15.0	7.0	Υ
616	2351	1	777,218.4	269,664.6	318.44	4.92	0.00	66	15.0	7.0	Υ
617	2352	1	777,468.4	269,664.6	316.80	4.92	0.00	66	15.0	7.0	Υ
618	2353	1	777,718.4	269,664.6	325.04	4.92	0.00	66	15.0	7.0	Υ
619	2354	1	777,968.4	269,664.6	325.48	4.92	0.00	66	15.0	7.0	Υ
620	2355	1	778,218.4	269,664.6	334.59	4.92	0.00	66	15.0	7.0	Υ
621	2356	1	778,468.4	269,664.6	327.25	4.92	0.00	66	15.0	7.0	Υ
622	2357	1	778,718.4	269,664.6	326.81	4.92	0.00	66	15.0	7.0	Υ
623	2358	1	778,968.4	269,664.6	327.99	4.92	0.00	66	15.0	7.0	Υ
624	2359	1	779,218.4	269,664.6	344.56	4.92	0.00	66	15.0	7.0	Υ
625	2360	1	779,468.4	269,664.6	331.48	4.92	0.00	66	15.0	7.0	Υ
626	2361	1	779,718.4	269,664.6	349.93	4.92	0.00	66	15.0	7.0	Υ
627	2362	1	779,968.4	269,664.6	356.98	4.92	0.00	66	15.0	7.0	Υ
628	2363	1	780,218.4	269,664.6	341.34	4.92	0.00	66	15.0	7.0	Υ
629	2364	1	780,468.4	269,664.6	341.85	4.92	0.00	66	15.0	7.0	Υ
630	2365	1	780,718.4	269,664.6	335.00	4.92	0.00	66	15.0	7.0	Υ
631	2366	1	780,968.4	269,664.6	323.05	4.92	0.00	66	15.0	7.0	Υ
632	2367	1	781,218.4	269,664.6	328.65	4.92	0.00	66	15.0	7.0	Υ
633	2368	1	781,468.4	269,664.6	334.17	4.92	0.00	66	15.0	7.0	Υ
634	2370	1	781,718.4	269,664.6	331.81	4.92	0.00	66	15.0	7.0	Υ
635	2371	1	781,968.4	269,664.6	365.13	4.92	0.00	66	15.0	7.0	Υ
636	2372	1	782,218.4	269,664.6	357.22	4.92	0.00	66	15.0	7.0	Υ
637	2373	1	782,468.4	269,664.6	364.57	4.92	0.00	66	15.0	7.0	Υ
638	2374	1	782,718.4	269,664.6	355.98	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
639	2375	1	782,968.4	269,664.6	349.89	4.92	0.00	66	15.0	7.0	Υ
640	2376	1	783,218.4	269,664.6	345.03	4.92	0.00	66	15.0	7.0	Υ
641	2377	1	783,468.4	269,664.6	355.57	4.92	0.00	66	15.0	7.0	Y
642	2378	1	783,718.4	269,664.6	358.59	4.92	0.00	66	15.0	7.0	Υ
643	2379	1	783,968.4	269,664.6	369.48	4.92	0.00	66	15.0	7.0	Υ
644	2380	1	784,218.4	269,664.6	368.57	4.92	0.00	66	15.0	7.0	Υ
645	2381	1	784,468.4	269,664.6	374.25	4.92	0.00	66	15.0	7.0	Υ
646	2382	1	773,968.4	269,914.6	344.83	4.92	0.00	66	15.0	7.0	Υ
647	2383	1	774,218.4	269,914.6	352.49	4.92	0.00	66	15.0	7.0	Υ
648	2384	1	774,468.4	269,914.6	351.80	4.92	0.00	66	15.0	7.0	Υ
649	2385	1	774,718.4	269,914.6	338.32	4.92	0.00	66	15.0	7.0	Υ
650	2386	1	774,968.4	269,914.6	340.56	4.92	0.00	66	15.0	7.0	Υ
651	2387	1	775,218.4	269,914.6	342.91	4.92	0.00	66	15.0	7.0	Υ
652	2388	1	775,468.4	269,914.6	350.68	4.92	0.00	66	15.0	7.0	Υ
653	2389	1	775,718.4	269,914.6	353.08	4.92	0.00	66	15.0	7.0	Υ
654	2390	1	775,968.4	269,914.6	346.67	4.92	0.00	66	15.0	7.0	Υ
655	2391	1	776,218.4	269,914.6	341.18	4.92	0.00	66	15.0	7.0	Υ
656	2392	1	776,468.4	269,914.6	340.59	4.92	0.00	66	15.0	7.0	Υ
657	2393	1	776,718.4	269,914.6	336.60	4.92	0.00	66	15.0	7.0	Υ
658	2394	1	776,968.4	269,914.6	328.64	4.92	0.00	66	15.0	7.0	Υ
659	2395	1	777,218.4	269,914.6	317.72	4.92	0.00	66	15.0	7.0	Υ
660	2396	1	777,468.4	269,914.6	316.21	4.92	0.00	66	15.0	7.0	Υ
661	2397	1	777,718.4	269,914.6	322.69	4.92	0.00	66	15.0	7.0	Υ
662	2398	1	777,968.4	269,914.6	324.18	4.92	0.00	66	15.0	7.0	Υ
663	2399	1	778,218.4	269,914.6	330.12	4.92	0.00	66	15.0	7.0	Υ
664	2400	1	778,468.4	269,914.6	320.09	4.92	0.00	66	15.0	7.0	Υ
665	2401	1	778,718.4	269,914.6	329.70	4.92	0.00	66	15.0	7.0	Υ
666	2402	1	778,968.4	269,914.6	332.94	4.92	0.00	66	15.0	7.0	Υ
667	2403	1	779,218.4	269,914.6	329.62	4.92	0.00	66	15.0	7.0	Υ
668	2404	1	779,468.4	269,914.6	340.54	4.92	0.00	66	15.0	7.0	Υ
669	2405	1	779,718.4	269,914.6	348.66	4.92	0.00	66	15.0	7.0	Υ
670	2406	1	779,968.4	269,914.6	351.94	4.92	0.00	66	15.0	7.0	Υ
671	2407	1	780,218.4	269,914.6	328.03	4.92	0.00	66	15.0	7.0	Υ
672	2408	1	780,468.4	269,914.6	341.04	4.92	0.00	66	15.0	7.0	Υ
673	2409	1	780,718.4	269,914.6	321.47	4.92	0.00	66	15.0	7.0	Υ
674	2410	1	780,968.4	269,914.6	315.39	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							E	ENS2001			
675	2411	1	781,218.4	269,914.6	321.19	4.92	0.00	66	15.0	7.0	Υ
676	2412	1	781,468.4	269,914.6	350.12	4.92	0.00	66	15.0	7.0	Υ
677	2413	1	781,718.4	269,914.6	359.57	4.92	0.00	66	15.0	7.0	Υ
678	2414	1	781,968.4	269,914.6	353.00	4.92	0.00	66	15.0	7.0	Υ
679	2415	1	782,218.4	269,914.6	356.52	4.92	0.00	66	15.0	7.0	Υ
680	2416	1	782,468.4	269,914.6	352.66	4.92	0.00	66	15.0	7.0	Υ
681	2417	1	782,718.4	269,914.6	338.78	4.92	0.00	66	15.0	7.0	Υ
682	2418	1	782,968.4	269,914.6	337.39	4.92	0.00	66	15.0	7.0	Υ
683	2419	1	783,218.4	269,914.6	348.55	4.92	0.00	66	15.0	7.0	Υ
684	2420	1	783,468.4	269,914.6	361.95	4.92	0.00	66	15.0	7.0	Υ
685	2421	1	783,718.4	269,914.6	365.42	4.92	0.00	66	15.0	7.0	Υ
686	2422	1	783,968.4	269,914.6	371.89	4.92	0.00	66	15.0	7.0	Υ
687	2423	1	784,218.4	269,914.6	379.55	4.92	0.00	66	15.0	7.0	Υ
688	2424	1	784,468.4	269,914.6	380.46	4.92	0.00	66	15.0	7.0	Υ
689	2425	1	773,968.4	270,164.6	332.93	4.92	0.00	66	15.0	7.0	Υ
690	2426	1	774,218.4	270,164.6	344.96	4.92	0.00	66	15.0	7.0	Υ
691	2427	1	774,468.4	270,164.6	341.10	4.92	0.00	66	15.0	7.0	Υ
692	2428	1	774,718.4	270,164.6	330.12	4.92	0.00	66	15.0	7.0	Υ
693	2429	1	774,968.4	270,164.6	334.70	4.92	0.00	66	15.0	7.0	Υ
694	2430	1	775,218.4	270,164.6	352.20	4.92	0.00	66	15.0	7.0	Υ
695	2431	1	775,468.4	270,164.6	355.77	4.92	0.00	66	15.0	7.0	Υ
696	2432	1	775,718.4	270,164.6	353.79	4.92	0.00	66	15.0	7.0	Υ
697	2433	1	775,968.4	270,164.6	344.14	4.92	0.00	66	15.0	7.0	Υ
698	2434	1	776,218.4	270,164.6	330.97	4.92	0.00	66	15.0	7.0	Υ
699	2435	1	776,468.4	270,164.6	329.76	4.92	0.00	66	15.0	7.0	Υ
700	2436	1	776,718.4	270,164.6	327.92	4.92	0.00	66	15.0	7.0	Υ
701	2437	1	776,968.4	270,164.6	324.54	4.92	0.00	66	15.0	7.0	Υ
702	2438	1	777,218.4	270,164.6	321.82	4.92	0.00	66	15.0	7.0	Υ
703	2439	1	777,468.4	270,164.6	315.22	4.92	0.00	66	15.0	7.0	Υ
704	2440	1	777,718.4	270,164.6	320.96	4.92	0.00	66	15.0	7.0	Υ
705	2441	1	777,968.4	270,164.6	314.67	4.92	0.00	66	15.0	7.0	Υ
706	2442	1	778,218.4	270,164.6	315.80	4.92	0.00	66	15.0	7.0	Υ
707	2443	1	778,468.4	270,164.6	330.04	4.92	0.00	66	15.0	7.0	Υ
708	2444	1	778,718.4	270,164.6	340.09	4.92	0.00	66	15.0	7.0	Υ
709	2445	1	778,968.4	270,164.6	339.33	4.92	0.00	66	15.0	7.0	Υ
710	2446	1	779,218.4	270,164.6	321.63	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
711	2447	1	779,468.4	270,164.6	343.16	4.92	0.00	66	15.0	7.0	Υ
712	2448	1	779,718.4	270,164.6	325.85	4.92	0.00	66	15.0	7.0	Υ
713	2449	1	779,968.4	270,164.6	341.70	4.92	0.00	66	15.0	7.0	Υ
714	2450	1	780,218.4	270,164.6	323.32	4.92	0.00	66	15.0	7.0	Υ
715	2451	1	780,468.4	270,164.6	316.62	4.92	0.00	66	15.0	7.0	Υ
716	2452	1	780,718.4	270,164.6	321.19	4.92	0.00	66	15.0	7.0	Υ
717	2453	1	780,968.4	270,164.6	317.45	4.92	0.00	66	15.0	7.0	Υ
718	2454	1	781,218.4	270,164.6	319.10	4.92	0.00	66	15.0	7.0	Υ
719	2455	1	781,468.4	270,164.6	350.06	4.92	0.00	66	15.0	7.0	Υ
720	2456	1	781,718.4	270,164.6	344.77	4.92	0.00	66	15.0	7.0	Υ
721	2457	1	781,968.4	270,164.6	350.98	4.92	0.00	66	15.0	7.0	Υ
722	2458	1	782,218.4	270,164.6	349.79	4.92	0.00	66	15.0	7.0	Υ
723	2459	1	782,468.4	270,164.6	332.47	4.92	0.00	66	15.0	7.0	Υ
724	2460	1	782,718.4	270,164.6	337.18	4.92	0.00	66	15.0	7.0	Υ
725	2461	1	782,968.4	270,164.6	343.64	4.92	0.00	66	15.0	7.0	Υ
726	2462	1	783,218.4	270,164.6	348.19	4.92	0.00	66	15.0	7.0	Υ
727	2463	1	783,468.4	270,164.6	350.83	4.92	0.00	66	15.0	7.0	Υ
728	2464	1	783,718.4	270,164.6	363.57	4.92	0.00	66	15.0	7.0	Υ
729	2465	1	783,968.4	270,164.6	372.79	4.92	0.00	66	15.0	7.0	Υ
730	2466	1	784,218.4	270,164.6	380.55	4.92	0.00	66	15.0	7.0	Υ
731	2467	1	784,468.4	270,164.6	384.46	4.92	0.00	66	15.0	7.0	Υ
732	2468	1	773,968.4	270,414.6	325.23	4.92	0.00	66	15.0	7.0	Υ
733	2469	1	774,218.4	270,414.6	326.28	4.92	0.00	66	15.0	7.0	Υ
734	2470	1	774,468.4	270,414.6	324.20	4.92	0.00	66	15.0	7.0	Υ
735	2471	1	774,718.4	270,414.6	332.75	4.92	0.00	66	15.0	7.0	Υ
736	2472	1	774,968.4	270,414.6	332.56	4.92	0.00	66	15.0	7.0	Υ
737	2473	1	775,218.4	270,414.6	347.45	4.92	0.00	66	15.0	7.0	Υ
738	2474	1	775,468.4	270,414.6	338.40	4.92	0.00	66	15.0	7.0	Υ
739	2475	1	775,718.4	270,414.6	338.82	4.92	0.00	66	15.0	7.0	Υ
740	2476	1	775,968.4	270,414.6	336.32	4.92	0.00	66	15.0	7.0	Υ
741	2477	1	776,218.4	270,414.6	327.34	4.92	0.00	66	15.0	7.0	Υ
742	2478	1	776,468.4	270,414.6	327.43	4.92	0.00	66	15.0	7.0	Υ
743	2479	1	776,718.4	270,414.6	324.37	4.92	0.00	66	15.0	7.0	Υ
744	2480	1	776,968.4	270,414.6	323.90	4.92	0.00	66	15.0	7.0	Υ
745	2481	1	777,218.4	270,414.6	327.68	4.92	0.00	66	15.0	7.0	Υ
746	2482	1	777,468.4	270,414.6	314.62	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
747	2483	1	777,718.4	270,414.6	310.78	4.92	0.00	66	15.0	7.0	Υ
748	2484	1	777,968.4	270,414.6	312.73	4.92	0.00	66	15.0	7.0	Υ
749	2485	1	778,218.4	270,414.6	314.07	4.92	0.00	66	15.0	7.0	Υ
750	2486	1	778,468.4	270,414.6	329.66	4.92	0.00	66	15.0	7.0	Υ
751	2487	1	778,718.4	270,414.6	340.41	4.92	0.00	66	15.0	7.0	Υ
752	2488	1	778,968.4	270,414.6	338.73	4.92	0.00	66	15.0	7.0	Υ
753	2489	1	779,218.4	270,414.6	317.91	4.92	0.00	66	15.0	7.0	Υ
754	2490	1	779,468.4	270,414.6	341.68	4.92	0.00	66	15.0	7.0	Υ
755	2491	1	779,718.4	270,414.6	327.20	4.92	0.00	66	15.0	7.0	Υ
756	2498	1	779,968.4	270,414.6	313.11	4.92	0.00	66	15.0	7.0	Υ
757	2501	1	780,218.4	270,414.6	312.88	4.92	0.00	66	15.0	7.0	Υ
758	2502	1	780,468.4	270,414.6	312.22	4.92	0.00	66	15.0	7.0	Υ
759	2503	1	780,718.4	270,414.6	312.24	4.92	0.00	66	15.0	7.0	Υ
760	2504	1	780,968.4	270,414.6	316.18	4.92	0.00	66	15.0	7.0	Υ
761	2505	1	781,218.4	270,414.6	323.84	4.92	0.00	66	15.0	7.0	Υ
762	2506	1	781,468.4	270,414.6	340.62	4.92	0.00	66	15.0	7.0	Υ
763	2507	1	781,718.4	270,414.6	334.81	4.92	0.00	66	15.0	7.0	Υ
764	2508	1	781,968.4	270,414.6	337.76	4.92	0.00	66	15.0	7.0	Υ
765	2509	1	782,218.4	270,414.6	331.82	4.92	0.00	66	15.0	7.0	Υ
766	2510	1	782,468.4	270,414.6	338.88	4.92	0.00	66	15.0	7.0	Υ
767	2511	1	782,718.4	270,414.6	348.27	4.92	0.00	66	15.0	7.0	Υ
768	2512	1	782,968.4	270,414.6	353.75	4.92	0.00	66	15.0	7.0	Υ
769	2513	1	783,218.4	270,414.6	361.90	4.92	0.00	66	15.0	7.0	Υ
770	2514	1	783,468.4	270,414.6	354.90	4.92	0.00	66	15.0	7.0	Υ
771	2515	1	783,718.4	270,414.6	354.03	4.92	0.00	66	15.0	7.0	Υ
772	2516	1	783,968.4	270,414.6	364.71	4.92	0.00	66	15.0	7.0	Υ
773	2517	1	784,218.4	270,414.6	373.64	4.92	0.00	66	15.0	7.0	Υ
774	2518	1	784,468.4	270,414.6	374.11	4.92	0.00	66	15.0	7.0	Υ
775	2519	1	773,968.4	270,664.6	323.57	4.92	0.00	66	15.0	7.0	Υ
776	2520	1	774,218.4	270,664.6	325.82	4.92	0.00	66	15.0	7.0	Υ
777	2521	1	774,468.4	270,664.6	331.55	4.92	0.00	66	15.0	7.0	Υ
778	2522	1	774,718.4	270,664.6	334.71	4.92	0.00	66	15.0	7.0	Υ
779	2523	1	774,968.4	270,664.6	335.39	4.92	0.00	66	15.0	7.0	Υ
780	2524	1	775,218.4	270,664.6	341.88	4.92	0.00	66	15.0	7.0	Υ
781	2525	1	775,468.4	270,664.6	357.24	4.92	0.00	66	15.0	7.0	Υ
782	2526	1	775,718.4	270,664.6	360.68	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
783	2527	1	775,968.4	270,664.6	357.33	4.92	0.00	66	15.0	7.0	Υ
784	2528	1	776,218.4	270,664.6	328.84	4.92	0.00	66	15.0	7.0	Υ
785	2529	1	776,468.4	270,664.6	327.15	4.92	0.00	66	15.0	7.0	Υ
786	2530	1	776,718.4	270,664.6	325.15	4.92	0.00	66	15.0	7.0	Υ
787	2531	1	776,968.4	270,664.6	324.23	4.92	0.00	66	15.0	7.0	Υ
788	2532	1	777,218.4	270,664.6	322.64	4.92	0.00	66	15.0	7.0	Υ
789	2533	1	777,468.4	270,664.6	329.55	4.92	0.00	66	15.0	7.0	Υ
790	2534	1	777,718.4	270,664.6	318.23	4.92	0.00	66	15.0	7.0	Υ
791	2535	1	777,968.4	270,664.6	307.45	4.92	0.00	66	15.0	7.0	Υ
792	2536	1	778,218.4	270,664.6	310.84	4.92	0.00	66	15.0	7.0	Υ
793	2537	1	778,468.4	270,664.6	310.34	4.92	0.00	66	15.0	7.0	Υ
794	2538	1	778,718.4	270,664.6	328.26	4.92	0.00	66	15.0	7.0	Υ
795	2539	1	778,968.4	270,664.6	336.48	4.92	0.00	66	15.0	7.0	Υ
796	2540	1	779,218.4	270,664.6	316.41	4.92	0.00	66	15.0	7.0	Υ
797	2541	1	779,468.4	270,664.6	325.89	4.92	0.00	66	15.0	7.0	Υ
798	2542	1	779,718.4	270,664.6	309.53	4.92	0.00	66	15.0	7.0	Υ
799	2543	1	779,968.4	270,664.6	307.45	4.92	0.00	66	15.0	7.0	Υ
800	2544	1	780,218.4	270,664.6	308.16	4.92	0.00	66	15.0	7.0	Υ
801	2545	1	780,468.4	270,664.6	311.91	4.92	0.00	66	15.0	7.0	Υ
802	2546	1	780,718.4	270,664.6	314.90	4.92	0.00	66	15.0	7.0	Υ
803	2547	1	780,968.4	270,664.6	318.64	4.92	0.00	66	15.0	7.0	Υ
804	2548	1	781,218.4	270,664.6	320.28	4.92	0.00	66	15.0	7.0	Υ
805	2549	1	781,468.4	270,664.6	321.25	4.92	0.00	66	15.0	7.0	Υ
806	2550	1	781,718.4	270,664.6	322.87	4.92	0.00	66	15.0	7.0	Υ
807	2551	1	781,968.4	270,664.6	326.50	4.92	0.00	66	15.0	7.0	Υ
808	2552	1	782,218.4	270,664.6	336.57	4.92	0.00	66	15.0	7.0	Υ
809	2553	1	782,468.4	270,664.6	346.84	4.92	0.00	66	15.0	7.0	Υ
810	2554	1	782,718.4	270,664.6	354.26	4.92	0.00	66	15.0	7.0	Υ
811	2555	1	782,968.4	270,664.6	357.32	4.92	0.00	66	15.0	7.0	Υ
812	2556	1	783,218.4	270,664.6	363.61	4.92	0.00	66	15.0	7.0	Υ
813	2557	1	783,468.4	270,664.6	365.20	4.92	0.00	66	15.0	7.0	Υ
814	2558	1	783,718.4	270,664.6	356.64	4.92	0.00	66	15.0	7.0	Υ
815	2559	1	783,968.4	270,664.6	360.84	4.92	0.00	66	15.0	7.0	Υ
816	2560	1	784,218.4	270,664.6	363.91	4.92	0.00	66	15.0	7.0	Υ
817	2561	1	784,468.4	270,664.6	369.11	4.92	0.00	66	15.0	7.0	Υ
818	2562	1	773,968.4	270,914.6	331.53	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
819	2563	1	774,218.4	270,914.6	337.53	4.92	0.00	66	15.0	7.0	Υ
820	2564	1	774,468.4	270,914.6	344.85	4.92	0.00	66	15.0	7.0	Υ
821	2565	1	774,718.4	270,914.6	341.65	4.92	0.00	66	15.0	7.0	Υ
822	2566	1	774,968.4	270,914.6	347.72	4.92	0.00	66	15.0	7.0	Υ
823	2567	1	775,218.4	270,914.6	353.90	4.92	0.00	66	15.0	7.0	Υ
824	2568	1	775,468.4	270,914.6	360.78	4.92	0.00	66	15.0	7.0	Υ
825	2569	1	775,718.4	270,914.6	364.25	4.92	0.00	66	15.0	7.0	Υ
826	2570	1	775,968.4	270,914.6	360.87	4.92	0.00	66	15.0	7.0	Υ
827	2571	1	776,218.4	270,914.6	342.20	4.92	0.00	66	15.0	7.0	Υ
828	2572	1	776,468.4	270,914.6	332.90	4.92	0.00	66	15.0	7.0	Υ
829	2573	1	776,718.4	270,914.6	335.15	4.92	0.00	66	15.0	7.0	Υ
830	2574	1	776,968.4	270,914.6	335.53	4.92	0.00	66	15.0	7.0	Υ
831	2575	1	777,218.4	270,914.6	334.89	4.92	0.00	66	15.0	7.0	Υ
832	2576	1	777,468.4	270,914.6	336.59	4.92	0.00	66	15.0	7.0	Υ
833	2577	1	777,718.4	270,914.6	322.66	4.92	0.00	66	15.0	7.0	Υ
834	2578	1	777,968.4	270,914.6	312.86	4.92	0.00	66	15.0	7.0	Υ
835	2579	1	778,218.4	270,914.6	307.81	4.92	0.00	66	15.0	7.0	Υ
836	2580	1	778,468.4	270,914.6	307.06	4.92	0.00	66	15.0	7.0	Υ
837	2581	1	778,718.4	270,914.6	311.22	4.92	0.00	66	15.0	7.0	Υ
838	2582	1	778,968.4	270,914.6	332.74	4.92	0.00	66	15.0	7.0	Υ
839	2583	1	779,218.4	270,914.6	319.82	4.92	0.00	66	15.0	7.0	Υ
840	2584	1	779,468.4	270,914.6	308.53	4.92	0.00	66	15.0	7.0	Υ
841	2585	1	779,718.4	270,914.6	306.62	4.92	0.00	66	15.0	7.0	Υ
842	2586	1	779,968.4	270,914.6	311.52	4.92	0.00	66	15.0	7.0	Υ
843	2587	1	780,218.4	270,914.6	324.30	4.92	0.00	66	15.0	7.0	Υ
844	2588	1	780,468.4	270,914.6	320.83	4.92	0.00	66	15.0	7.0	Υ
845	2589	1	780,718.4	270,914.6	329.92	4.92	0.00	66	15.0	7.0	Υ
846	2590	1	780,968.4	270,914.6	331.38	4.92	0.00	66	15.0	7.0	Υ
847	2591	1	781,218.4	270,914.6	328.46	4.92	0.00	66	15.0	7.0	Υ
848	2592	1	781,468.4	270,914.6	327.01	4.92	0.00	66	15.0	7.0	Υ
849	2593	1	781,718.4	270,914.6	328.38	4.92	0.00	66	15.0	7.0	Υ
850	2594	1	781,968.4	270,914.6	333.86	4.92	0.00	66	15.0	7.0	Υ
851	2595	1	782,218.4	270,914.6	342.43	4.92	0.00	66	15.0	7.0	Υ
852	2596	1	782,468.4	270,914.6	350.96	4.92	0.00	66	15.0	7.0	Υ
853	2597	1	782,718.4	270,914.6	354.09	4.92	0.00	66	15.0	7.0	Υ
854	2598	1	782,968.4	270,914.6	356.26	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS								ENS2001			
855	2599	1	783,218.4	270,914.6	366.35	4.92	0.00	66	15.0	7.0	Υ
856	2600	1	783,468.4	270,914.6	369.09	4.92	0.00	66	15.0	7.0	Υ
857	2601	1	783,718.4	270,914.6	364.45	4.92	0.00	66	15.0	7.0	Υ
858	2602	1	783,968.4	270,914.6	361.37	4.92	0.00	66	15.0	7.0	Υ
859	2603	1	784,218.4	270,914.6	372.39	4.92	0.00	66	15.0	7.0	Υ
860	2604	1	784,468.4	270,914.6	374.63	4.92	0.00	66	15.0	7.0	Υ
861	2605	1	773,968.4	271,164.6	338.87	4.92	0.00	66	15.0	7.0	Υ
862	2606	1	774,218.4	271,164.6	342.87	4.92	0.00	66	15.0	7.0	Υ
863	2607	1	774,468.4	271,164.6	348.21	4.92	0.00	66	15.0	7.0	Υ
864	2609	1	774,718.4	271,164.6	352.36	4.92	0.00	66	15.0	7.0	Υ
865	2610	1	774,968.4	271,164.6	354.00	4.92	0.00	66	15.0	7.0	Υ
866	2611	1	775,218.4	271,164.6	356.25	4.92	0.00	66	15.0	7.0	Υ
867	2612	1	775,468.4	271,164.6	360.39	4.92	0.00	66	15.0	7.0	Υ
868	2613	1	775,718.4	271,164.6	365.64	4.92	0.00	66	15.0	7.0	Υ
869	2614	1	775,968.4	271,164.6	364.06	4.92	0.00	66	15.0	7.0	Υ
870	2615	1	776,218.4	271,164.6	354.95	4.92	0.00	66	15.0	7.0	Y
871	2616	1	776,468.4	271,164.6	348.29	4.92	0.00	66	15.0	7.0	Υ
872	2617	1	776,718.4	271,164.6	347.08	4.92	0.00	66	15.0	7.0	Y
873	2618	1	776,968.4	271,164.6	327.57	4.92	0.00	66	15.0	7.0	Υ
874	2619	1	777,218.4	271,164.6	339.67	4.92	0.00	66	15.0	7.0	Υ
875	2620	1	777,468.4	271,164.6	344.85	4.92	0.00	66	15.0	7.0	Υ
876	2621	1	777,718.4	271,164.6	330.73	4.92	0.00	66	15.0	7.0	Υ
877	2622	1	777,968.4	271,164.6	321.38	4.92	0.00	66	15.0	7.0	Υ
878	2623	1	778,218.4	271,164.6	309.56	4.92	0.00	66	15.0	7.0	Υ
879	2624	1	778,468.4	271,164.6	306.53	4.92	0.00	66	15.0	7.0	Υ
880	2625	1	778,718.4	271,164.6	306.24	4.92	0.00	66	15.0	7.0	Υ
881	2626	1	778,968.4	271,164.6	308.49	4.92	0.00	66	15.0	7.0	Υ
882	2627	1	779,218.4	271,164.6	312.72	4.92	0.00	66	15.0	7.0	Υ
883	2628	1	779,468.4	271,164.6	307.87	4.92	0.00	66	15.0	7.0	Υ
884	2629	1	779,718.4	271,164.6	307.02	4.92	0.00	66	15.0	7.0	Υ
885	2630	1	779,968.4	271,164.6	312.26	4.92	0.00	66	15.0	7.0	Υ
886	2631	1	780,218.4	271,164.6	319.82	4.92	0.00	66	15.0	7.0	Υ
887	2632	1	780,468.4	271,164.6	335.28	4.92	0.00	66	15.0	7.0	Υ
888	2633	1	780,718.4	271,164.6	338.03	4.92	0.00	66	15.0	7.0	Υ
889	2634	1	780,968.4	271,164.6	345.01	4.92	0.00	66	15.0	7.0	Y
890	2635	1	781,218.4	271,164.6	345.96	4.92	0.00	66	15.0	7.0	Y

INPUT: RECEIVERS							EN	S2001			
891	2636	1	781,468.4	271,164.6	337.59	4.92	0.00	66	15.0	7.0	Υ
892	2637	1	781,718.4	271,164.6	337.49	4.92	0.00	66	15.0	7.0	Υ
893	2638	1	781,968.4	271,164.6	336.94	4.92	0.00	66	15.0	7.0	Υ
894	2639	1	782,218.4	271,164.6	338.40	4.92	0.00	66	15.0	7.0	Υ
895	2640	1	782,468.4	271,164.6	338.69	4.92	0.00	66	15.0	7.0	Υ
896	2641	1	782,718.4	271,164.6	344.26	4.92	0.00	66	15.0	7.0	Υ
897	2642	1	782,968.4	271,164.6	349.85	4.92	0.00	66	15.0	7.0	Υ
898	2643	1	783,218.4	271,164.6	356.97	4.92	0.00	66	15.0	7.0	Υ
899	2644	1	783,468.4	271,164.6	369.62	4.92	0.00	66	15.0	7.0	Υ
900	2645	1	783,718.4	271,164.6	372.54	4.92	0.00	66	15.0	7.0	Υ
901	2646	1	783,968.4	271,164.6	372.81	4.92	0.00	66	15.0	7.0	Υ
902	2647	1	784,218.4	271,164.6	380.18	4.92	0.00	66	15.0	7.0	Υ
903	2649	1	784,468.4	271,164.6	383.95	4.92	0.00	66	15.0	7.0	Υ
904	2650	1	773,968.4	271,414.6	337.42	4.92	0.00	66	15.0	7.0	Υ
905	2651	1	774,218.4	271,414.6	349.87	4.92	0.00	66	15.0	7.0	Υ
906	2652	1	774,468.4	271,414.6	350.48	4.92	0.00	66	15.0	7.0	Υ
907	2653	1	774,718.4	271,414.6	351.01	4.92	0.00	66	15.0	7.0	Υ
908	2654	1	774,968.4	271,414.6	357.10	4.92	0.00	66	15.0	7.0	Υ
909	2655	1	775,218.4	271,414.6	359.38	4.92	0.00	66	15.0	7.0	Υ
910	2656	1	775,468.4	271,414.6	357.41	4.92	0.00	66	15.0	7.0	Υ
911	2657	1	775,718.4	271,414.6	361.04	4.92	0.00	66	15.0	7.0	Υ
912	2658	1	775,968.4	271,414.6	364.13	4.92	0.00	66	15.0	7.0	Υ
913	2659	1	776,218.4	271,414.6	351.26	4.92	0.00	66	15.0	7.0	Υ
914	2660	1	776,468.4	271,414.6	343.69	4.92	0.00	66	15.0	7.0	Υ
915	2661	1	776,718.4	271,414.6	334.32	4.92	0.00	66	15.0	7.0	Υ
916	2662	1	776,968.4	271,414.6	336.23	4.92	0.00	66	15.0	7.0	Υ
917	2663	1	777,218.4	271,414.6	344.10	4.92	0.00	66	15.0	7.0	Υ
918	2664	1	777,468.4	271,414.6	345.41	4.92	0.00	66	15.0	7.0	Υ
919	2665	1	777,718.4	271,414.6	326.51	4.92	0.00	66	15.0	7.0	Υ
920	2666	1	777,968.4	271,414.6	318.63	4.92	0.00	66	15.0	7.0	Υ
921	2667	1	778,218.4	271,414.6	311.75	4.92	0.00	66	15.0	7.0	Υ
922	2668	1	778,468.4	271,414.6	308.24	4.92	0.00	66	15.0	7.0	Υ
923	2669	1	778,718.4	271,414.6	304.34	4.92	0.00	66	15.0	7.0	Υ
924	2670	1	778,968.4	271,414.6	306.34	4.92	0.00	66	15.0	7.0	Υ
925	2671	1	779,218.4	271,414.6	310.67	4.92	0.00	66	15.0	7.0	Υ
926	2672	1	779,468.4	271,414.6	306.68	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
927	2673	1	779,718.4	271,414.6	306.53	4.92	0.00	66	15.0	7.0	Υ
928	2674	1	779,968.4	271,414.6	312.20	4.92	0.00	66	15.0	7.0	Υ
929	2675	1	780,218.4	271,414.6	322.15	4.92	0.00	66	15.0	7.0	Υ
930	2676	1	780,468.4	271,414.6	336.77	4.92	0.00	66	15.0	7.0	Υ
931	2677	1	780,718.4	271,414.6	347.85	4.92	0.00	66	15.0	7.0	Υ
932	2678	1	780,968.4	271,414.6	354.55	4.92	0.00	66	15.0	7.0	Υ
933	2679	1	781,218.4	271,414.6	353.22	4.92	0.00	66	15.0	7.0	Υ
934	2680	1	781,468.4	271,414.6	349.82	4.92	0.00	66	15.0	7.0	Υ
935	2681	1	781,718.4	271,414.6	346.47	4.92	0.00	66	15.0	7.0	Υ
936	2682	1	781,968.4	271,414.6	342.71	4.92	0.00	66	15.0	7.0	Υ
937	2683	1	782,218.4	271,414.6	349.18	4.92	0.00	66	15.0	7.0	Υ
938	2684	1	782,468.4	271,414.6	344.62	4.92	0.00	66	15.0	7.0	Υ
939	2685	1	782,718.4	271,414.6	354.94	4.92	0.00	66	15.0	7.0	Υ
940	2686	1	782,968.4	271,414.6	363.00	4.92	0.00	66	15.0	7.0	Υ
941	2688	1	783,218.4	271,414.6	358.83	4.92	0.00	66	15.0	7.0	Υ
942	2689	1	783,468.4	271,414.6	362.70	4.92	0.00	66	15.0	7.0	Υ
943	2690	1	783,718.4	271,414.6	371.58	4.92	0.00	66	15.0	7.0	Υ
944	2691	1	783,968.4	271,414.6	376.16	4.92	0.00	66	15.0	7.0	Υ
945	2692	1	784,218.4	271,414.6	382.43	4.92	0.00	66	15.0	7.0	Υ
946	2693	1	784,468.4	271,414.6	389.49	4.92	0.00	66	15.0	7.0	Υ
947	2694	1	773,968.4	271,664.6	333.01	4.92	0.00	66	15.0	7.0	Υ
948	2695	1	774,218.4	271,664.6	342.88	4.92	0.00	66	15.0	7.0	Υ
949	2696	1	774,468.4	271,664.6	340.14	4.92	0.00	66	15.0	7.0	Υ
950	2697	1	774,718.4	271,664.6	338.19	4.92	0.00	66	15.0	7.0	Υ
951	2698	1	774,968.4	271,664.6	347.45	4.92	0.00	66	15.0	7.0	Υ
952	2699	1	775,218.4	271,664.6	347.11	4.92	0.00	66	15.0	7.0	Υ
953	2700	1	775,468.4	271,664.6	344.04	4.92	0.00	66	15.0	7.0	Υ
954	2701	1	775,718.4	271,664.6	345.46	4.92	0.00	66	15.0	7.0	Υ
955	2702	1	775,968.4	271,664.6	359.19	4.92	0.00	66	15.0	7.0	Υ
956	2703	1	776,218.4	271,664.6	362.70	4.92	0.00	66	15.0	7.0	Υ
957	2704	1	776,468.4	271,664.6	347.48	4.92	0.00	66	15.0	7.0	Υ
958	2705	1	776,718.4	271,664.6	346.25	4.92	0.00	66	15.0	7.0	Υ
959	2706	1	776,968.4	271,664.6	337.21	4.92	0.00	66	15.0	7.0	Υ
960	2707	1	777,218.4	271,664.6	349.63	4.92	0.00	66	15.0	7.0	Υ
961	2708	1	777,468.4	271,664.6	347.05	4.92	0.00	66	15.0	7.0	Υ
962	2709	1	777,718.4	271,664.6	331.12	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
963	2710	1	777,968.4	271,664.6	324.13	4.92	0.00	66	15.0	7.0	Υ
964	2711	1	778,218.4	271,664.6	322.19	4.92	0.00	66	15.0	7.0	Υ
965	2712	1	778,468.4	271,664.6	309.49	4.92	0.00	66	15.0	7.0	Υ
966	2713	1	778,718.4	271,664.6	303.84	4.92	0.00	66	15.0	7.0	Υ
967	2714	1	778,968.4	271,664.6	304.75	4.92	0.00	66	15.0	7.0	Υ
968	2715	1	779,218.4	271,664.6	304.62	4.92	0.00	66	15.0	7.0	Υ
969	2716	1	779,468.4	271,664.6	304.49	4.92	0.00	66	15.0	7.0	Υ
970	2717	1	779,718.4	271,664.6	313.15	4.92	0.00	66	15.0	7.0	Υ
971	2718	1	779,968.4	271,664.6	330.98	4.92	0.00	66	15.0	7.0	Υ
972	2719	1	780,218.4	271,664.6	322.94	4.92	0.00	66	15.0	7.0	Υ
973	2720	1	780,468.4	271,664.6	328.51	4.92	0.00	66	15.0	7.0	Υ
974	2721	1	780,718.4	271,664.6	332.76	4.92	0.00	66	15.0	7.0	Υ
975	2722	1	780,968.4	271,664.6	341.18	4.92	0.00	66	15.0	7.0	Υ
976	2723	1	781,218.4	271,664.6	346.14	4.92	0.00	66	15.0	7.0	Υ
977	2724	1	781,468.4	271,664.6	360.36	4.92	0.00	66	15.0	7.0	Υ
978	2725	1	781,718.4	271,664.6	357.22	4.92	0.00	66	15.0	7.0	Υ
979	2726	1	781,968.4	271,664.6	352.93	4.92	0.00	66	15.0	7.0	Υ
980	2727	1	782,218.4	271,664.6	357.07	4.92	0.00	66	15.0	7.0	Υ
981	2728	1	782,468.4	271,664.6	352.08	4.92	0.00	66	15.0	7.0	Υ
982	2729	1	782,718.4	271,664.6	354.48	4.92	0.00	66	15.0	7.0	Υ
983	2730	1	782,968.4	271,664.6	360.27	4.92	0.00	66	15.0	7.0	Υ
984	2731	1	783,218.4	271,664.6	364.82	4.92	0.00	66	15.0	7.0	Υ
985	2732	1	783,468.4	271,664.6	367.71	4.92	0.00	66	15.0	7.0	Υ
986	2733	1	783,718.4	271,664.6	369.99	4.92	0.00	66	15.0	7.0	Υ
987	2734	1	783,968.4	271,664.6	364.20	4.92	0.00	66	15.0	7.0	Υ
988	2735	1	784,218.4	271,664.6	374.51	4.92	0.00	66	15.0	7.0	Υ
989	2736	1	784,468.4	271,664.6	383.51	4.92	0.00	66	15.0	7.0	Υ
990	2737	1	773,968.4	271,914.6	330.63	4.92	0.00	66	15.0	7.0	Υ
991	2738	1	774,218.4	271,914.6	335.45	4.92	0.00	66	15.0	7.0	Υ
992	2739	1	774,468.4	271,914.6	327.29	4.92	0.00	66	15.0	7.0	Υ
993	2740	1	774,718.4	271,914.6	340.81	4.92	0.00	66	15.0	7.0	Υ
994	2741	1	774,968.4	271,914.6	343.10	4.92	0.00	66	15.0	7.0	Υ
995	2742	1	775,218.4	271,914.6	340.74	4.92	0.00	66	15.0	7.0	Υ
996	2743	1	775,468.4	271,914.6	338.77	4.92	0.00	66	15.0	7.0	Υ
997	2744	1	775,718.4	271,914.6	349.78	4.92	0.00	66	15.0	7.0	Υ
998	2745	1	775,968.4	271,914.6	360.19	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN:	S2001			
999	2746	1	776,218.4	271,914.6	364.09	4.92	0.00	66	15.0	7.0	Υ
1000	2747	1	776,468.4	271,914.6	349.45	4.92	0.00	66	15.0	7.0	Υ
1001	2748	1	776,718.4	271,914.6	352.65	4.92	0.00	66	15.0	7.0	Υ
1002	2749	1	776,968.4	271,914.6	352.47	4.92	0.00	66	15.0	7.0	Υ
1003	2750	1	777,218.4	271,914.6	353.15	4.92	0.00	66	15.0	7.0	Υ
1004	2751	1	777,468.4	271,914.6	347.29	4.92	0.00	66	15.0	7.0	Υ
1005	2752	1	777,718.4	271,914.6	343.70	4.92	0.00	66	15.0	7.0	Υ
1006	2753	1	777,968.4	271,914.6	338.27	4.92	0.00	66	15.0	7.0	Υ
1007	2754	1	778,218.4	271,914.6	328.85	4.92	0.00	66	15.0	7.0	Υ
1008	2755	1	778,468.4	271,914.6	313.20	4.92	0.00	66	15.0	7.0	Υ
1009	2756	1	778,718.4	271,914.6	302.99	4.92	0.00	66	15.0	7.0	Υ
1010	2757	1	778,968.4	271,914.6	301.67	4.92	0.00	66	15.0	7.0	Υ
1011	2758	1	779,218.4	271,914.6	302.26	4.92	0.00	66	15.0	7.0	Υ
1012	2759	1	779,468.4	271,914.6	302.54	4.92	0.00	66	15.0	7.0	Υ
1013	2760	1	779,718.4	271,914.6	308.37	4.92	0.00	66	15.0	7.0	Υ
1014	2761	1	779,968.4	271,914.6	336.97	4.92	0.00	66	15.0	7.0	Υ
1015	2762	1	780,218.4	271,914.6	330.72	4.92	0.00	66	15.0	7.0	Υ
1016	2763	1	780,468.4	271,914.6	320.31	4.92	0.00	66	15.0	7.0	Υ
1017	2764	1	780,718.4	271,914.6	325.51	4.92	0.00	66	15.0	7.0	Υ
1018	2765	1	780,968.4	271,914.6	329.08	4.92	0.00	66	15.0	7.0	Υ
1019	2766	1	781,218.4	271,914.6	339.36	4.92	0.00	66	15.0	7.0	Υ
1020	2767	1	781,468.4	271,914.6	352.76	4.92	0.00	66	15.0	7.0	Υ
1021	2768	1	781,718.4	271,914.6	362.52	4.92	0.00	66	15.0	7.0	Υ
1022	2769	1	781,968.4	271,914.6	359.82	4.92	0.00	66	15.0	7.0	Υ
1023	2771	1	782,218.4	271,914.6	357.29	4.92	0.00	66	15.0	7.0	Υ
1024	2772	1	782,468.4	271,914.6	358.32	4.92	0.00	66	15.0	7.0	Υ
1025	2773	1	782,718.4	271,914.6	358.06	4.92	0.00	66	15.0	7.0	Υ
1026	2774	1	782,968.4	271,914.6	360.25	4.92	0.00	66	15.0	7.0	Υ
1027	2775	1	783,218.4	271,914.6	365.08	4.92	0.00	66	15.0	7.0	Υ
1028	2776	1	783,468.4	271,914.6	366.88	4.92	0.00	66	15.0	7.0	Υ
1029	2777	1	783,718.4	271,914.6	367.11	4.92	0.00	66	15.0	7.0	Υ
1030	2778	1	783,968.4	271,914.6	370.06	4.92	0.00	66	15.0	7.0	Υ
1031	2779	1	784,218.4	271,914.6	366.12	4.92	0.00	66	15.0	7.0	Υ
1032	2780	1	784,468.4	271,914.6	374.58	4.92	0.00	66	15.0	7.0	Υ
1033	2781	1	773,968.4	272,164.6	330.22	4.92	0.00	66	15.0	7.0	Υ
1034	2782	1	774,218.4	272,164.6	321.02	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS							EN	S2001			
1035	2783	1	774,468.4	272,164.6	337.33	4.92	0.00	66	15.0	7.0	Υ
1036	2784	1	774,718.4	272,164.6	337.60	4.92	0.00	66	15.0	7.0	Υ
1037	2785	1	774,968.4	272,164.6	330.47	4.92	0.00	66	15.0	7.0	Υ
1038	2786	1	775,218.4	272,164.6	341.70	4.92	0.00	66	15.0	7.0	Υ
1039	2787	1	775,468.4	272,164.6	348.55	4.92	0.00	66	15.0	7.0	Υ
1040	2788	1	775,718.4	272,164.6	353.81	4.92	0.00	66	15.0	7.0	Υ
1041	2789	1	775,968.4	272,164.6	356.49	4.92	0.00	66	15.0	7.0	Υ
1042	2790	1	776,218.4	272,164.6	361.29	4.92	0.00	66	15.0	7.0	Υ
1043	2791	1	776,468.4	272,164.6	360.79	4.92	0.00	66	15.0	7.0	Υ
1044	2792	1	776,718.4	272,164.6	359.07	4.92	0.00	66	15.0	7.0	Υ
1045	2793	1	776,968.4	272,164.6	357.74	4.92	0.00	66	15.0	7.0	Υ
1046	2794	1	777,218.4	272,164.6	355.43	4.92	0.00	66	15.0	7.0	Υ
1047	2795	1	777,468.4	272,164.6	351.43	4.92	0.00	66	15.0	7.0	Υ
1048	2796	1	777,718.4	272,164.6	345.40	4.92	0.00	66	15.0	7.0	Υ
1049	2797	1	777,968.4	272,164.6	328.76	4.92	0.00	66	15.0	7.0	Υ
1050	2798	1	778,218.4	272,164.6	316.80	4.92	0.00	66	15.0	7.0	Υ
1051	2799	1	778,468.4	272,164.6	310.52	4.92	0.00	66	15.0	7.0	Υ
1052	2800	1	778,718.4	272,164.6	302.06	4.92	0.00	66	15.0	7.0	Υ
1053	2801	1	778,968.4	272,164.6	301.72	4.92	0.00	66	15.0	7.0	Υ
1054	2802	1	779,218.4	272,164.6	301.24	4.92	0.00	66	15.0	7.0	Υ
1055	2803	1	779,468.4	272,164.6	301.44	4.92	0.00	66	15.0	7.0	Υ
1056	2804	1	779,718.4	272,164.6	300.81	4.92	0.00	66	15.0	7.0	Υ
1057	2805	1	779,968.4	272,164.6	317.34	4.92	0.00	66	15.0	7.0	Υ
1058	2806	1	780,218.4	272,164.6	317.08	4.92	0.00	66	15.0	7.0	Υ
1059	2807	1	780,468.4	272,164.6	331.78	4.92	0.00	66	15.0	7.0	Υ
1060	2808	1	780,718.4	272,164.6	344.07	4.92	0.00	66	15.0	7.0	Υ
1061	2809	1	780,968.4	272,164.6	349.20	4.92	0.00	66	15.0	7.0	Υ
1062	2810	1	781,218.4	272,164.6	356.20	4.92	0.00	66	15.0	7.0	Υ
1063	2811	1	781,468.4	272,164.6	356.31	4.92	0.00	66	15.0	7.0	Υ
1064	2812	1	781,718.4	272,164.6	348.63	4.92	0.00	66	15.0	7.0	Υ
1065	2813	1	781,968.4	272,164.6	354.99	4.92	0.00	66	15.0	7.0	Υ
1066	2814	1	782,218.4	272,164.6	353.14	4.92	0.00	66	15.0	7.0	Υ
1067	2815	1	782,468.4	272,164.6	354.47	4.92	0.00	66	15.0	7.0	Υ
1068	2816	1	782,718.4	272,164.6	359.23	4.92	0.00	66	15.0	7.0	Υ
1069	2817	1	782,968.4	272,164.6	358.58	4.92	0.00	66	15.0	7.0	Υ
1070	2818	1	783,218.4	272,164.6	362.94	4.92	0.00	66	15.0	7.0	Υ

INPUT: RECEIVERS					ENS2001						
1071	2819	1	783,468.4	272,164.6	364.81	4.92	0.00	66	15.0	7.0	
1072	2820	1	783,718.4	272,164.6	362.07	4.92	0.00	66	15.0	7.0	

10/1	2819	1	783,468.4	272,164.6	364.81	4.92	0.00	66	15.0	7.0	Υ
1072	2820	1	783,718.4	272,164.6	362.07	4.92	0.00	66	15.0	7.0	Υ
1073	2821	1	783,968.4	272,164.6	363.14	4.92	0.00	66	15.0	7.0	Υ
1074	2822	1	784,218.4	272,164.6	373.64	4.92	0.00	66	15.0	7.0	Υ
1075	2823	1	784,468.4	272,164.6	373.81	4.92	0.00	66	15.0	7.0	Υ

Attachment 5 TNM Files Roadways

INPUT: ROADWAYS ENS2001

EPEI		6 August 2020	Roadway geometries are the same for the
Cleary		TNM 2.5	No-Build and Build models
INPUT: ROADWAYS			Average pavement type shall be used unless
PROJECT/CONTRACT:	ENS2001		a State highway agency substantiates the use
RUN:	NoBuild		of a different type with the approval of FHWA
Roadway	Points		

RUN:	NoBuild						of a diffe	rent type with	tne approv	al of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates (p	pavement)		Flow Cor	ntrol		Segment	
				X Y	7	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft ft		ft		mph	%		
Holmes Rd EB	12.0	point54	54	773,960.4	269,378.5	337.20				Average	
		point55	55	774,158.5	269,370.5	346.50				Average	
		point56	56	774,406.4	269,360.4	352.20				Average	
		point57	57	774,651.7	269,349.8	357.80				Average	
		point58	58	774,793.4	269,343.3	359.60				Average	
		point59	59	774,983.8	269,334.2	361.10				Average	
		point60	60	775,127.8	269,327.3	361.30				Average	
		point61	61	775,207.7	269,323.5	363.20				Average	
		point62	62	775,304.3	269,318.3	364.50				Average	
		point63	63	775,446.6	269,310.5	359.40				Average	
		point64	64	775,536.5	269,305.7	355.00				Average	
		point65	65	775,708.3	269,296.5	347.90				Average	
		point66	66	776,192.6	269,270.9	337.60				Average	
		point67	67	776,309.0	269,264.7	335.40				Average	
		point68	68	776,470.9	269,256.2	333.50				Average	
		point69	69	776,688.3	269,244.8	337.00				Average	
		point70	70	776,731.5	269,242.7	337.20				Average	
		point71	71	777,423.3	269,208.6	323.80				Average	
		point72	72	777,907.1	269,185.6	331.80				Average	
		point73	73	778,338.3	269,164.9	344.00				Average	
		point74	74	778,471.6	269,158.7	350.10				Average	
		point75	75	778,656.0	269,150.1	352.60				Average	
		point76	76	778,805.8	269,143.1	347.40				Average	
		point77	77	778,905.5	269,138.4	346.90				Average	
		point78	78	778,981.8	269,134.9	347.80				Average	

INPUT: ROADWAYS						ENS2001
	point79	79	779,036.5	269,132.3	347.00	

		point79	79	779,036.5	269,132.3	347.00		Average
		point80	80	779,067.9	269,130.9	345.30		Average
		point81	81	779,112.7	269,128.8	343.40		Average
		point82	82	779,161.4	269,126.5	342.50		Average
		point83	83	779,195.2	269,124.9	340.70		Average
		point84	84	779,330.5	269,118.9	343.10		Average
		point85	85	779,561.5	269,108.9	352.90		Average
		point86	86	779,711.6	269,102.8	359.40		Average
		point87	87	779,868.6	269,095.9	358.90		Average
		point88	88	780,044.7	269,087.7	354.90		Average
		point89	89	780,291.9	269,074.9	362.00		Average
		point90	90	780,565.3	269,061.7	347.80		Average
		point91	91	780,851.4	269,047.9	346.50		Average
		point92	92	781,063.4	269,036.0	336.50		Average
		point93	93	781,318.6	269,021.9	329.50		Average
		point94	94	781,447.6	269,015.1	333.50		Average
		point95	95	781,674.7	269,002.1	339.70		Average
		point96	96	781,825.3	268,994.6	349.40		Average
		point97	97	781,932.2	268,985.5	355.90		Average
		point98	98	782,036.8	268,974.2	359.30		Average
		point99	99	782,110.6	268,970.3	360.70		Average
		point100	100	782,194.3	268,970.8	361.90		Average
		point101	101	782,301.1	268,970.8	362.50		Average
		point102	102	782,343.5	268,970.2	362.70		Average
		point103	103	782,437.5	268,966.4	367.10		Average
		point104	104	782,612.7	268,957.2	370.90		Average
		point105	105	782,832.9	268,945.1	369.90		Average
		point106	106	783,082.4	268,932.3	368.40		Average
		point107	107	783,297.2	268,921.5	369.50		Average
		point108	108	783,560.1	268,909.9	370.20		Average
		point109	109	784,116.0	268,882.1	377.50		Average
		point110	110	784,220.7	268,865.9	375.90		Average
		point111	111	784,418.1	268,856.0	378.80		
Holmes Rd EB LT	12.0	point112	112	784,239.8	268,876.7	375.90		Average
		point113	113	784,419.0	268,867.7	379.70		
Holmes Rd EB RT	12.0	point114	114	776,613.4	269,232.7	339.30		Average
	12.0						1 -	1 -
	12.0	point115	115	776,687.5	269,228.8	339.50		Average
	12.0	point115 point116	115 116	776,687.5 776,730.7 777,422.6	269,228.8 269,226.7 269,192.7	339.50 339.70 324.40		Average Average

INPUT: ROADWAYS	FNS2001

		point118	118	777,689.6	269,179.9	326.40		
Holmes Rd WB	12.0	point119	119	784,419.3	268,879.0	379.70	Average	
		point120	120	783,702.5	268,914.8	372.20	Average	
		point121	121	783,567.9	268,921.5	369.80	Average	
		point122	122	783,297.8	268,933.5	369.50	Average	
		point123	123	783,083.0	268,944.3	368.70	Average	
		point124	124	782,833.6	268,957.1	370.30	Average	
		point125	125	782,613.3	268,969.2	370.90	Average	
		point126	126	782,438.1	268,978.4	367.10	Average	
		point127	127	782,315.0	268,983.4	362.50	Average	
		point128	128	782,208.3	268,989.3	362.00	Average	
		point129	129	782,083.6	268,994.4	360.60	Average	
		point130	130	781,891.6	269,003.2	353.40	Average	
		point131	131	781,675.3	269,014.1	339.70	Average	
		point132	132	781,448.2	269,027.1	333.10	Average	
		point133	133	781,319.3	269,033.9	329.50	Average	
		point134	134	781,064.0	269,048.0	336.50	Average	
		point135	135	780,852.0	269,059.9	346.50	Average	
		point136	136	780,565.9	269,073.6	348.30	Average	
		point137	137	780,292.5	269,086.9	362.00	Average	
		point138	138	780,045.3	269,099.7	354.90	Average	
		point139	139	779,869.1	269,107.9	358.90	Average	
		point140	140	779,712.1	269,114.8	359.10	Average	
		point141	141	779,562.0	269,120.9	354.00	Average	
		point142	142	779,368.8	269,129.2	345.00	Average	
		point143	143	779,210.8	269,136.2	340.40	Average	
		point144	144	779,194.3	269,137.0	340.70	Average	
		point145	145	779,115.3	269,140.7	343.40	Average	
		point146	146	779,017.6	269,145.2	347.00	Average	
		point147	147	778,819.0	269,154.5	345.30	Average	
		point148	148	778,378.1	269,175.0	344.40	Average	
		point149	149	778,268.4	269,180.3	341.50	Average	
		point150	150	778,220.7	269,182.6	340.00	Average	
		point151	151	777,902.0	269,197.8	331.70	Average	
		point152	152	777,563.7	269,213.9	324.50	Average	
		point153	153	777,404.0	269,221.6	323.80	Average	
		point154	154	776,729.5	269,254.8	337.20	Average	
		point155	155	776,690.9	269,256.7	337.00	Average	
		point156	156	776,542.1	269,264.5	334.50	Average	

INPUT: ROADWAYS ENS2001

		point157	157	776,257.2	269,279.5	334.90		Avera	age
		point158	158	775,574.2	269,315.6	353.90		Avera	age
		point159	159	775,223.9	269,334.7	363.20		Avera	age
		point160	160	774,710.4	269,359.3	358.10		Avera	age
		point161	161	774,402.7	269,372.6	356.10		Avera	age
		point162	162	774,243.6	269,379.0	348.70		Avera	age
		point163	163	774,171.9	269,406.1	345.70		Avera	age
		point164	164	773,961.5	269,424.6	338.20			
Holmes Rd WB LT	12.0	point165	165	782,128.8	268,981.4	361.50		Avera	age
		point166	166	782,082.6	268,983.3	360.40		Avera	age
		point167	167	782,045.4	268,985.0	359.30			
Holmes Rd WB LT IN	12.0	point168	168	774,176.5	269,381.8	346.50		Avera	age
		point169	169	773,960.8	269,390.5	337.20			
Holmes Rd WB LT OUT	12.0	point170	170	774,175.6	269,393.8	346.50		Avera	age
		point171	171	773,961.3	269,402.5	338.20			

Attachment 6
TNM Files Traffic

INPUT: TRAFFIC FOR LAeq1h Volumes					1	E	NS2001	1	1			
EPEI Cleary				_	ust 2020							
Cleary				TNM 2	.5							-
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	ENS2001											
RUN:	NoBuild											
Roadway	Points											
Name	Name	No.	Segmen	it								
			Autos		MTrucks	S	HTrucks	5	Buses		Motorcy	ycles
		İ	V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Holmes Rd EB	point54	54	487	40	28	40	39	40	0	0	C) (
	point55	55	487	40	28	40	39	40	0	0	C) (
	point56	56	487	40	28	40	39	40	0	0	C) (
	point57	57	487	40	28	40	39	40	0	0	C) (
	point58	58	487	40	28	40	39	40	0	0	C) (
	point59	59	487	40	28	40	39	40	0	0	C) (
	point60	60	487	40	28	40	39	40	0	0	C) (
	point61	61	487	40	28	40	39	40	0	0	C) (
	point62	62	487	40	28	40	39	40	0	0	C) (
	point63	63	487	40	28	40	39	40	0	0	C) (
	point64	64	487	40	28	40	39	40	0	0	C) (
	point65	65	487	40	28	40	39	40	0	0	C) (
	point66	66	487	40	28	40	39	40	0	0	C) (
	point67	67	487	40	28	40	39	40	0	0	C) (
	point68	68	487	40	28	40	39	40	0	0	C) (
	point69	69	487	40	28	40	39	40	0	0	C) (
	point70	70										
	point71	71		40	_				0	0	C) (
	point72	72								0	C) (
	point73	73										
	point74	74										
	point75	75										
	point76	76	487	40	28	40	39	40	0	0	C	

NPUT: TRAFFIC FOR LAeq1h Volumes			ENS2001									
	point77	77	487	40	28	40	39	40	0	0	0	C
	point78	78	487	40	28	40	39	40	0	0	0	(
	point79	79	487	40	28	40	39	40	0	0	0	C
	point80	80	487	40	28	40	39	40	0	0	0	(
	point81	81	487	40	28	40	39	40	0	0	0	C
	point82	82	487	40	28	40	39	40	0	0	0	(
	point83	83	487	40	28	40	39	40	0	0	0	(
	point84	84	487	40	28	40	39	40	0	0	0	(
	point85	85	487	40	28	40	39	40	0	0	0	(
	point86	86	487	40	28	40	39	40	0	0	0	(
	point87	87	487	40	28	40	39	40	0	0	0	C
	point88	88	487	40	28	40	39	40	0	0	0	(
	point89	89	487	40	28	40	39	40	0	0	0	(
	point90	90	487	40	28	40	39	40	0	0	0	(
	point91	91	487	40	28	40	39	40	0	0	0	(
	point92	92	487	40	28	40	39	40	0	0	0	(
	point93	93	487	40	28	40	39	40	0	0	0	(
	point94	94	487	40	28	40	39	40	0	0	0	(
	point95	95	487	40	28	40	39	40	0	0	0	(
	point96	96	487	40	28	40	39	40	0	0	0	(
	point97	97	487	40	28	40	39	40	0	0	0	(
	point98	98	487	40	28	40	39	40	0	0	0	(
	point99	99	487	40	28	40	39	40	0	0	0	(
	point100	100	487	40	28	40	39	40	0	0	0	(
	point101	101	487	40	28	40	39	40	0	0	0	(
	point102	102	487	40	28	40	39	40	0	0	0	(
	point103	103	487	40	28	40	39	40	0	0	0	(
	point104	104	487	40	28	40	39	40	0	0	0	(
	point105	105	487	40	28	40	39	40	0	0	0	(
	point106	106	487	40	28	40	39	40	0	0	0	(
	point107	107	487	40	28	40	39	40	0	0	0	(
	point108	108	487	40	28	40	39	40	0	0	0	(
	point109	109	487	40	28	40	39	40	0	0	0	(
	point110	110	487	40	28	40	39	40	0	0	0	(
	point111	111										
Holmes Rd EB LT	point112	112	0	0	0	0	0	0	0	0	0	C

NPUT: TRAFFIC FOR LAeq1h	Volumes .					EI	NS2001					
·	point113	113										
Holmes Rd EB RT	point114	114	0	0	0	0	0	0	0	0	0	
	point115	115	0	0	0	0	0	0	0	0	0	
	point116	116	0	0	0	0	0	0	0	0	0	
	point117	117	0	0	0	0	0	0	0	0	0	
	point118	118										
Holmes Rd WB	point119	119	487	40	28	40	39	40	0	0	0	
	point120	120	487	40	28	40	39	40	0	0	0	
	point121	121	487	40	28	40	39	40	0	0	0	
	point122	122	487	40	28	40	39	40	0	0	0	
	point123	123	487	40	28	40	39	40	0	0	0	
	point124	124	487	40	28	40	39	40	0	0	0	
	point125	125	487	40	28	40	39	40	0	0	0	
	point126	126	487	40	28	40	39	40	0	0	0	
	point127	127	487	40	28	40	39	40	0	0	0	
	point128	128	487	40	28	40	39	40	0	0	0	
	point129	129	487	40	28	40	39	40	0	0	0	
	point130	130	487	40	28	40	39	40	0	0	0	
	point131	131	487	40	28	40	39	40	0	0	0	
	point132	132	487	40	28	40	39	40	0	0	0	
	point133	133	487	40	28	40	39	40	0	0	0	
	point134	134	487	40	28	40	39	40	0	0	0	
	point135	135	487	40	28	40	39	40	0	0	0	
	point136	136	487	40	28	40	39	40	0	0	0	
	point137	137	487	40	28	40	39	40	0	0	0	
	point138	138	487	40	28	40	39	40	0	0	0	
	point139	139	487	40	28	40	39	40	0	0	0	
	point140	140	487	40	28	40	39	40	0	0	0	
	point141	141	487	40	28	40	39	40	0	0	0	
	point142	142	487	40	28	40	39	40	0	0	0	
	point143	143	487	40	28	40	39	40	0	0	0	
	point144	144	487	40	28	40	39	40	0	0	0	
	point145	145	487	40	28	40	39	40	0	0	0	
	point146	146	487	40	28	40	39	40	0	0	0	
	point147	147	487	40	28	40	39	40	0	0	0	
	point148	148	487	40	28	40	39	40	0	0	0	

INPUT: TRAFFIC FOR LAeq1h Volumes						ENS	2001					
•	point149	149	487	40	28	40	39	40	0	0	0	C
	point150	150	487	40	28	40	39	40	0	0	0	C
	point151	151	487	40	28	40	39	40	0	0	0	C
	point152	152	487	40	28	40	39	40	0	0	0	C
	point153	153	487	40	28	40	39	40	0	0	0	C
	point154	154	487	40	28	40	39	40	0	0	0	C
	point155	155	487	40	28	40	39	40	0	0	0	C
	point156	156	487	40	28	40	39	40	0	0	0	C
	point157	157	487	40	28	40	39	40	0	0	0	C
	point158	158	487	40	28	40	39	40	0	0	0	C
	point159	159	487	40	28	40	39	40	0	0	0	C
	point160	160	487	40	28	40	39	40	0	0	0	C
	point161	161	487	40	28	40	39	40	0	0	0	C
	point162	162	487	40	28	40	39	40	0	0	0	C
	point163	163	487	40	28	40	39	40	0	0	0	C
	point164	164										
Holmes Rd WB LT	point165	165	0	0	0	0	0	0	0	0	0	C
	point166	166	0	0	0	0	0	0	0	0	0	C
	point167	167										
Holmes Rd WB LT IN	point168	168	0	0	0	0	0	0	0	0	0	C
	point169	169										
Holmes Rd WB LT OUT	point170	170	0	0	0	0	0	0	0	0	0	C
	point171	171										

INPUT: TRAFFIC FOR LAeq1h Volumes						Е	NS2001					
EPEI				_	ıst 2020							
Cleary				TNM 2	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	ENS2001											
RUN:	Build											
			-							-		
Roadway	Points	Na	C	.4		1						
Name	Name	No.	Segmen Autos	ıı	MTrucks		HTrucks		Buses		Motoro	·oloo
				S	V	s	V	s		S	Motorcy V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Holmes Rd EB	n nint A	F.4						<u> </u>		<u> </u>		
HOITIES RUED	point54	54 55			28 28						-	
	point56	56			28							
	point57	57			28							
	point58	58			28						_	_
	point59	59			28							
	point60	60			28							
	point61	61			28						_	_
	point62	62			28						0	
	point63	63			28		99	40	0	0	0	
	point64	64	537	40	28	40	99	40	0	0	0	0
	point65	65	537	40	28	40	99	40	0	0	0	0
	point66	66	537	40	28	40	99	40	0	0	0	0
	point67	67	537	40	28	40	99	40	0	0	0	0
	point68	68	537	40	28	40	99	40	0	0	0	0
	point69	69	537	40	_		99		_	0	0	0
	point70	70	537	40	28	40	99	40	0	0	0	0
	point71	71										
	point72	72									_	
	point73	73			_						_	-
	point74	74										
	point75	75			28							
	point76	76	537	40	28	40	99	40	0	0	0	0

NPUT: TRAFFIC FOR LAeq1h Volu	umes					EN	NS2001					
•	point77	77	537	40	28	40	99	40	0	0	0	(
	point78	78	537	40	28	40	99	40	0	0	0	(
	point79	79	537	40	28	40	99	40	0	0	0	(
	point80	80	537	40	28	40	99	40	0	0	0	(
	point81	81	537	40	28	40	99	40	0	0	0	(
	point82	82	537	40	28	40	99	40	0	0	0	(
	point83	83	537	40	28	40	99	40	0	0	0	(
	point84	84	537	40	28	40	99	40	0	0	0	(
	point85	85	537	40	28	40	99	40	0	0	0	(
	point86	86	537	40	28	40	99	40	0	0	0	(
	point87	87	537	40	28	40	99	40	0	0	0	(
	point88	88	537	40	28	40	99	40	0	0	0	(
	point89	89	537	40	28	40	99	40	0	0	0	(
	point90	90	537	40	28	40	99	40	0	0	0	(
	point91	91	537	40	28	40	99	40	0	0	0	(
	point92	92	537	40	28	40	99	40	0	0	0	
	point93	93	537	40	28	40	99	40	0	0	0	
	point94	94	537	40	28	40	99	40	0	0	0	(
	point95	95	537	40	28	40	99	40	0	0	0	
	point96	96	537	40	28	40	99	40	0	0	0	(
	point97	97	537	40	28	40	99	40	0	0	0	(
	point98	98	537	40	28	40	99	40	0	0	0	
	point99	99	537	40	28	40	99	40	0	0	0	
	point100	100	537	40	28	40	99	40	0	0	0	
	point101	101	537	40	28	40	99	40	0	0	0	
	point102	102	537	40	28	40	99	40	0	0	0	
	point103	103	537	40	28	40	99	40	0	0	0	
	point104	104	537	40	28	40	99	40	0	0	0	
	point105	105	537	40	28	40	99	40	0	0	0	
	point106	106	537	40	28	40	99	40	0	0	0	
	point107	107	537	40	28	40	99	40	0	0	0	
	point108	108	537	40	28	40	99	40	0	0	0	
	point109	109	537	40	28		99	40	0	0	0	
	point110	110	537	40	28	40	99	40	0	0	0	(
	point111	111										
Holmes Rd EB LT	point112	112	0	0	0	0	0	0	0	0	0	(

NPUT: TRAFFIC FOR LAeq1h						ENS	2001					
•	point113	113										
Holmes Rd EB RT	point114	114	0	0	0	0	0	0	0	0	0	
	point115	115	0	0	0	0	0	0	0	0	0	
	point116	116	0	0	0	0	0	0	0	0	0	
	point117	117	0	0	0	0	0	0	0	0	0	
	point118	118										
lolmes Rd WB	point119	119	537	40	28	40	99	40	0	0	0	
	point120	120	537	40	28	40	99	40	0	0	0	
	point121	121	537	40	28	40	99	40	0	0	0	
	point122	122	537	40	28	40	99	40	0	0	0	
	point123	123	537	40	28	40	99	40	0	0	0	
	point124	124	537	40	28	40	99	40	0	0	0	
	point125	125	537	40	28	40	99	40	0	0	0	
	point126	126	537	40	28	40	99	40	0	0	0	
	point127	127	537	40	28	40	99	40	0	0	0	
	point128	128	537	40	28	40	99	40	0	0	0	
	point129	129	537	40	28	40	99	40	0	0	0	
	point130	130	537	40	28	40	99	40	0	0	0	
	point131	131	537	40	28	40	99	40	0	0	0	
	point132	132	537	40	28	40	99	40	0	0	0	
	point133	133	537	40	28	40	99	40	0	0	0	
	point134	134	537	40	28	40	99	40	0	0	0	
	point135	135	537	40	28	40	99	40	0	0	0	
	point136	136	537	40	28	40	99	40	0	0	0	
	point137	137	537	40	28	40	99	40	0	0	0	
	point138	138	537	40	28	40	99	40	0	0	0	
	point139	139	537	40	28	40	99	40	0	0	0	
	point140	140	537	40	28	40	99	40	0	0	0	
	point141	141	537	40	28	40	99	40	0	0	0	
	point142	142	537	40	28	40	99	40	0	0	0	
	point143	143	537	40	28	40	99	40	0	0	0	
	point144	144	537	40	28	40	99	40	0	0	0	
	point145	145	537	40	28	40	99	40	0	0	0	
		1										

point146 point147

point148

INPUT: TRAFFIC FOR LAeq1h Volumes						EN	IS2001					
	point149	149	537	40	28	40	99	40	0	0	0	0
	point150	150	537	40	28	40	99	40	0	0	0	0
	point151	151	537	40	28	40	99	40	0	0	0	0
	point152	152	537	40	28	40	99	40	0	0	0	0
	point153	153	537	40	28	40	99	40	0	0	0	0
	point154	154	537	40	28	40	99	40	0	0	0	0
	point155	155	537	40	28	40	99	40	0	0	0	0
	point156	156	537	40	28	40	99	40	0	0	0	0
	point157	157	537	40	28	40	99	40	0	0	0	0
	point158	158	537	40	28	40	99	40	0	0	0	0
	point159	159	537	40	28	40	99	40	0	0	0	0
	point160	160	537	40	28	40	99	40	0	0	0	0
	point161	161	537	40	28	40	99	40	0	0	0	0
	point162	162	537	40	28	40	99	40	0	0	0	0
	point163	163	537	40	28	40	99	40	0	0	0	0
	point164	164										
Holmes Rd WB LT	point165	165	0	0	0	0	0	0	0	0	0	0
	point166	166	0	0	0	0	0	0	0	0	0	0
	point167	167										
Holmes Rd WB LT IN	point168	168	0	0	0	0	0	0	0	0	0	0
	point169	169										
Holmes Rd WB LT OUT	point170	170	0	0	0	0	0	0	0	0	0	0
	point171	171										

Attachment 7 TNM Files Sound Level Results

RESULTS: SOUND LEVELS							ENS2001					
EPEI							6 August 2	2020				-
Cleary							TNM 2.5	-020				
							Calculated	with TNN	1 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		ENS200)1									
RUN:		NoBuild	t									
BARRIER DESIGN:		INPUT	HEIGHTS					Average p	avement type	shall be use	d unless	
								a State hi	ghway agency	/ substantiate	s the use	
ATMOSPHERICS:		68 deg	F, 50% RH					of a differ	ent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier			
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
1	1	1	60.0	35.5	66	-24.5	15		35.5	0.0	7	-7.0
2	1734	1	0.0	35.9	66	35.9	15		35.9	0.0	7	-7.0
3	1735	1	0.0	36.1	66	36.1	15		36.1	0.0	7	-7.0
4	1736	1	0.0	36.4	66	36.4	15		36.4	0.0	7	
5	1737	1	0.0	36.7			15		36.7	0.0	7	
6	1738	1	0.0	36.8			15		36.8	0.0		
7	1739	1	0.0	_	66		15		37.1	0.0		
8	1740	1	0.0				15		37.4	0.0		-
9	1741	1	0.0				15		37.3	0.0		-
10	1742	1	0.0				15		37.3			
11	1743	1	0.0				15		37.4	0.0		
12	1744	1	0.0				15		37.4	0.0		
13	1745	1					15		38.0	0.0		_
14	1746	1					15		37.7	0.0		-
15	1747	1	0.0		66		15		38.1	0.0		
16 17	1748 1749	1	0.0				15 15		37.9 38.0	0.0		
18	1749	1	0.0						38.0	0.0		
19	1750	1							38.1	0.0		
20	1751	1	0.0						38.3			
21	1752	1							38.0			
22	1753	1							38.0			
23	1755								38.0			
24	1756								37.9			
	1730	'	0.0	J 07.3		J .3	13		01.0	J.0		-1.0

RESULTS: SOUND LEVELS					E	NS2001				
25	1757	1 0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
26	1758	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
27	1759	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
28	1760	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
29	1761	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
30	1762	1 0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
31	1763	1 0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
32	1764	1 0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
33	1765	1 0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
34	1766	1 0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
35	1767	1 0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
36	1768	1 0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
37	1769	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
38	1770	1 0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
39	1771	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
40	1772	1 0.0	36.8	66	36.8	15	 36.8	0.0	7	-7.0
41	1773	1 0.0	36.6	66	36.6	15	 36.6	0.0	7	-7.0
42	1774	1 0.0	36.3	66	36.3	15	 36.3	0.0	7	-7.0
43	1775	1 0.0	36.0	66	36.0	15	 36.0	0.0	7	-7.0
44	1776	1 0.0	36.2	66	36.2	15	 36.2	0.0	7	-7.0
45	1777	1 0.0	36.7	66	36.7	15	 36.7	0.0	7	-7.0
46	1778	1 0.0	36.8	66	36.8	15	 36.8	0.0	7	-7.0
47	1779	1 0.0	36.9	66	36.9	15	 36.9	0.0	7	-7.0
48	1780	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
49	1781	1 0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
50	1782	1 0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
51	1783	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
52	1784	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
53	1785	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
54	1786	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
55	1787	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
56	1788	1 0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
57	1789	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
58	1790	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
59	1791	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
60	1792	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
61	1793	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
62	1794	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
63	1795	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
64	1796	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
65	1797	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS2001				
66	1798	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
67	1799	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
68	1800	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
69	1801	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
70	1802	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
71	1803	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
72	1804	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
73	1805	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
74	1806	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
75	1807	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
76	1808	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
77	1809	1 0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
78	1810	1 0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
79	1811	1 0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
80	1812	1 0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
81	1813	1 0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
82	1814	1 0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
83	1815	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
84	1816	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
85	1817	1 0.0	36.8	66	36.8	15	 36.8	0.0	7	-7.0
86	1818	1 0.0	36.3	66	36.3	15	 36.3	0.0	7	-7.0
87	1819	1 0.0	36.9	66	36.9	15	 36.9	0.0	7	-7.0
88	1820	1 0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
89	1821	1 0.0	37.4	66	37.4	15	 37.4	0.0	7	- 7.0
90	1822	1 0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
91	1823	1 0.0	37.7	66	37.7	15	 37.7	0.0	7	- 7.0
92	1824	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	- 7.0
93	1825	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
94	1826	1 0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
95	1827	1 0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
96	1828	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
97	1829	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
98	1830	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
99	1831	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
100	1832	1 0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
101	1833	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
102	1834	1 0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
103	1835	1 0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
104	1836	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
105	1837	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
106	1838	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0

RESULTS: SOUND LEVELS						E	ENS2001				
107	1839	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
108	1840	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
109	1841	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
110	1842	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
111	1843	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
112	1844	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
113	1845	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	- 7.0
114	1846	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
115	1847	1	0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
116	1848	1	0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
117	1849	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
118	1851	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
119	1852	1	0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
120	1853	1	0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
121	1854	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
122	1855	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
123	1856	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
124	1857	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
125	1858	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
126	1859	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
127	1860	1	0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
128	1861	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
129	1862	1	0.0	37.1	66	37.1	15	 37.1	0.0	7	-7.0
130	1863	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
131	1864	1	0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
132	1865	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
133	1866	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
134	1867	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
135	1868	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
136	1869	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
137	1870	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
138	1871	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
139	1872	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
140	1873	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
141	1874	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
142	1875	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
143	1876	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
144	1877	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
145	1878	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
146	1879	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
147	1880	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0

RESULTS: SOUND LEVELS						1	ENS2001				
148	1881	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
149	1882	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
150	1883	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
151	1884	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
152	1885	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
153	1886	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
154	1887	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
155	1888	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
156	1889	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
157	1890	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
158	1891	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
159	1892	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
160	1893	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	
161	1894	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	
162	1895	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
163	1896	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
164	1897	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
165	1898	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
166	1899	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
167	1900	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
168	1901	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	
169	1902	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
170	1903	1	0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
171	1904	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
172	1905	1	0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
173	1906	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
174	1907	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
175	1908	1	0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
176	1909	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
177	1910	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
178	1911	1	0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
179	1912	1	0.0	39.5	66	39.5		 39.5	0.0	7	-7.0
180	1913	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
181	1914	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
182	1915	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
183	1916	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	- 1
184	1917	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
185	1918	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
186	1919	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
187	1920	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
188	1921	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS	S2001				
189	1922	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
190	1923	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
191	1924	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
192	1925	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
193	1926	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
194	1927	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
195	1928	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
196	1929	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
197	1930	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
198	1931	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
199	1932	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
200	1933	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
201	1934	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
202	1935	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
203	1936	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
204	1937	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
205	1938	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
206	1939	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
207	1940	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
208	1941	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
209	1942	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
210	1943	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
211	1944	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
212	1945	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
213	1946	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
214	1947	1	0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
215	1948	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
216	1949	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
217	1950	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
218	1951	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
219	1952	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
220	1953	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
221	1954	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
222	1955	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
223	1956	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
224	1957	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
225	1958	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
226	1959	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
227	1960	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
228	1961	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
229	1962	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0

RESULTS: SOUND LEVELS						I	ENS2001				
230	1963	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
231	1964	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
232	1965	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
233	1966	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
234	1967	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
235	1968	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
236	1969	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
237	1970	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
238	1971	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
239	1972	1	0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
240	1973	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
241	1974	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
242	1975	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
243	1976	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
244	1977	1	0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
245	1978	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
246	1979	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
247	1980	1	0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
248	1981	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
249	1982	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
250	1983	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
251	1984	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
252	1985	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
253	1986	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
254	1987	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
255	1988	1	0.0	40.9	66	40.9	15	40.9	0.0	7	-7.0
256	1989	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
257	1990	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
258	1991	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
259	1992	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
260	1993	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
261	1994	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
262	1995	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
263	1996	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
264	1997	1	0.0	41.1	66	41.1		41.1	0.0	7	-7.0
265	1998	1	0.0	41.4	66	41.4		41.4	0.0	7	-7.0
266	1999	1	0.0	41.4	66	41.4	15	41.4	0.0	7	-7.0
267	2000	1	0.0	41.4	66	41.4	15	41.4	0.0	7	-7.0
268	2001	1	0.0	41.4	66	41.4	15	41.4	0.0	7	-7.0
269	2002	1	0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
270	2003	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0

RESULTS: SOUND LEVELS	8					ENS2001				
271	2004	1 0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
272	2005	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
273	2006	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
274	2007	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
275	2008	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
276	2009	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0
277	2010	1 0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
278	2011	1 0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
279	2012	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	- 7.0
280	2013	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
281	2014	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
282	2015	1 0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
283	2016	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
284	2017	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
285	2018	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
286	2019	1 0.0	43.1	66	43.1	15	 43.1	0.0	7	-7.0
287	2020	1 0.0	43.2	66	43.2	15	 43.2	0.0	7	- 7.0
288	2021	1 0.0	43.2	66	43.2	15	 43.2	0.0	7	- 7.0
289	2022	1 0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
290	2023	1 0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
291	2024	1 0.0	43.2	66	43.2	15	 43.2	0.0	7	-7.0
292	2025	1 0.0	43.2	66	43.2	15	 43.2	0.0	7	-7.0
293	2026	1 0.0	43.2	66	43.2	15	 43.2	0.0	7	- 7.0
294	2027	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
295	2028	1 0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
296	2029	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	- 7.0
297	2031	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
298	2032	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	- 7.0
299	2033	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	- 7.0
300	2034	1 0.0		66	41.0	15	 41.0	0.0	7	-7.0
301	2035	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
302	2036	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
303	2037	1 0.0	41.0	66	41.0		41.0	0.0	7	-7.0
304	2038	1 0.0		66	41.6		41.6	0.0	7	-7.0
305	2039	1 0.0	-	66	41.8		41.8	0.0	7	-7.0
306	2040	1 0.0		66	42.2		42.2	0.0	7	-7.0
307	2041	1 0.0		66	42.4		42.4	0.0	7	-7.0
308	2042	1 0.0		66	42.6		42.6	0.0	7	-7.0
309	2043	1 0.0		66	42.6		42.6	0.0	7	-7.0
310	2044	1 0.0		66	42.5		42.5	0.0	7	-7.0
311	2045	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0

RESULTS: SOUND LEVELS					ENS	S2001				
312	2046	1 0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
313	2047	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
314	2048	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
315	2049	1 0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
316	2050	1 0.0	43.4	66	43.4	15	 43.4	0.0	7	-7.0
317	2051	1 0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
318	2052	1 0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
319	2053	1 0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
320	2054	1 0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
321	2055	1 0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
322	2056	1 0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
323	2057	1 0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
324	2058	1 0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
325	2059	1 0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
326	2060	1 0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
327	2061	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
328	2062	1 0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
329	2063	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
330	2064	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
331	2065	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
332	2066	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
333	2067	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
334	2068	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
335	2069	1 0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
336	2070	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
337	2071	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
338	2072	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
339	2073	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
340	2074	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
341	2075	1 0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
342	2076	1 0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
343	2077	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
344	2078	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
345	2079	1 0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
346	2080	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	
347	2081	1 0.0	43.0	66	43.0	15	 43.0			-7.0
348	2082	1 0.0	43.4	66	43.4	15	 43.4	0.0		-7.0
349	2083	1 0.0	43.8	66	43.8	15	 43.8			-7.0
350	2084	1 0.0	44.0	66	44.0	15	 44.0	0.0		-7.0
351	2085	1 0.0	44.2	66	44.2	15	 44.2	0.0		
352	2086	1 0.0	44.0	66	44.0	15	 44.0			

RESULTS: SOUND LEVELS						1	ENS2001				
353	2087	1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
354	2088	1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
355	2089	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
356	2090	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
357	2091	1	0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
358	2092	1	0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
359	2093	1	0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
360	2094	1	0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
361	2095	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
362	2096	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
363	2097	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
364	2098	1	0.0	45.9	66	45.9	15	 45.9	0.0	7	-7.0
365	2099	1	0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
366	2100	1	0.0	45.9	66	45.9	15	 45.9	0.0	7	-7.0
367	2101	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
368	2102	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
369	2103	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
370	2104	1	0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
371	2105	1	0.0	46.6	66	46.6	15	 46.6	0.0	7	-7.0
372	2106	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
373	2107	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
374	2108	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
375	2109	1	0.0	47.0	66	47.0	15	 47.0	0.0	7	-7.0
376	2110	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	-7.0
377	2111	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
378	2112	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
379	2113	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
380	2114	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	-7.0
381	2116	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
382	2117	1	0.0	46.9	66	46.9	_	 46.9	0.0	7	-7.0
383	2118	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	
384	2119	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
385	2120	1	0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
386	2121	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
387	2122	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
388	2123	1	0.0	43.4	66	43.4	15	 43.4	0.0	7	-7.0
389	2124	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
390	2125	1	0.0	45.0	66	45.0	-	 45.0	0.0	7	-7.0
391	2126	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
392	2127	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
393	2128	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0

RESULTS: SOUND LEVELS							ENS2001				
394	2129	1	0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
395	2130	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
396	2131	1	0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
397	2132	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
398	2133	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
399	2134	1	0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
400	2135	1	0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
401	2136	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
402	2137	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
403	2138	1	0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
404	2139	1	0.0	47.7	66	47.7	15	 47.7	0.0	7	-7.0
405	2140	1	0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
406	2141	1	0.0	48.0	66	48.0	15	 48.0	0.0	7	-7.0
407	2142	1		48.0	66	48.0		48.0	0.0	7	-7.0
408	2143	1	0.0	48.1	66	48.1	15	 48.1	0.0	7	-7.0
409	2144	1	0.0	48.3	66	48.3	15	 48.3	0.0	7	-7.0
410	2145	1	0.0	48.5	66	48.5	15	 48.5	0.0	7	-7.0
411	2146	1	0.0	48.8	66	48.8	15	 48.8	0.0	7	-7.0
412	2147	1	0.0	49.1	66	49.1	15	 49.1	0.0	7	-7.0
413	2148	1	0.0	49.3	66	49.3	15	 49.3	0.0	7	-7.0
414	2149	1	0.0	49.4	66	49.4	15	 49.4	0.0	7	-7.0
415	2150	1	0.0	49.6	66	49.6	15	 49.6	0.0	7	-7.0
416	2151	1	0.0	49.7	66	49.7	15	49.7	0.0	7	-7.0
417	2152	1	0.0	49.8	66	49.8	15	 49.8	0.0	7	-7.0
418	2153	1	0.0	50.0	66	50.0	15	 50.0	0.0	7	-7.0
419	2154	1	0.0	50.2	66	50.2	15	 50.2	0.0	7	-7.0
420	2155	1	0.0	50.7	66	50.7	15	 50.7	0.0	7	-7.0
421	2156	1	0.0	50.6	66	50.6	15	 50.6	0.0	7	-7.0
422	2157	1		50.6	66	50.6	15	 50.6	0.0	7	-7.0
423	2158	1		50.7	66	50.7	15	50.7	0.0	7	-7.0
424	2159	1	0.0	50.6	66	50.6		 50.6	0.0	7	-7.0
425	2160	1	0.0	50.6	66	50.6		50.6	0.0	7	-7.0
426	2161	1	0.0	50.5	66	50.5	15	 50.5	0.0	7	-7.0
427	2162	1	0.0	50.7	66	50.7	15	 50.7	0.0	7	-7.0
428	2163	1		50.2	66	50.2	_	50.2	0.0	7	-7.0
429	2164	1		49.4	66	49.4	15	 49.4	0.0	7	-7.0
430	2165	1		47.8	66	47.8		47.8	0.0	7	-7.0
431	2166	1		45.8	66	45.8	15	 45.8	0.0	7	-7.0
432	2167	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
433	2168	1	0.0	48.0	66	48.0	15	 48.0	0.0	7	-7.0
434	2169	1	0.0	48.6	66	48.6	15	 48.6	0.0	7	-7.0

11

RESULTS: SOUND LEVELS						1	ENS2001				
435	2170	1	0.0	49.1	66	49.1	15	 49.1	0.0	7	-7.0
436	2171	1	0.0	48.8	66	48.8	15	 48.8	0.0	7	-7.0
437	2172	1	0.0	49.0	66	49.0	15	 49.0	0.0	7	-7.0
438	2173	1	0.0	49.0	66	49.0	15	 49.0	0.0	7	-7.0
439	2174	1	0.0	49.3	66	49.3	15	 49.3	0.0	7	-7.0
440	2175	1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
441	2176	1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
442	2177	1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
443	2178	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
444	2179	1	0.0	50.0	66	50.0	15	 50.0	0.0	7	-7.0
445	2180	1	0.0	50.3	66	50.3	15	 50.3	0.0	7	-7.0
446	2181	1	0.0	50.6	66	50.6	15	 50.6	0.0	7	-7.0
447	2182	1	0.0	51.0	66	51.0	15	 51.0	0.0	7	-7.0
448	2183	1	0.0	51.3	66	51.3		 51.3	0.0	7	-7.0
449	2184	1	0.0	51.3	66	51.3	15	 51.3	0.0	7	-7.0
450	2185	1	0.0	51.4	66	51.4		 51.4	0.0	7	-7.0
451	2186	1	0.0	51.6	66	51.6		 51.6	0.0	7	-7.0
452	2187	1	0.0	51.9	66	51.9		 51.9	0.0	7	-7.0
453	2188	1	0.0	52.1	66	52.1	15	 52.1	0.0	7	-7.0
454	2189	1	0.0	52.6	66	52.6	15	 52.6	0.0	7	-7.0
455	2190	1	0.0	53.0	66	53.0		 53.0	0.0	7	-7.0
456	2191	1	0.0	53.3	66	53.3		 53.3	0.0	7	-7.0
457	2192	1	0.0	53.5	66	53.5		 53.5	0.0	7	-7.0
458	2193	1	0.0	53.6	66	53.6		 53.6	0.0	7	-7.0
459	2194	1	0.0	53.8	66	53.8		 53.8	0.0	7	-7.0
460	2195	1	0.0	54.1	66	54.1	15	 54.1	0.0	7	-7.0
461	2196	1	0.0	54.4	66	54.4		 54.4	0.0	7	-7.0
462	2197	1	0.0	54.8	66	54.8		 54.8	0.0		-7.0
463	2198	1	0.0	54.7	66	54.7	15	 54.7	0.0	7	-7.0
464	2199	1	0.0	54.9	66	54.9		 54.9	0.0	7	-7.0
465	2200	1	0.0	55.4	66	55.4		 55.4	0.0	7	-7.0
466	2201	1	0.0	55.7	66	55.7	15	 55.7	0.0	7	-7.0
467	2202	1	0.0	55.9	66	55.9		 55.9	0.0	7	-7.0
468	2203	1	0.0	55.8	66	55.8	15	 55.8	0.0	7	-7.0
469	2204	1		55.8	66	55.8		 55.8	0.0		-7.0
470	2205	1		56.2	66	56.2		 56.2	0.0		-7.0
471	2206			56.5	66	56.5		 56.5	0.0		-7.0
472	2207	1	0.0	56.5	66	56.5		 56.5	0.0		-7.0
473	2208	1	0.0	54.0	66	54.0		 54.0	0.0		-7.0
474	2209	1	0.0	49.6	66	49.6		 49.6	0.0		-7.0
475	2210	1	0.0	51.1	66	51.1	15	 51.1	0.0	7	-7.0

RESULTS: SOUND LEVELS							ENS2001				
476	2211	1	0.0	51.8	66	51.8	15		51.8	0.0	7 -7.0
477	2212	1	0.0	52.5	66	52.5	15		52.5	0.0	7 -7.0
478	2213	1	0.0	52.7	66	52.7	15		52.7	0.0	7 -7.0
479	2214	1	0.0	52.8	66	52.8	15		52.8	0.0	7 -7.0
480	2215	1	0.0	52.9	66	52.9	15		52.9	0.0	7 -7.0
481	2216	1	0.0	53.3	66	53.3	15		53.3	0.0	7 -7.0
482	2217	1	0.0	53.3	66	53.3	15		53.3	0.0	7 -7.0
483	2218	1	0.0	53.4	66	53.4	15		53.4	0.0	7 -7.0
484	2219	1	0.0	53.5	66	53.5	15		53.5	0.0	7 -7.0
485	2220	1	0.0	53.4	66	53.4	15		53.4	0.0	7 -7.0
486	2221	1	0.0	53.7	66	53.7	15		53.7	0.0	7 -7.0
487	2222	1	0.0	54.6	66	54.6	15		54.6	0.0	7 -7.0
488	2223	1	0.0	55.6	66	55.6	15		55.6	0.0	7 -7.0
489	2224	1	0.0	55.5	66	55.5	15		55.5	0.0	7 -7.0
490	2225	1	0.0	56.0	66	56.0	15		56.0	0.0	7 -7.0
491	2226	1	0.0	56.4	66	56.4	15		56.4	0.0	7 -7.0
492	2227	1	0.0	56.2	66	56.2	15		56.2	0.0	7 -7.0
493	2228	1	0.0	56.5	66	56.5	15		56.5	0.0	7 -7.0
494	2229	1	0.0	57.1	66	57.1	15		57.1	0.0	7 -7.0
495	2230	1	0.0	57.7	66	57.7	15		57.7	0.0	7 -7.0
496	2231	1	0.0	58.3	66	58.3	15		58.3	0.0	7 -7.0
497	2232	1	0.0	59.1	66	59.1	15		59.1	0.0	7 -7.0
498	2233	1	0.0	60.1	66	60.1	15		60.1	0.0	7 -7.0
499	2234	1	0.0	61.0	66	61.0	15		61.0	0.0	7 -7.0
500	2235	1	0.0	60.6	66	60.6	15		60.6	0.0	7 -7.0
501	2236	1	0.0	61.2	66		15		61.2		7 -7.0
502	2237	1	0.0	62.7	66	62.7	15		62.7	0.0	
503	2238	1	0.0	63.6	66	63.6	15		63.6	0.0	7 -7.0
504	2239	1	0.0	64.1	66	64.1	15		64.1	0.0	7 -7.0
505	2240	1	0.0	64.1	66	64.1	15		64.1		7 -7.0
506	2241	1	0.0	65.8	66	65.8	15		65.8	0.0	
507	2242	1	0.0	67.2	66	67.2	15	Snd Lvl	67.2		7 -7.0
508	2243	1	0.0	68.6	66	68.6	15	Snd Lvl	68.6	0.0	7 -7.0
509	2244	1	0.0	70.1	66	70.1	15	Snd Lvl	70.1	0.0	7 -7.0
510	2245	1	0.0	72.1	66	72.1	15	Snd Lvl	72.1	0.0	
511	2246	1	0.0	74.0	66		15	Snd Lvl	74.0		7 -7.0
514	2249	1	0.0	73.3	66	73.3	15	Snd Lvl	73.3	0.0	7 -7.0
515	2250	1	0.0	70.4	66	70.4	15	Snd Lvl	70.4	0.0	
516	2251	1	0.0	62.2	66		15		62.2	0.0	7 -7.0
517	2252	1	0.0	54.8	66		15		54.8		7 -7.0
518	2253	1	0.0	57.0	66	57.0	15		57.0	0.0	7 -7.0

RESULTS: SOUND LEVELS	ENS2001										
519	2254	1 0.0	58.7	66	58.7	15		58.7	0.0	7	-7.0
520	2255	1 0.0	59.9	66	59.9	15		59.9	0.0	7	-7.0
521	2256	1 0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
522	2257	1 0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
523	2258	1 0.0	60.1	66	60.1	15		60.1	0.0	7	-7.0
524	2259	1 0.0	60.8	66	60.8	15		60.8	0.0	7	-7.0
525	2260	1 0.0	61.9	66	61.9	15		61.9	0.0	7	-7.0
526	2261	1 0.0	62.5	66	62.5	15		62.5	0.0	7	-7.0
527	2262	1 0.0	63.7	66	63.7	15		63.7	0.0	7	-7.0
528	2263	1 0.0	64.0	66	64.0	15		64.0	0.0	7	-7.0
529	2264	1 0.0	66.1	66	66.1	15	Snd Lvl	66.1	0.0	7	-7.0
530	2265	1 0.0	67.3	66	67.3	15	Snd Lvl	67.3	0.0	7	-7.0
531	2266	1 0.0	68.8	66	68.8	15	Snd Lvl	68.8	0.0	7	-7.0
532	2267	1 0.0	70.3	66	70.3	15	Snd Lvl	70.3	0.0	7	-7.0
533	2268	1 0.0	73.0	66	73.0	15	Snd Lvl	73.0	0.0	7	-7.0
534	2269	1 0.0	76.6	66	76.6	15	Snd Lvl	76.6	0.0	7	-7.0
537	2272	1 0.0	73.2	66	73.2	15	Snd Lvl	73.2	0.0	7	-7.0
538	2273	1 0.0	70.6	66	70.6	15	Snd Lvl	70.6	0.0	7	-7.0
539	2274	1 0.0	69.6	66	69.6	15	Snd Lvl	69.6	0.0	7	-7.0
540	2275	1 0.0	68.4	66	68.4	15	Snd Lvl	68.4	0.0	7	-7.0
541	2276	1 0.0	64.8	66	64.8	15		64.8	0.0	7	-7.0
542	2277	1 0.0	66.6	66	66.6	15	Snd Lvl	66.6	0.0	7	-7.0
543	2278	1 0.0	64.6	66	64.6	15		64.6	0.0	7	-7.0
544	2279	1 0.0	62.9	66	62.9	15		62.9	0.0	7	-7.0
545	2280	1 0.0	62.3	66	62.3	15		62.3	0.0	7	-7.0
546	2281	1 0.0	61.5	66	61.5	15		61.5	0.0	7	-7.0
547	2282	1 0.0	62.2	66	62.2	15		62.2	0.0	7	-7.0
548	2283	0.0	61.0	66	61.0	15		61.0	0.0	7	-7.0
549	2284	1 0.0	60.5	66	60.5	15		60.5	0.0	7	-7.0
550	2285	1 0.0	60.0	66	60.0	15		60.0	0.0	7	-7.0
551	2286	0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
552	2287	0.0	59.2	66	59.2	15		59.2	0.0	7	-7.0
553	2288	0.0	57.4	66	57.4	15		57.4	0.0	7	-7.0
554	2289	0.0	56.7	66	56.7	15		56.7	0.0	7	-7.0
555	2290	0.0	55.6	66	55.6	15		55.6	0.0	7	-7.0
556	2291	0.0	55.5	66	55.5	15		55.5	0.0	7	-7.0
557	2292	0.0	54.7	66	54.7	15		54.7	0.0	7	-7.0
558	2293	0.0	53.9	66	53.9	15		53.9	0.0	7	-7.0
559	2294	1 0.0	51.1	66	51.1	15		51.1	0.0	7	-7.0
560	2295	0.0	72.1	66	72.1	15		72.1	0.0	7	-7.0
561	2296	0.0	70.9	66	70.9	15	Snd Lvl	70.9	0.0	7	-7.0

RESULTS: SOUND LEVELS						E	NS2001					
562	2297	1	0.0	68.1	66	68.1	15	Snd Lvl	68.1	0.0	7	-7.0
563	15 3	1	0.0	68.0	66	68.0	15	Snd Lvl	68.0	0.0	7	-7.0
564	2299	1	0.0	66.6	66	66.6	15	Snd Lvl	66.6	0.0	7	-7.0
565	2300	1	0.0	64.9	66	64.9	15		64.9	0.0	7	-7.0
566	2301	1	0.0	63.9	66	63.9	15		63.9	0.0	7	-7.0
567	2302	1	0.0	62.5	66	62.5	15		62.5	0.0	7	-7.0
568	2303	1	0.0	61.7	66	61.7	15		61.7	0.0	7	-7.0
569	2304	1	0.0	61.4	66	61.4	15		61.4	0.0	7	-7.0
570	2305	1	0.0	60.8	66	60.8	15		60.8	0.0	7	-7.0
571	2306	1	0.0	59.8	66	59.8	15		59.8	0.0	7	-7.0
572	2307	1	0.0	59.5	66	59.5	15		59.5	0.0	7	-7.0
573	2308	1	0.0	58.9	66	58.9	15		58.9	0.0	7	-7.0
574	2309	1	0.0	57.9	66	57.9	15		57.9	0.0	7	-7.0
575	2310	1	0.0	57.1	66	57.1	15		57.1	0.0	7	-7.0
576	2311	1	0.0	57.2	66	57.2	15		57.2	0.0	7	-7.0
577	2312	1	0.0	57.2	66	57.2	15		57.2	0.0	7	-7.0
578	2313	1	0.0	56.8	66	56.8	15		56.8	0.0	7	-7.0
579	2314	1	0.0	56.4	66	56.4	15		56.4	0.0	7	-7.0
580	2315	1	0.0	56.0	66	56.0	15		56.0	0.0	7	-7.0
581	2316	1	0.0	55.6	66	55.6	15		55.6	0.0	7	-7.0
582	2317	1	0.0	55.2	66	55.2	15		55.2	0.0	7	-7.0
583	2318	1	0.0	55.1	66	55.1	15		55.1	0.0	7	-7.0
584	2319	1	0.0	55.4	66	55.4	15		55.4	0.0	7	-7.0
585	2320	1	0.0	55.3	66	55.3	15		55.3	0.0	7	-7.0
586	2321	1	0.0	54.8	66	54.8	15		54.8	0.0	7	-7.0
587	2322	1	0.0	54.4	66	54.4	15		54.4	0.0	7	-7.0
588	2323	1	0.0	54.1	66	54.1	15		54.1	0.0	7	-7.0
589	2324	1	0.0	53.9	66	53.9	15		53.9	0.0	7	-7.0
590	2325	1	0.0	53.6	66	53.6	15		53.6	0.0	7	-7.0
591	2326	1	0.0	53.2	66	53.2	15		53.2	0.0	7	-7.0
592	2327	1	0.0	53.1	66	53.1	15		53.1	0.0	7	-7.0
593	2328	1	0.0	53.0	66	53.0	15		53.0	0.0	7	-7.0
594	2329	1	0.0	52.8	66	52.8	15		52.8	0.0	7	-7.0
595	2330	1	0.0	52.6	66	52.6	15		52.6	0.0	7	-7.0
596	2331	1	0.0	51.8	66	51.8	15		51.8	0.0	7	-7.0
597	2332	1	0.0	51.0	66	51.0	15		51.0	0.0	7	-7.0
598	2333	1	0.0	50.5	66	50.5	15		50.5	0.0	7	-7.0
599	2334	1	0.0	50.0	66	50.0	15		50.0	0.0	7	-7.0
600	2335	1	0.0	49.5	66	49.5	15		49.5	0.0	7	-7.0
601	2336	1	0.0	48.5	66	48.5	15		48.5	0.0	7	-7.0
602	2337	1	0.0	46.7	66	46.7	15		46.7	0.0	7	-7.0

RESULTS: SOUND LEVELS					ı	ENS2001				
603	2338 1	0.0	53.5	66	53.5	15	 53.5	0.0	7	-7.0
604	2339 1	0.0	55.1	66	55.1	15	 55.1	0.0	7	-7.0
605	2340 1	0.0	55.3	66	55.3	15	 55.3	0.0	7	-7.0
606	2341 1	0.0	54.9	66	54.9	15	 54.9	0.0	7	-7.0
607	2342 1	0.0	55.1	66	55.1	15	 55.1	0.0	7	-7.0
608	2343 1	0.0	54.3	66	54.3	15	 54.3	0.0	7	-7.0
609	2344 1	0.0	53.9	66	53.9	15	 53.9	0.0	7	-7.0
610	2345 1	0.0	53.6	66	53.6	15	 53.6	0.0	7	-7.0
611	2346 1	0.0	53.2	66	53.2	15	 53.2	0.0	7	-7.0
612	2347 1	0.0	52.9	66	52.9	15	 52.9	0.0	7	-7.0
613	2348 1	0.0	52.5	66	52.5	15	 52.5	0.0	7	-7.0
614	2349 1	0.0	52.2	66	52.2	15	 52.2	0.0	7	-7.0
615	2350 1	0.0	51.9	66	51.9	15	 51.9	0.0	7	-7.0
616	2351 1	0.0	51.6	66	51.6	15	 51.6	0.0	7	-7.0
617	2352 1	0.0	51.4	66	51.4	15	 51.4	0.0	7	-7.0
618	2353 1	0.0	51.3	66	51.3	15	 51.3	0.0	7	-7.0
619	2354 1	0.0	51.4	66	51.4	15	 51.4	0.0	7	-7.0
620	2355 1	0.0	51.4	66	51.4	15	 51.4	0.0	7	-7.0
621	2356 1	0.0	51.3	66	51.3	15	 51.3	0.0	7	-7.0
622	2357 1	0.0	51.2	66	51.2	15	 51.2	0.0	7	-7.0
623	2358 1	0.0	51.1	66	51.1	15	 51.1	0.0	7	-7.0
624	2359 1	0.0	51.0	66	51.0	15	 51.0	0.0	7	-7.0
625	2360 1	0.0	50.6	66	50.6	15	 50.6	0.0	7	-7.0
626	2361 1	0.0	50.8	66	50.8	15	 50.8	0.0	7	-7.0
627	2362 1	0.0	50.8	66	50.8	15	 50.8	0.0	7	-7.0
628	2363 1	0.0	50.8	66	50.8	15	 50.8	0.0	7	-7.0
629	2364 1	0.0	50.5	66	50.5	15	 50.5	0.0	7	-7.0
630	2365 1	0.0	50.2	66	50.2	15	 50.2	0.0	7	-7.0
631	2366 1	0.0	50.1	66	50.1	15	 50.1	0.0	7	-7.0
632	2367 1	0.0	49.8	66	49.8	15	 49.8	0.0	7	-7.0
633	2368 1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
634	2370 1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
635	2371 1	0.0	49.3	66	49.3	15	 49.3	0.0	7	-7.0
636	2372 1	0.0	49.1	66	49.1	15	 49.1	0.0	7	-7.0
637	2373 1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
638	2374 1		48.6	66	48.6		 48.6	0.0	7	-7.0
639	2375 1		48.2	66	48.2		 48.2	0.0	7	-7.0
640	2376 1	0.0	47.5	66	47.5		 47.5	0.0	7	-7.0
641	2377 1		47.3	66	47.3	15	 47.3	0.0	7	-7.0
642	2378 1		46.9	66	46.9		 46.9	0.0	7	-7.0
643	2379 1	0.0	45.9	66	45.9	15	 45.9	0.0	7	-7.0

RESULTS: SOUND LEVELS					ļ	ENS2001				
644	2380	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
645	2381	1 0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
646	2382	1 0.0	48.5	66	48.5	15	 48.5	0.0	7	-7.0
647	2383	1 0.0	49.6	66	49.6	15	 49.6	0.0	7	-7.0
648	2384	1 0.0	50.3	66	50.3	15	 50.3	0.0	7	-7.0
649	2385	1 0.0	50.2	66	50.2	15	 50.2	0.0	7	-7.0
650	2386	1 0.0	50.1	66	50.1	15	 50.1	0.0	7	-7.0
651	2387	1 0.0	49.9	66	49.9	15	 49.9	0.0	7	-7.0
652	2388	1 0.0	49.6	66	49.6	15	 49.6	0.0	7	-7.0
653	2389	1 0.0	49.4	66	49.4	15	 49.4	0.0	7	-7.0
654	2390	1 0.0	49.3	66	49.3	15	 49.3	0.0	7	-7.0
655	2391	1 0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
656	2392	1 0.0	48.7	66	48.7	15	 48.7	0.0	7	-7.0
657	2393	1 0.0	48.3	66	48.3	15	 48.3	0.0	7	-7.0
658	2394	1 0.0	48.1	66	48.1	15	 48.1	0.0	7	-7.0
659	2395	1 0.0	47.9	66	47.9	15	 47.9	0.0	7	-7.0
660	2396	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
661	2397	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
662	2398	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
663	2399	1 0.0	47.9	66	47.9	15	 47.9	0.0	7	-7.0
664	2400	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
665	2401	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
666	2402	1 0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
667	2403	1 0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
668	2404	1 0.0	47.6	66	47.6		 47.6	0.0	7	-7.0
669	2405	1 0.0	47.6	66	47.6		 47.6	0.0	7	-7.0
670	2406	1 0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
671	2407	1 0.0	47.7	66	47.7	15	 47.7	0.0	7	-7.0
672	2408	1 0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
673	2409	1 0.0	47.2	66	47.2		 47.2	0.0	7	-7.0
674	2410	1 0.0	47.2	66	47.2		 47.2	0.0	7	-7.0
675	2411	1 0.0	46.8	66	46.8		 46.8	0.0	7	-7.0
676	2412	1 0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
677	2413	1 0.0	46.6	66	46.6	15	 46.6	0.0	7	-7.0
678	2414	1 0.0	46.5	66	46.5		 46.5	0.0	7	-7.0
679	2415	1 0.0	46.4	66	46.4		 46.4	0.0	7	-7.0
680	2416	1 0.0	46.2	66	46.2		 46.2	0.0	7	-7.0
681	2417	1 0.0	45.9	66	45.9		 45.9	0.0	7	-7.0
682	2418	1 0.0	45.5	66	45.5		 45.5	0.0	7	-7.0
683	2419	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
684	2420	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS2001				
685	2421	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
686	2422	1 0.0	43.4	66	43.4	15	 43.4	0.0	7	-7.0
687	2423	1 0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
688	2424	1 0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
689	2425	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
690	2426	1 0.0	45.9	66	45.9	15	 45.9	0.0	7	-7.0
691	2427	1 0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
692	2428	1 0.0	46.6	66	46.6	15	 46.6	0.0	7	-7.0
693	2429	1 0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
694	2430	1 0.0	46.6	66	46.6	15	 46.6	0.0	7	-7.0
695	2431	1 0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
696	2432	1 0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
697	2433	1 0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
698	2434	1 0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
699	2435	1 0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
700	2436	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
701	2437	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
702	2438	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
703	2439	1 0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
704	2440	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
705	2441	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
706	2442	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
707	2443	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
708	2444	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
709	2445	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
710	2446	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
711	2447	1 0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
712	2448	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
713	2449	1 0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
714	2450	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
715	2451	1 0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
716	2452	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
717	2453	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
718	2454	1 0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
719	2455	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
720	2456	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
721	2457	1 0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
722	2458	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
723	2459	1 0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
724	2460	1 0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
725	2461	1 0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0

RESULTS: SOUND LEVELS					E	NS2001					
726	2462	1	0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
727	2463	1	0.0	43.1	66	43.1	15	 43.1	0.0	7	-7.0
728	2464	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
729	2465	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
730	2466	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
731	2467	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
732	2468	1	0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
733	2469	1	0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
734	2470	1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
735	2471	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
736	2472	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
737	2473	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
738	2474	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
739	2475	1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
740	2476	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
741	2477	1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
742	2478	1	0.0	43.9	66		15	 43.9	0.0	7	-7.0
743	2479	1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
744	2480	1	0.0	43.7	66		15	 43.7	0.0	7	-7.0
745	2481	1	0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
746	2482	1	0.0	43.6	66		15	 43.6	0.0	7	-7.0
747	2483	1	0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
748	2484	1	0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
749	2485	1	0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
750	2486	1	0.0	43.7	66	_	15	 43.7	0.0	7	-7.0
751	2487	1	0.0	43.8	66		15	 43.8	0.0	7	-7.0
752	2488	1	0.0	43.7	66		15	 43.7	0.0	7	-7.0
753	2489	1	0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
754	2490	1	0.0	43.8	66		15	 43.8	0.0	7	-7.0
755	2491	1	0.0	43.8	66		15	 43.8	0.0	7	-7.0
756	2498	1	0.0	43.7	66		15	 43.7	0.0	7	-7.0
757	2501	1	0.0	43.6	66		15	 43.6	0.0	7	-7.0
758	2502	1	0.0	43.6	66		15	 43.6	0.0	7	-7.0
759	2503	1	0.0	43.6	66		15	 43.6	0.0	7	-7.0
760	2504	1	0.0	43.2	66		15	 43.2	0.0	7	-7.0
761	2505	1	0.0	43.1	66		15	 43.1	0.0	7	-7.0
762	2506	1	0.0	43.1	66		15	 43.1	0.0	7	-7.0
763	2507	1	0.0	43.1	66		15	 43.1	0.0	7	-7.0
764	2508	1	0.0	42.9	66	-	15	 42.9	0.0	7	-7.0
765	2509	1	0.0	42.9	66		15	 42.9	0.0	7	-7.0
766	2510	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0

RESULTS: SOUND LEVELS					Е	ENS2001				
767	2511	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
768	2512	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
769	2513	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
770	2514	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
771	2515	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
772	2516	1 0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
773	2517	1 0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
774	2518	1 0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
775	2519	1 0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
776	2520	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
777	2521	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
778	2522	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
779	2523	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
780	2524	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0
781	2525	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
782	2526	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
783	2527	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
784	2528	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
785	2529	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
786	2530	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
787	2531	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
788	2532	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
789	2533	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
790	2534	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
791	2535	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
792		1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
793	2537	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
794	2538	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
795		1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
796		1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
797	2541	1 0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0
798	2542	0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
799		1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
800	2544	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
801	2545	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
802	2546	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
803	2547	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
804	2548	1 0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
805	2549	1 0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
806	2550	1 0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
807	2551	1 0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0

RESULTS: SOUND LEVELS					EN	NS2001				
808	2552	1 0.0	41.6	15	41.6	15	 41.6	0.0	7	-7.0
809	2553	1 0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
810	2554	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
811	2555	1 0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
812	2556	1 0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
813	2557	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
814	2558	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
815	2559	1 0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
816	2560	1 0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
817	2561	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
818	2562	1 0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
819	2563	1 0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
820	2564	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
821	2565	1 0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
822	2566	1 0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
823	2567	1 0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
824	2568	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
825	2569	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
826	2570	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
827	2571	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
828	2572	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
829	2573	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
830	2574	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
831	2575	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
832	2576	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
833	2577	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
834	2578	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
835	2579	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
836	2580	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
837	2581	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
838	2582	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
839	2583	1 0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
840	2584	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
841	2585	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
842	2586	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
843	2587	1 0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
844	2588	1 0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
845	2589	1 0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
846	2590	1 0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
847	2591	1 0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
848	2592	1 0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0

RESULTS: SOUND LEVE	LS					ENS2001				
849	2593	1 0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
850	2594	1 0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
851	2595	1 0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
852	2596	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
853	2597	1 0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
854	2598	1 0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
855	2599	1 0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
856	2600	1 0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
857	2601	1 0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
858	2602	1 0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
859	2603	1 0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
860	2604	1 0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
861	2605	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
862	2606	1 0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
863	2607	1 0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
864	2609	1 0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
865	2610	1 0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
866	2611	1 0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
867	2612	1 0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
868	2613	1 0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
869	2614	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
870	2615	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
871	2616	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
872	2617	1 0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
873	2618	1 0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
874	2619	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
875	2620	1 0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
876	2621	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
877	2622	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
878	2623	1 0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
879	2624	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
880	2625	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
881	2626	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
882	2627	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
883	2628	1 0.0	40.5	66	40.5		40.5	0.0		-7.0
884	2629	1 0.0	40.5	66	40.5		40.5	0.0		-7.0
885	2630	1 0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
886	2631	1 0.0	40.4	66	40.4	15	 40.4	0.0		-7.0
887	2632	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
888	2633	1 0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
889	2634	1 0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0

RESULTS: SOUND LEVELS						I	ENS2001				
890	2635	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
891	2636	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
892	2637	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
893	2638	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
894	2639	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
895	2640	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
896	2641	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
897	2642	1	0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
898	2643	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
899	2644	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
900	2645	1	0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
901	2646	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
902	2647	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
903	2649	1	0.0	37.1	66	37.1	15	 37.1	0.0	7	-7.0
904	2650	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
905	2651	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
906	2652	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
907	2653	1	0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
908	2654	1	0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
909	2655	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
910	2656	1	0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
911	2657	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
912	2658	1	0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
913	2659	1		39.5	66	39.5	15	 39.5	0.0	7	-7.0
914	2660	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
915	2661	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
916	2662	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
917	2663	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
918	2664	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
919	2665	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
920	2666	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
921	2667	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
922	2668	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
923	2669	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
924	2670	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
925	2671	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
926	2672	1		39.7	66	39.7	15	 39.7	0.0	7	-7.0
927	2673	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
928	2674	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
929	2675	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
930	2676	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0

RESULTS: SOUND LEVELS	S					ENS2001				
931	2677	1 0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
932	2678	1 0.0	39.5	66	39.5	15	 39.5	0.0	7	- 7.0
933	2679	1 0.0	39.4	66	39.4	15	 39.4	0.0	7	-7.0
934	2680	1 0.0	39.3	66	39.3	15	 39.3	0.0	7	-7.0
935	2681	1 0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
936	2682	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
937	2683	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
938	2684	1 0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
939	2685	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
940	2686	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
941	2688	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
942	2689	1 0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
943	2690	1 0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
944	2691	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
945	2692	1 0.0	37.0	66	37.0	15	 37.0	0.0	7	-7.0
946	2693	1 0.0	36.6	66	36.6	15	 36.6	0.0	7	-7.0
947	2694	1 0.0	37.1	66	37.1	15	 37.1	0.0	7	-7.0
948	2695	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
949	2696	1 0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
950	2697	1 0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
951	2698	1 0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
952	2699	1 0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
953	2700	1 0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
954	2701	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
955	2702	1 0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
956	2703	1 0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
957	2704	1 0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
958	2705	1 0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
959	2706	1 0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
960	2707	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
961	2708	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
962	2709	1 0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
963	2710	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
964	2711	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
965	2712	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
966	2713	1 0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
967	2714	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
968	2715	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
969	2716	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
970	2717	1 0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
971	2718	1 0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0

RESULTS: SOUND LEVELS							ENS2001				
972	2719	1	0.0	38.9	66	38.9	15	 38.9	0.0	7	-7.0
973	2720	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
974	2721	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
975	2722	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
976	2723	1	0.0	38.7	66	38.7	15	 38.7	0.0	7	-7.0
977	2724	1	0.0	38.7	66	38.7	15	 38.7	0.0	1	-7.0
978	2725	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
979	2726	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
980	2727	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
981	2728	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
982	2729	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
983	2730	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
984	2731	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
985	2732	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
986	2733	1	0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
987	2734	1	0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
988	2735	1	0.0	36.5	66	36.5	15	 36.5	0.0	7	-7.0
989	2736	1	0.0	36.2	66	36.2	15	 36.2	0.0	7	-7.0
990	2737	1	0.0	36.5	66	36.5	15	 36.5	0.0	7	-7.0
991	2738	1	0.0	36.8	66	36.8	15	 36.8	0.0	7	-7.0
992	2739	1	0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
993	2740	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
994	2741	1	0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
995	2742	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
996	2743	1	0.0	37.8	66		15	 37.8	0.0	7	
997	2744	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
998	2745	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
999	2746	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
1000	2747	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
1001	2748	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
1002	2749	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	
1003	2750	1	0.0	38.3	66		15	 38.3	0.0	7	
1004	2751	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	
1005	2752	1	0.0	38.5	66	38.5	15	 38.5	0.0	7	-7.0
1006	2753	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
1007	2754	1	0.0	38.5	66			 38.5	0.0	7	
1008	2755	1	0.0	38.4	66		15	 38.4	0.0	7	
1009	2756	1	0.0	38.4	66		15	 38.4	0.0	7	
1010	2757	1	0.0	38.4	66		15	 38.4	0.0	7	
1011	2758	1	0.0	38.4	66		15	38.4	0.0	7	
1012	2759	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS	S2001				
1013	2760	1	0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
1014	2761	1	0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
1015	2762	1	0.0	38.3	66	38.3	15	 38.3	0.0	7	-7.0
1016	2763	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
1017	2764	1	0.0	38.2	66	38.2	15	 38.2	0.0	7	-7.0
1018	2765	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
1019	2766	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
1020	2767	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
1021	2768	1	0.0	38.1	66	38.1	15	 38.1	0.0	7	-7.0
1022	2769	1	0.0	38.0	66	38.0	15	 38.0	0.0	7	-7.0
1023	2771	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1024	2772	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1025	2773	1	0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
1026	2774	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
1027	2775	1	0.0	37.0	66	37.0	15	 37.0	0.0	7	-7.0
1028	2776	1	0.0	37.1	66	37.1	15	 37.1	0.0	7	-7.0
1029	2777	1	0.0	36.7	66	36.7	15	 36.7	0.0	7	-7.0
1030	2778	1	0.0	36.5	66	36.5	15	 36.5	0.0	7	-7.0
1031	2779	1	0.0	36.1	66	36.1	15	 36.1	0.0	7	-7.0
1032	2780	1	0.0	35.8	66	35.8	15	 35.8	0.0	7	-7.0
1033	2781	1	0.0	36.0	66	36.0	15	 36.0	0.0	7	-7.0
1034	2782	1	0.0	36.4	66	36.4	15	 36.4	0.0	7	-7.0
1035	2783	1	0.0	36.5	66	36.5	15	 36.5	0.0	7	-7.0
1036	2784	1	0.0	36.9	66	36.9	15	 36.9	0.0	7	-7.0
1037	2785	1	0.0	37.0	66	37.0	15	 37.0	0.0	7	-7.0
1038	2786	1	0.0	37.1	66	37.1	15	 37.1	0.0	7	-7.0
1039	2787	1	0.0	37.3	66	37.3	15	 37.3	0.0	7	-7.0
1040	2788	1	0.0	37.4	66	37.4	15	 37.4	0.0	7	-7.0
1041	2789	1	0.0	37.4	66	37.4	15	 37.4	0.0	7	-7.0
1042	2790	1	0.0	37.5	66	37.5	15	 37.5	0.0	7	-7.0
1043	2791	1	0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
1044	2792	1	0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
1045	2793	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1046	2794	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1047	2795	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1048	2796	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
1049	2797	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
1050	2798	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
1051	2799	1	0.0	37.9	66	37.9	15	 37.9	0.0	7	-7.0
1052	2800	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1053	2801	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0

RESULTS: SOUND LEVELS						I	ENS2001				
1054	2802	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1055	2803	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1056	2804	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1057	2805	1	0.0	37.8	66	37.8	15	 37.8	0.0	7	-7.0
1058	2806	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1059	2807	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1060	2808	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1061	2809	1	0.0	37.7	66	37.7	15	 37.7	0.0	7	-7.0
1062	2810	1	0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
1063	2811	1	0.0	37.6	66	37.6	15	 37.6	0.0	7	-7.0
1064	2812	1	0.0	37.4	66	37.4	15	 37.4	0.0	7	-7.0
1065	2813	1	0.0	37.4	66	37.4	15	 37.4	0.0	7	-7.0
1066	2814	1	0.0	37.2	66	37.2	15	 37.2	0.0	7	-7.0
1067	2815	1	0.0	37.0	66	37.0	15	 37.0	0.0	7	-7.0
1068	2816	1	0.0	36.9	66	36.9	15	 36.9	0.0	7	-7.0
1069	2817	1	0.0	36.8	66	36.8	15	 36.8	0.0	7	-7.0
1070	2818	1	0.0	36.6	66	36.6	15	 36.6	0.0	7	-7.0
1071	2819	1	0.0	36.5	66	36.5	15	 36.5	0.0	7	-7.0
1072	2820	1	0.0	36.1	66	36.1	15	 36.1	0.0	7	-7.0
1073	2821	1	0.0	36.0	66	36.0	15	 36.0	0.0	7	-7.0
1074	2822	1	0.0	35.6	66	35.6	15	 35.6	0.0	7	-7.0
1075	2823	1	0.0	35.4	66	35.4	15	 35.4	0.0	7	-7.0
Dwelling Units		# DUs	Noise Red	luction							
			Min	Avg	Max						
			dB	dB	dB						
All Selected		1071	0.0	0.0	0.0						
All Impacted		23	0.0	0.0	0.0						
All that meet NR Goal		0	0.0	0.0	0.0						

RESULTS: SOUND LEVELS							ENS2001						
EPEI							6 August	2020					
Cleary							TNM 2.5	2020					
							Calculate	d with TNI	VI 2.5				-
RESULTS: SOUND LEVELS									2.0				-
PROJECT/CONTRACT:		ENS200	01										
RUN:		Build											
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	e shall be use	d unless		
								_	ighway agenc				
ATMOSPHERICS:		68 deg	F, 50% RH	ĺ	1				rent type with	=			
Receiver			·							<u> </u>			=
Name	No.	#DUs	Existing	No Barrier					With Barrier				-
			LAeq1h	LAeq1h		Increase over	existina	Туре	Calculated	Noise Reduc	tion		-
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated	d
							Sub'l Inc		-			minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
1	1	1	60.0	38.6	66	-21.4	15		38.6	0.0		7 -	7.0
2	1734	1							39.0				7.0
3	1735	1	0.0	39.2	66	39.2	. 15		39.2	2 0.0		7 -	7.0
4	1736	1	0.0	39.5	66	39.5	15		39.5	0.0		7 -	7.0
5	1737	1	0.0	39.8	66	39.8	15		39.8	0.0		7 -	7.0
6	1738	1	0.0	39.9	66	39.9	15		39.9	0.0		7 -	7.0
7	1739	1	0.0	40.1	66	40.1	15		40.1	0.0		7 -	7.0
8	1740	1	0.0	40.4	66	40.4	15		40.4	0.0			7.0
9	1741	1	0.0	40.3	66	40.3	15		40.3	0.0			7.0
10	1742		0.0						40.4				7.0
11	1743		0.0						40.4				7.0
12	1744		0.0						40.5				7.0
13	1745		0.0						41.0				7.0
14	1746		0.0						40.7				7.0
15	1747		0.0						41.1				7.0
16	1748		0.0						41.0				7.0
17	1749		0.0						41.0				7.0
18	1750		0.0			-			41.1				7.0
19	1751								41.1				7.0
20	1752								41.3				7.0
21	1753								41.1				7.0
22	1754								41.1				7.0
23 24	1755								41.1				7.0
۷4	1756	1	0.0	41.1	66	41.1	15		41.1	0.0	L	-	7.0

25	7 7 7 7 7 7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0
27 1759 1 0.0 41.2 66 41.2 15 41.2 0.0 28 1760 1 0.0 41.2 66 41.2 15 41.2 0.0 30 1762 1 0.0 41.1 66 41.1 15 41.2 0.0 31 1763 1 0.0 41.1 66 41.1 15 41.1 0.0 32 1764 1 0.0 40.8 66 40.9 15 40.9 0.0 33 1765 1 0.0 40.8 66 40.8 15 40.7 0.0 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.3 66 40.5 15 40.7 0.0 38 1769	7 7 7 7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0
28 1760 1 0.0 41.2 66 41.2 15 41.2 0.0 29 39 1761 1 0.0 41.2 66 41.2 15 41.2 0.0 30 31 1762 1 0.0 41.1 66 41.1 15 41.1 0.0 31 1 0.0 41.1 66 41.1 15 41.0 0.0 31 31 0.0 41.1 66 41.0 15 41.0 0.0 32 31 1765 1 0.0 40.8 66 40.8 15 40.9 0.0 33 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 34 36 40.7 15 40.7 0.0 34 36 40.7 15 40.7 0.0 36 40.7 15 </td <td>7 7 7 7 7 7 7 7 7</td> <td>-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0</td>	7 7 7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0
29 1761 1 0.0 41.2 66 41.2 15 41.2 0.0 30 1762 1 0.0 41.1 66 41.1 15 41.1 0.0 31 1763 1 0.0 41.0 66 41.0 15 41.0 0.0 32 1764 1 0.0 40.9 66 40.9 15 40.9 0.0 33 1765 1 0.0 40.7 66 40.7 15 40.7 0.0 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.7 66 40.7 15 40.7 0.0 36 1788 1 0.0 40.3 66 40.5 15 40.7 40.7 40.7 40.7 40.7<	7 7 7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0
30 1762 1 0.0 41.1 66 41.1 15 41.1 0.0 131 0.0 41.0 66 41.0 15 41.0 0.0 10.0 32 1764 1 0.0 40.9 66 40.9 15 40.9 0.0 33 1765 1 0.0 40.8 66 40.8 15 40.9 0.0 34 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 40.7 15 40.7 0.0 40.7 66 40.7 15 40.7 0.0 36 40.7 15 40.7 0.0 40.7 66 40.7 15 40.7 0.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7 7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0
31 1763 1 0.0 41.0 66 41.0 15 41.0 0.0 30 32 1764 1 0.0 40.9 66 40.9 15 40.9 0.0 30 33 1765 1 0.0 40.8 66 40.8 15 40.8 0.0 30 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.5 66 40.7 15 40.7 0.0 36 1769 1 0.0 40.5 66 40.5 15 40.7 0.0 37 40.7 10.0 40.3 66 40.3 15 40.7 40.3 40.5 40.3 40.5 40.3 40.5 40.3 40.5 40.3 40.5 40.3	7 7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0
32 1764 1 0.0 40.9 66 40.9 15 40.9 0.0 33 1765 1 0.0 40.8 66 40.8 15 40.8 0.0 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.7 66 40.7 15 40.7 0.0 36 1768 1 0.0 40.5 66 40.5 15 40.7 0.0 37 1769 1 0.0 40.3 66 40.3 15 40.3 0.0 38 1770 1 0.0 40.3 66 40.2 15 40.3 0.0 40 1771 1 0.0 39.8 66 39.2 15 39.8 0.0 42 1774	7 7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0 -7.0
33 1765 1 0.0 40.8 66 40.8 15 40.8 0.0 34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.7 66 40.7 15 40.7 0.0 36 1768 1 0.0 40.5 66 40.5 15 40.7 0.0 38 1770 1 0.0 40.3 66 40.3 15 40.3 0.0 39 1771 1 0.0 40.2 66 40.2 15 40.3 0.0 40 1772 1 0.0 39.8 66 39.8 15 40.2 0.0 41 1773 1 0.0 39.4 66 39.7 15 39.7 0.0 43 1774	7 7 7 7 7	-7.0 -7.0 -7.0 -7.0 -7.0
34 1766 1 0.0 40.7 66 40.7 15 40.7 0.0 35 1767 1 0.0 40.7 66 40.7 15 40.7 0.0 36 1768 1 0.0 40.5 66 40.5 15 40.5 0.0 37 1769 1 0.0 40.3 66 40.3 15 40.3 0.0 38 1770 1 0.0 40.3 66 40.2 15 40.3 0.0 40 1777 1 0.0 39.8 66 39.8 15 40.2 0.0 41 1772 1 0.0 39.7 66 39.7 15 39.8 0.0 42 1774 1 0.0 39.4 66 39.7 15 39.7 0.0 43 1775	7 7 7 7 7	-7.0 -7.0 -7.0 -7.0
35 1767 1 0.0 40.7 66 40.7 15 40.7 0.0 36 1768 1 0.0 40.5 66 40.5 15 40.5 0.0 37 1769 1 0.0 40.3 66 40.3 15 40.3 0.0 38 1770 1 0.0 40.3 66 40.3 15 40.3 0.0 39 1771 1 0.0 40.2 66 40.2 15 40.2 0.0 40 1772 1 0.0 39.8 66 39.8 15 39.8 0.0 41 1773 1 0.0 39.7 66 39.7 15 39.8 0.0 42 1774 1 0.0 39.4 66 39.4 15 39.4 0.0 43 1775	7 7 7 7	-7.0 -7.0 -7.0
36 1768 1 0.0 40.5 66 40.5 15 40.5 0.0 37 1769 1 0.0 40.3 66 40.3 15 40.3 0.0 38 1777 1 0.0 40.3 66 40.3 15 40.3 0.0 40 1772 1 0.0 39.8 66 39.8 15 40.2 0.0 41 1773 1 0.0 39.7 66 39.7 15 39.8 0.0 42 1774 1 0.0 39.4 66 39.7 15 39.7 0.0 43 1775 1 0.0 39.3 66 39.0 15 39.0 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.0 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0	7 7 7	-7.0 -7.0
37 1769 1 0.0 40.3 66 40.3 15 40.3 0.0 1 38 1770 1 0.0 40.3 66 40.3 15 40.3 0.0 1 39 40 1771 1 0.0 40.2 66 40.2 15 40.2 0.0 1 40 40 40.2 66 39.8 66 39.8 15 40.2 0.0 40 </td <td>7</td> <td>-7.0</td>	7	-7.0
38 1770 1 0.0 40.3 66 40.3 15 40.3 0.0 40 1771 1 0.0 40.2 66 40.2 15 40.2 0.0 41 1772 1 0.0 39.8 66 39.8 15 39.8 0.0 42 1774 1 0.0 39.4 66 39.7 15 39.7 0.0 43 1775 1 0.0 39.3 66 39.3 15 39.4 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.0 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.7 0.0 47 1780 1	7	
39 1771 1 0.0 40.2 66 40.2 15 40.2 0.0 40 1772 1 0.0 39.8 66 39.8 15 39.8 0.0 41 1773 1 0.0 39.7 66 39.7 15 39.7 0.0 42 1774 1 0.0 39.4 66 39.4 15 39.4 0.0 43 1775 1 0.0 39.3 66 39.0 15 39.0 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.3 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 40.0 46 40.0 15 40.0 0.0 48 1780 1 0.0 40.0 46 40.0 15 40.0 0.0		
40 1772 1 0.0 39.8 66 39.8 15 39.8 0.0 41 1773 1 0.0 39.7 66 39.7 15 39.7 0.0 42 1774 1 0.0 39.4 66 39.4 15 39.4 0.0 43 1775 1 0.0 39.0 66 39.0 15 39.0 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.3 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.7 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0	7	-7.0
41 1773 1 0.0 39.7 66 39.7 15 39.7 0.0 42 42 1774 1 0.0 39.4 66 39.4 15 39.4 0.0 40.0 43 1775 1 0.0 39.3 66 39.3 15 39.0 0.0 44 44 1777 1 0.0 39.3 66 39.3 15 39.3 0.0 5 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 6 46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 6 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.4 0.0 50 1782 1 0.0 40.5	•	-7.0
42 1774 1 0.0 39.4 66 39.4 15 39.4 0.0 43 1775 1 0.0 39.0 66 39.0 15 39.0 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.3 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0	7	-7.0
43 1775 1 0.0 39.0 66 39.0 15 39.0 0.0 44 1776 1 0.0 39.3 66 39.3 15 39.3 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1784 1 0.0 40.9 66 40.9 15 40.5 0	7	-7.0
44 1776 1 0.0 39.3 66 39.3 15 39.3 0.0 45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
45 1777 1 0.0 39.7 66 39.7 15 39.7 0.0 46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
46 1778 1 0.0 39.8 66 39.8 15 39.8 0.0 47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
47 1779 1 0.0 40.0 66 40.0 15 40.0 0.0 48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
48 1780 1 0.0 40.3 66 40.3 15 40.3 0.0 49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
49 1781 1 0.0 40.4 66 40.4 15 40.4 0.0 50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	- 7.0
50 1782 1 0.0 40.5 66 40.5 15 40.5 0.0 51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
51 1783 1 0.0 40.9 66 40.9 15 40.9 0.0 52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
52 1784 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
	7	-7.0
F2 470F 4 0.0 44.4 CC 44.4 4.5 44.4 0.0	7	-7.0
53 1785 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
54 1786 1 0.0 41.1 66 41.1 15 41.1 0.0	7	-7.0
55 1787 1 0.0 41.2 66 41.2 15 41.2 0.0	7	- 7.0
56 1788 1 0.0 41.2 66 41.2 15 41.2 0.0	7	- 7.0
57 1789 1 0.0 41.5 66 41.5 15 41.5 0.0	7	- 7.0
58 1790 1 0.0 41.6 66 41.6 15 41.6 0.0	7	-7.0
59 1791 1 0.0 41.6 66 41.6 15 41.6 0.0	7	- 7.0
60 1792 1 0.0 41.6 66 41.6 15 41.6 0.0	7	- 7.0
61 1793 1 0.0 41.7 66 41.7 15 41.7 0.0	7	-7.0
62 1794 1 0.0 41.7 66 41.7 15 41.7 0.0	7	-7.0
63 1795 1 0.0 41.6 66 41.6 15 41.6 0.0	7	-7.0
64 1796 1 0.0 41.6 66 41.6 15 41.6 0.0		-7.0
65 1797 1 0.0 41.6 66 41.6 15 41.6 0.0	7	-7.0

RESULTS: SOUND LEVELS					ENS	S2001				
66	1798	1 0.0	41.6	66	41.6	15	41.6	0.0	7	-7.0
67	1799	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
68	1800	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
69	1801	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
70	1802	1 0.0	41.8	66	41.8	15	41.8	0.0	7	-7.0
71	1803	1 0.0	41.8	66	41.8	15	41.8	0.0	7	-7.0
72	1804	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
73	1805	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
74	1806	1 0.0	41.6	66	41.6	15	41.6	0.0	7	-7.0
75	1807	1 0.0	41.5	66	41.5	15	41.5	0.0	7	-7.0
76	1808	1 0.0	41.5	66	41.5	15	41.5	0.0	7	-7.0
77	1809	1 0.0	41.5	66	41.5	15	41.5	0.0	7	-7.0
78	1810	1 0.0	41.3	66	41.3	15	41.3	0.0	7	-7.0
79	1811	1 0.0	41.2	66	41.2	15	41.2	0.0	7	-7.0
80	1812	1 0.0	41.0	66	41.0	15	41.0	0.0	7	-7.0
81	1813	1 0.0	40.9	66	40.9	15	40.9	0.0	7	-7.0
82	1814	1 0.0	40.7	66	40.7	15	40.7	0.0	7	-7.0
83	1815	1 0.0	40.3	66	40.3	15	40.3	0.0	7	-7.0
84	1816	1 0.0	40.2	66	40.2	15	40.2	0.0	7	-7.0
85	1817	1 0.0	39.8	66	39.8	15	39.8	0.0	7	-7.0
86	1818	1 0.0	39.4	66	39.4	15	39.4	0.0	7	-7.0
87	1819	1 0.0	39.9	66	39.9	15	39.9	0.0	7	-7.0
88	1820	1 0.0	40.2	66	40.2	15	40.2	0.0	7	-7.0
89	1821	1 0.0	40.4	66	40.4	15	40.4	0.0	7	-7.0
90	1822	1 0.0	40.6	66	40.6	15	40.6	0.0	7	-7.0
91	1823	1 0.0	40.8	66	40.8	15	40.8	0.0	7	-7.0
92	1824	1 0.0	40.9	66	40.9	15	40.9	0.0	7	-7.0
93	1825	1 0.0	40.9	66	40.9	15	40.9	0.0	7	-7.0
94	1826	1 0.0	41.1	66	41.1	15	41.1	0.0	7	-7.0
95	-	1 0.0	41.4	66	41.4	15	41.4	0.0	7	-7.0
96	1828	1 0.0	41.6	66	41.6	15	41.6	0.0	7	-7.0
97	1829	1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
98	1830	1 0.0	41.6	66	41.6	15	41.6	0.0	7	-7.0
99		1 0.0	41.7	66	41.7	15	41.7	0.0	7	-7.0
100		1 0.0	41.9	66	41.9	15	41.9	0.0	7	-7.0
101	1833	1 0.0	42.0	66	42.0	15	42.0	0.0	7	-7.0
102		1 0.0	42.2	66	42.2	15	42.2	0.0	7	-7.0
103	1835	1 0.0	42.2	66	42.2	15	42.2	0.0	7	-7.0
104		1 0.0	42.2	66	42.2	15	42.2	0.0	7	-7.0
105	1837	1 0.0	42.1	66	42.1	15	42.1	0.0	7	-7.0
106	1838	1 0.0	42.2	66	42.2	15	42.2	0.0	7	-7.0

107 1839 108 1840 109 1841 110 1842	1 0.0 1 0.0 1 0.0 1 0.0	42.2 42.2 42.3	66 66	42.2		 42.2	0.0	7	-7.0
109 1841	1 0.0		66	40.0					
		12.3		42.2	15	 42.2	0.0	7	-7.0
110 1842	1 0.0	42.5	66	42.3	15	 42.3	0.0	7	-7.0
		42.3	66	42.3	15	 42.3	0.0	7	-7.0
111 1843	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
112 1844	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
113 1845	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
114 1846	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
115 1847	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
116 1848	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
117 1849	1 0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
118 1851	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
119 1852	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
120 1853	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
121 1854	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
122 1855	1 0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
123 1856	1 0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
124 1857	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
125 1858	1 0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
126 1859	1 0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
127 1860	1 0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
128 1861	1 0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
129 1862	1 0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
130 1863	1 0.0	40.4	66	40.4	15	 40.4	0.0	7	
131 1864	1 0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
132 1865	1 0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
133 1866	1 0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
134 1867	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
135 1868	1 0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
136 1869	1 0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
137 1870	1 0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
138 1871	1 0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
139 1872	1 0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
140 1873	1 0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
141 1874	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
142 1875	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
143 1876	1 0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
144 1877	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
145 1878	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	
146 1879	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
147 1880	1 0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0

RESULTS: SOUND LEVE		4 -	0 10 0			ENS2001	 10.0	2.5		
148	1881		.0 42.9				42.9	0.0	7	-7.0
149	1882		.0 42.9				42.9	0.0	7	-7.0
150	1883		.0 43.0				43.0	0.0	7	-7.0
151	1884		.0 42.9				42.9	0.0	7	-7.0
152	1885		.0 43.1				43.1	0.0	7	-7.
153	1886		.0 43.1				43.1	0.0	7	-7 .
154	1887		.0 43.3				43.3	0.0	7	- 7.
155	1888	1 0	.0 43.2				43.2	0.0	7	- 7.
156	1889	1 0	.0 43.2				43.2	0.0	7	- 7.
157	1890	1 0	.0 43.2	66	43.2	! 15	 43.2	0.0	7	-7.
158	1891	1 0	.0 43.1	66	43.1	15	 43.1	0.0	7	-7.
159	1892	1 0	.0 43.2	66	43.2	15	 43.2	0.0	7	-7 .
160	1893	1 0	.0 43.1	66	43.1	15	 43.1	0.0	7	- 7.
161	1894	1 0	.0 43.0	66	43.0	15	 43.0	0.0	7	-7.
162	1895	1 0	.0 43.0	66	43.0	15	 43.0	0.0	7	- 7.
163	1896	1 0	.0 42.9	66	42.9	15	 42.9	0.0	7	-7.
164	1897	1 0	.0 42.8	66	42.8	15	 42.8	0.0	7	- 7.
165	1898	1 0	.0 42.7	66	42.7	15	 42.7	0.0	7	- 7.
166	1899	1 0	.0 42.7	66	42.7	15	 42.7	0.0	7	-7.
167	1900	1 0	.0 42.4	- 66	42.4	15	 42.4	0.0	7	- 7.
168	1901	1 0	.0 42.1	66	42.1	15	 42.1	0.0	7	- 7.
169	1902	1 0	.0 41.8	66	41.8	15	 41.8	0.0	7	- 7.
170	1903	1 0	.0 41.7	66	41.7	15	 41.7	0.0	7	- 7.
171	1904	1 0	.0 41.3	66	41.3	15	 41.3	0.0	7	- 7.
172	1905	1 0	.0 40.6	66	40.6	15	 40.6	0.0	7	-7.
173	1906	1 0	.0 41.0	66	41.0	15	 41.0	0.0	7	- 7.
174	1907	1 0	.0 41.5	66	41.5	15	 41.5	0.0	7	- 7.
175	1908	1 0	.0 41.7	66	41.7	15	 41.7	0.0	7	- 7.
176	1909	1 0	.0 42.1	66	42.1	15	 42.1	0.0	7	-7.
177	1910	1 0	.0 42.3	66	42.3	15	 42.3	0.0	7	- 7.
178	1911	1 0	.0 42.4	. 66	42.4	. 15	 42.4	0.0	7	-7.
179	1912	1 0	.0 42.5	66	42.5	15	 42.5	0.0	7	-7.
180	1913	1 0	.0 42.6			15	 42.6	0.0	7	-7.
181	1914	1 0	.0 42.7	66	42.7	15	 42.7	0.0	7	-7.
182	1915	1 0	.0 42.7				42.7	0.0	7	- 7.
183	1916		.0 42.8				42.8	0.0	7	-7.
184	1917		.0 43.1				43.1	0.0	7	-7.
185	1918		.0 43.3				43.3	0.0	7	-7 .
186	1919		.0 43.4				43.4	0.0	7	-7.
187	1920		.0 43.3				43.3	0.0	7	-7.
188	1921		.0 43.5				43.5	0.0	7	-7. -7.
100	1921	1 0	.0 43.0	, 00	+3.0	, 13	 43.5	0.0	1	-/.

RESULTS: SOUND LEVELS						ENS2001				
189	1922 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
190	1923 1	0.0	43.9	66	43.9	15	 43.9	0.0	7	-7.0
191	1924 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
192	1925 1	0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
193	1926 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
194	1927 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
195	1928 1	0.0	43.9	66	43.9	15	 43.9	0.0	7	-7.0
196	1929 1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
197	1930 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
198	1931 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
199	1932 1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
200	1933 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
201	1934 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
202	1935 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
203	1936 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
204	1937 1	0.0	44.0	66	44.0	15	 44.0	0.0	7	- 7.0
205	1938 1	0.0	43.9	66	43.9	15	 43.9	0.0	7	-7.0
206	1939 1	0.0	43.9	66	43.9	15	 43.9	0.0	7	-7.0
207	1940 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
208	1941 1	0.0	43.8	66	43.8	15	 43.8	0.0	7	-7.0
209	1942 1	0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
210	1943 1	0.0	43.2	66	43.2	15	 43.2	0.0	7	-7.0
211	1944 1	0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
212	1945 1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
213	1946 1	0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
214	1947 1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
215	1948 1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
216	1949 1	0.0	41.7	66	41.7	15	 41.7	0.0	7	- 7.0
217	1950 1	0.0	42.4	66	42.4	15	 42.4	0.0	7	- 7.0
218	1951 1	0.0	42.6	66	42.6		 42.6	0.0	7	-7.0
219	1952 1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
220	1953 1		43.1	66	43.1		 43.1	0.0	7	-7.0
221	1954 1	0.0	43.1	66	43.1		 43.1	0.0	7	-7.0
222	1955 1		43.4	66	43.4		 43.4	0.0	7	-7.0
223	1956 1	0.0		66	43.4		 43.4	0.0	7	-7.0
224	1957 1	0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
225	1958 1			66	43.5		 43.5	0.0	7	-7.0
226	1959 1			66	43.7		 43.7	0.0	7	-7.0
227	1960 1			66	44.1	15	 44.1	0.0	7	-7.0
228	1961 1			66	44.1		 44.1	0.0	7	-7.0
229	1962 1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS2001				
230	1963	1 0.0	44.3	66			 44.3	0.0	7	-7.0
231	1964	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
232	1965	1 0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
233	1966	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
234	1967	1 0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
235	1968	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
236	1969	1 0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
237	1970	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
238	1971	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
239	1972	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
240	1973	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
241	1974	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
242	1975	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
243	1976	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
244	1977	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
245	1978	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
246	1979	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
247	1980	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
248	1981	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
249	1982	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
250	1983	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
251	1984	1 0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
252	1985	1 0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
253	1986	1 0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
254	1987	1 0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
255	1988	1 0.0	43.9	66	43.9	15	 43.9	0.0	7	-7.0
256	1989	1 0.0	43.4	66	43.4	15	 43.4	0.0	7	-7.0
257	1990	1 0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
258	1991	1 0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
259	1992	1 0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
260	1993	1 0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
261	1994	1 0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
262	1995	1 0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
263	1996	1 0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
264	1997	1 0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
265	1998	1 0.0	44.5	66	44.5		 44.5		7	-7.0
266	1999	1 0.0	44.5	66			 44.5		7	-7.0
267	2000	1 0.0	44.5	66			 44.5		7	-7.0
268	2001	1 0.0	44.5	66			 44.5	0.0	7	-7.0
269	2002	1 0.0	44.8	66			 44.8		7	-7.0
270	2003	1 0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0

7

RESULTS: SOUND LEVELS						ENS2001				
271	2004	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
272	2005	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
273	2006	1 0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
274	2007	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
275	2008	1 0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
276	2009	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
277	2010	1 0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
278	2011	1 0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
279	2012	1 0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
280	2013	1 0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
281	2014	1 0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
282	2015	1 0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
283	2016	1 0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
284	2017	1 0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
285	2018	1 0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
286	2019	1 0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
287	2020	1 0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
288	2021	1 0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
289	2022	1 0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
290	2023	1 0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
291	2024	1 0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
292	2025	1 0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
293	2026	1 0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
294	2027	1 0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
295	2028	1 0.0	45.9	66	45.9	15	 45.9	0.0	7	-7.0
296	2029	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
297	2031	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
298	2032	1 0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
299	2033	1 0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
300	2034	1 0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
301	2035	1 0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
302	2036	1 0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
303	2037	1 0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
304	2038	1 0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
305	2039	1 0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
306	2040	1 0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
307	2041	1 0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
308	2042	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
309	2043	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
310	2044	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
311	2045	1 0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0

RESULTS: SOUND LEVELS						ENS	2001				
312	2046	1	0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
313	2047	1	0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
314	2048	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
315	2049	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
316	2050	1	0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
317	2051	1	0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
318	2052	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
319	2053	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	-7.0
320	2054	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
321	2055	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
322	2056	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
323	2057	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
324	2058	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
325	2059	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
326	2060	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
327	2061	1	0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
328	2062	1	0.0	47.7	66	47.7	15	 47.7	0.0	7	-7.0
329	2063	1	0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
330	2064	1	0.0	47.9	66	47.9	15	 47.9	0.0	7	-7.0
331	2065	1	0.0	48.0	66	48.0	15	 48.0	0.0	7	-7.0
332	2066	1	0.0	48.1	66	48.1	15	 48.1	0.0	7	-7.0
333	2067	1	0.0	48.2	66	48.2	15	 48.2	0.0	7	-7.0
334	2068	1	0.0	48.1	66	48.1	15	 48.1	0.0	7	-7.0
335	2069	1	0.0	48.3	66	48.3	15	 48.3	0.0	7	-7.0
336	2070	1	0.0	48.1	66	48.1	15	 48.1	0.0	7	-7.0
337	2071	1	0.0	47.9	66	47.9	15	 47.9	0.0	7	-7.0
338	2072	1	0.0	47.8	66	47.8	15	 47.8	0.0	7	-7.0
339	2073	1	0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
340	2074	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
341	2075	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
342	2076	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
343	2077	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
344	2078	1	0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
345	2079	1	0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
346	2080	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
347	2081	1	0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
348	2082	1	0.0	46.6	66	46.6	15	 46.6	0.0	7	-7.0
349	2083	1	0.0	47.0	66	47.0	15	 47.0	0.0	7	-7.0
350	2084	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
351	2085	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
352	2086	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	-7.0

RESULTS: SOUND LEVELS						E	NS2001				
353	2087	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
354	2088	1	0.0	47.3	66	47.3	15	 47.3	0.0	7	-7.0
355	2089	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
356	2090	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
357	2091	1	0.0	47.6	66	47.6	15	 47.6	0.0	7	-7.0
358	2092	1	0.0	48.0	66	48.0	15	 48.0	0.0	7	-7.0
359	2093	1	0.0	48.2	66	48.2	15	 48.2	0.0	7	-7.0
360	2094	1	0.0	48.3	66	48.3	15	 48.3	0.0	7	-7.0
361	2095	1	0.0	48.7	66	48.7	15	 48.7	0.0	7	
362	2096	1	0.0	48.8	66	48.8	15	 48.8	0.0	7	
363	2097	1	0.0	48.9	66	48.9	15	 48.9	0.0	7	-7.0
364	2098	1	0.0	49.0	66	49.0	15	 49.0	0.0	7	
365	2099	1	0.0	49.0	66	49.0	15	 49.0	0.0	7	
366	2100	1	0.0	49.1	66	49.1	15	 49.1	0.0	7	_
367	2101	1	0.0	49.3	66		15	 49.3	0.0	7	
368	2102	1	0.0	49.4	66	49.4	15	 49.4	0.0	7	
369	2103	1	0.0	49.6	66	49.6	15	 49.6	0.0	7	
370	2104	1	0.0	49.8	66		15	 49.8	0.0	7	
371	2105	1	0.0	49.9	66	49.9	15	 49.9	0.0	7	
372	2106	1	0.0	50.1	66	50.1	15	 50.1	0.0	7	
373	2107	1	0.0	50.2	66	50.2	15	 50.2	0.0	7	
374	2108	1	0.0	50.3	66	50.3	15	 50.3	0.0	7	
375	2109	1	0.0	50.3	66	50.3	15	 50.3	0.0	7	
376	2110	1	0.0	50.5	66		15	 50.5	0.0	7	
377	2111	1	0.0	50.6	66		15	 50.6	0.0	7	
378	2112	1	0.0	50.7	66		15	 50.7	0.0	7	
379	2113	1	0.0	50.6	66	50.6	15	 50.6	0.0	7	
380	2114	1	0.0	50.4	66		15	 50.4	0.0	7	
381	2116	1	0.0	50.3	66		15	 50.3	0.0	7	
382	2117	1	0.0	50.1	66		15	 50.1	0.0	7	
383	2118	1	0.0	50.3	66		15	 50.3	0.0	7	
384	2119	1	0.0	49.8	66		15	 49.8	0.0	7	
385	2120	1	0.0	49.4	66		15	 49.4	0.0	7	
386	2121	1	0.0	48.7	66	48.7	15	 48.7	0.0	7	
387	2122	1	0.0	47.6	66	47.6	15	 47.6	0.0	7	
388	2123	1	0.0	46.7	66		15	 46.7	0.0	7	
389	2124	1	0.0	47.6	66		15	 47.6	0.0	7	
390	2125	1	0.0	48.3	66		15	 48.3	0.0	7	
391	2126	1	0.0	48.9	66		15	 48.9	0.0	7	
392	2127	1	0.0	49.0	66		15	 49.0	0.0	7	
393	2128	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0

RESULTS: SOUND LEVELS

ENS2001

							-1402001				
394	2129	1	0.0	49.3	66	49.3	15	 49.3	0.0	7	-7.0
395	2130	1	0.0	49.4	66	49.4	15	 49.4	0.0	7	-7.0
396	2131	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
397	2132	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
398	2133	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
399	2134	1	0.0	49.5	66	49.5	15	 49.5	0.0	7	-7.0
400	2135	1	0.0	49.7	66	49.7	15	 49.7	0.0	7	-7.0
401	2136	1	0.0	49.9	66	49.9	15	 49.9	0.0	7	-7.0
402	2137	1	0.0	50.4	66	50.4	15	 50.4	0.0	7	-7.0
403	2138	1	0.0	50.7	66	50.7	15	 50.7	0.0	7	-7.0
404	2139	1	0.0	50.9	66	50.9	15	 50.9	0.0	7	-7.0
405	2140	1	0.0	51.1	66	51.1	15	 51.1	0.0	7	-7.0
406	2141	1	0.0	51.3	66	51.3	15	 51.3	0.0	7	-7.0
407	2142	1	0.0	51.3	66	51.3	15	 51.3	0.0	7	-7.0
408	2143	1	0.0	51.4	66	51.4	15	 51.4	0.0	7	-7.0
409	2144	1	0.0	51.6	66	51.6	15	 51.6	0.0	7	-7.0
410	2145	1	0.0	51.9	66	51.9	15	 51.9	0.0	7	-7.0
411	2146	1	0.0	52.2	66	52.2	15	 52.2	0.0	7	-7.0
412	2147	1	0.0	52.5	66	52.5	15	 52.5	0.0	7	-7.0
413	2148	1	0.0	52.7	66	52.7	15	 52.7	0.0	7	-7.0
414	2149	1	0.0	52.8	66	52.8	15	 52.8	0.0	7	-7.0
415	2150	1	0.0	53.0	66	53.0	15	 53.0	0.0	7	-7.0
416	2151	1	0.0	53.1	66	53.1	15	 53.1	0.0	7	-7.0
417	2152	1	0.0	53.2	66	53.2	15	 53.2	0.0	7	-7.0
418	2153	1	0.0	53.4	66	53.4	15	 53.4	0.0	7	-7.0
419	2154	1	0.0	53.5	66	53.5	15	 53.5	0.0	7	-7.0
420	2155	1	0.0	54.0	66	54.0	15	 54.0	0.0	7	-7.0
421	2156	1	0.0	53.9	66	53.9	15	 53.9	0.0	7	-7.0
422	2157	1	0.0	53.9	66	53.9	15	 53.9	0.0	7	-7.0
423	2158	1	0.0	54.0	66	54.0	15	 54.0	0.0	7	-7.0
424	2159	1	0.0	53.9	66	53.9	15	 53.9	0.0	7	-7.0
425	2160	1	0.0	53.8	66	53.8	15	 53.8	0.0	7	-7.0
426	2161	1	0.0	53.6	66	53.6	15	 53.6	0.0	7	-7.0
427	2162	1	0.0	53.8	66	53.8	15	 53.8	0.0	7	-7.0
428	2163	1	0.0	53.3	66	53.3	15	 53.3	0.0	7	-7.0
429	2164	1	0.0	52.6	66	52.6	15	 52.6	0.0	7	-7.0
430	2165	1	0.0	50.9	66	50.9	15	 50.9	0.0	7	-7.0
431	2166	1	0.0	49.2	66	49.2	15	 49.2	0.0	7	-7.0
432	2167	1	0.0	50.4	66	50.4	15	 50.4	0.0	7	-7.0
433	2168	1	0.0	51.4	66	51.4	15	 51.4	0.0	7	-7.0
434	2169	1	0.0	52.0	66	52.0	15	 52.0	0.0	7	-7.0

RESULTS: SOUND LEVELS					E	NS2001				
435	2170	1 0.0	52.4	66	52.4	15	 52.4	0.0	7	
436	2171	1 0.0	52.2	66	52.2	15	 52.2	0.0	7	-7.0
437	2172	1 0.0	52.4	66	52.4	15	 52.4	0.0	7	-7.0
438	2173	1 0.0	52.4	66	52.4	15	 52.4	0.0	7	-7.0
439	2174	1 0.0	52.6	66	52.6	15	 52.6	0.0	7	-7.0
440	2175	1 0.0	52.5	66	52.5	15	 52.5	0.0	7	-7.0
441	2176	1 0.0	52.5	66	52.5	15	 52.5	0.0	7	-7.0
442	2177	1 0.0	52.5	66	52.5	15	 52.5	0.0	7	-7.0
443	2178	1 0.0	52.7	66	52.7	15	 52.7	0.0	7	-7.0
444	2179	1 0.0	53.1	66	53.1	15	 53.1	0.0	7	-7.0
445	2180	1 0.0	53.4	66	53.4	15	 53.4	0.0	7	-7.0
446	2181	1 0.0	53.8	66	53.8	15	 53.8	0.0	7	-7.0
447	2182	1 0.0	54.2	66	54.2	15	 54.2	0.0	7	-7.0
448	2183	1 0.0	54.6	66	54.6	15	 54.6	0.0	7	-7.0
449	2184	1 0.0	54.7	66	54.7	15	 54.7	0.0	7	-7.0
450	2185	1 0.0	54.8	66	54.8	15	 54.8	0.0	7	-7.0
451	2186	1 0.0	55.0	66	55.0	15	 55.0	0.0	7	-7.0
452	2187	1 0.0	55.2	66	55.2	15	 55.2	0.0	7	-7.0
453	2188	1 0.0	55.5	66	55.5	15	 55.5	0.0	7	-7.0
454	2189	1 0.0	56.0	66	56.0	15	 56.0	0.0	7	-7.0
455	2190	1 0.0	56.4	66	56.4	15	 56.4	0.0	7	-7.0
456	2191	1 0.0	56.7	66	56.7	15	 56.7	0.0	7	-7.0
457	2192	1 0.0	56.9	66	56.9	15	 56.9	0.0	7	-7.0
458	2193	1 0.0	57.0	66	57.0	15	 57.0	0.0	7	-7.0
459	2194	1 0.0	57.1	66	57.1	15	 57.1	0.0	7	-7.0
460	2195	1 0.0	57.4	66	57.4	15	 57.4	0.0	7	-
461	2196	1 0.0	57.7	66	57.7	15	 57.7	0.0	7	-7.0
462	2197	1 0.0	58.0	66	58.0	15	 58.0	0.0	7	-7.0
463	2198	1 0.0	58.0	66	58.0	15	 58.0	0.0	7	-7.0
464	2199	1 0.0	58.2	66	58.2	15	 58.2	0.0	7	-7.0
465	2200	1 0.0	58.6	66	58.6	15	 58.6	0.0	7	-7.0
466	2201	1 0.0	58.9	66	58.9	15	 58.9	0.0	7	-7.0
467	2202	1 0.0	59.0	66	59.0	15	 59.0	0.0	7	-7.0
468	2203	1 0.0	58.8	66	58.8	15	 58.8	0.0	7	-7.0
469	2204	1 0.0	58.8	66	58.8	15	 58.8	0.0	7	-7.0
470	2205	1 0.0	59.1	66	59.1	15	 59.1	0.0	7	-7.0
471	2206	1 0.0	59.4	66	59.4	15	 59.4	0.0	7	-7.0
472	2207	1 0.0	59.4	66	59.4	15	 59.4	0.0	7	-7.0
473	2208	1 0.0	56.8	66	56.8	15	 56.8	0.0	7	-7.0
474	2209	1 0.0	52.9	66	52.9	15	 52.9	0.0	7	
475	2210	1 0.0	54.4	66	54.4	15	 54.4	0.0	7	-7.0

RESULTS: SOUND LEVELS						i	ENS2001					
476	2211	1	0.0	55.2	66	55.2	15		55.2	0.0	7	-7.0
477	2212	1	0.0	55.9	66	55.9	15		55.9	0.0	7	-7.0
478	2213	1	0.0	56.1	66	56.1	15		56.1	0.0	7	-7.0
479	2214	1	0.0	56.2	66	56.2	15		56.2	0.0	7	-7.0
480	2215	1	0.0	56.3	66	56.3	15		56.3	0.0	7	-7.0
481	2216	1	0.0	56.6	66	56.6	15		56.6	0.0	7	-7.0
482	2217	1	0.0	56.6	66	56.6	15		56.6	0.0	7	-7.0
483	2218	1	0.0	56.6	66	56.6	15		56.6	0.0	7	-7.0
484	2219	1	0.0	56.6	66	56.6	15		56.6	0.0	7	-7.0
485	2220	1	0.0	56.6	66	56.6	15		56.6	0.0	7	-7.0
486	2221	1	0.0	56.9	66	56.9	15		56.9	0.0	7	-7.0
487	2222	1	0.0	57.6	66	57.6	15		57.6	0.0	7	-7.0
488	2223	1	0.0	58.4	66	58.4	15		58.4	0.0	7	-7.0
489	2224	1	0.0	58.5	66	58.5	15		58.5	0.0	7	-7.0
490	2225	1	0.0	59.1	66	59.1	15		59.1	0.0	7	-7.0
491	2226	1	0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
492	2227	1	0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
493	2228	1	0.0	59.9	66	59.9	15		59.9	0.0	7	-7.0
494	2229	1	0.0	60.3	66	60.3	15		60.3	0.0	7	-7.0
495	2230	1	0.0	60.8	66	60.8	15		60.8	0.0	7	-7.0
496	2231	1	0.0	61.4	66	61.4	15		61.4	0.0	7	-7.0
497	2232	1	0.0	62.2	66	62.2	15		62.2	0.0	7	-7.0
498	2233	1	0.0	63.2	66	63.2	15		63.2	0.0	7	-7.0
499	2234	1	0.0	64.1	66	64.1	15		64.1	0.0	7	-7.0
500	2235	1	0.0	63.8	66	63.8	15		63.8	0.0	7	-7.0
501	2236	1	0.0	64.2	66	64.2	15		64.2	0.0	7	-7.0
502	2237	1	0.0	65.5	66	65.5	15		65.5	0.0	7	-7.0
503	2238	1	0.0	66.4	66	66.4	15	Snd Lvl	66.4	0.0	7	-7.0
504	2239	1	0.0	66.9	66	66.9	15	Snd Lvl	66.9	0.0	7	-7.0
505	2240	1	0.0	67.0	66	67.0	15	Snd Lvl	67.0	0.0	7	-7.0
506	2241	1	0.0	68.6	66	68.6	15	Snd Lvl	68.6	0.0	7	-7.0
507	2242	1	0.0	69.9	66	69.9	15	Snd Lvl	69.9	0.0	7	-7.0
508	2243	1	0.0	71.3	66	71.3	15	Snd Lvl	71.3	0.0	7	-7.0
509	2244	1	0.0	72.8	66	72.8	15	Snd Lvl	72.8	0.0	7	-7.0
510	2245	1	0.0	74.8	66	74.8	15	Snd Lvl	74.8	0.0	7	-7.0
511	2246	1	0.0	76.3	66	76.3		Snd Lvl	76.3	0.0	7	-7.0
514	2249	1	0.0	75.6	66	75.6		Snd Lvl	75.6	0.0	7	-7.0
515	2250	1	0.0	72.7	66	72.7	15	Snd Lvl	72.7	0.0	7	-7.0
516	2251	1	0.0	64.5	66	64.5	15		64.5	0.0	7	-7.0
517	2252	1	0.0	58.0	66	58.0	15		58.0	0.0	7	-7.0
518	2253	1	0.0	60.3	66	60.3	15		60.3	0.0	7	-7.0

RESULTS: SOUND LEVELS							ENS2001			T		
519	2254	1	0.0	61.8	66	61.8	15		61.8	0.0		-7.0
520	2255	1	0.0	63.0	66	63.0	15		63.0	0.0	7	-7.0
521	2256	1	0.0	62.8	66	62.8	15		62.8	0.0	7	-7.0
522	2257	1	0.0	62.7	66	62.7	15		62.7	0.0	7	-7.0
523	2258	1	0.0	63.2	66	63.2	15		63.2	0.0	7	-7.0
524	2259	1	0.0	63.8	66	63.8	15		63.8	0.0	7	-7. C
525	2260	1	0.0	64.8	66	64.8	15		64.8	0.0	7	-7. 0
526	2261	1	0.0	65.3	66	65.3	15		65.3	0.0	7	-7.C
527	2262	1	0.0	66.2	66	66.2	15	Snd Lvl	66.2	0.0	7	-7.C
528	2263	1	0.0	66.5	66	66.5	15	Snd Lvl	66.5	0.0	7	-7.C
529	2264	1	0.0	68.5	66	68.5	15	Snd Lvl	68.5	0.0	7	-7.0
530	2265	1	0.0	69.6	15	69.6	15	Snd Lvl	69.6	0.0	7	-7.0
531	2266	1	0.0	71.2	66	71.2	15	Snd Lvl	71.2	0.0	7	-7.0
532	2267	1	0.0	72.7	66	72.7	15	Snd Lvl	72.7	0.0	7	-7.0
533	2268	1	0.0	75.7	66	75.7	15	Snd Lvl	75.7	0.0	7	-7.0
534	2269	1	0.0	79.3	66	79.3	15	Snd Lvl	79.3	0.0	7	-7.0
537	2272	1	0.0	75.9	66	75.9	15	Snd Lvl	75.9	0.0	7	-7.0
538	2273	1	0.0	73.1	66	73.1	15	Snd Lvl	73.1	0.0	7	-7.0
539	2274	1	0.0	72.1	66	72.1	15	Snd Lvl	72.1	0.0	7	-7.0
540	2275	1	0.0	71.0	66	71.0	15	Snd Lvl	71.0	0.0	7	-7.0
541	2276	1	0.0	67.8	66	67.8	15	Snd Lvl	67.8	0.0	7	-7.0
542	2277	1	0.0	69.5	66	69.5	15	Snd Lvl	69.5	0.0	7	-7.0
543	2278	1	0.0	67.6	66	67.6	15	Snd Lvl	67.6	0.0	7	-7.C
544	2279	1	0.0	65.9	66	65.9	15		65.9	0.0	7	-7.0
545	2280	1	0.0	65.2	66	65.2	15		65.2	0.0	7	-7.0
546	2281	1	0.0	64.5	66	64.5	15		64.5	0.0	7	-7.0
547	2282	1	0.0	65.1	66	65.1	15		65.1	0.0	7	-7.0
548	2283	1	0.0	64.0	66	64.0	15		64.0	0.0	7	-7.C
549	2284	1	0.0	63.4	66	63.4	15		63.4	0.0	7	-7.0
550	2285	1	0.0	63.0	66	63.0	15		63.0	0.0	7	-7.0
551	2286	1	0.0	62.7	66	62.7	15		62.7	0.0	7	-7.0
552	2287	1	0.0	62.2	66	62.2	15		62.2	0.0	7	-7.C
553	2288	1	0.0	60.5	66	60.5	15		60.5	0.0	7	-7.0
554	2289	1	0.0	59.7	66	59.7	15		59.7	0.0	7	-7.C
555	2290	1	0.0	58.7	66	58.7	15		58.7	0.0	7	-7.0
556	2291	1		58.5	66	58.5	15		58.5			-7.0
557	2292	1		57.8	66	57.8	15		57.8		7	-7.0
558	2293	1		56.9	66	56.9	15		56.9			-7.C
559	2294	1	0.0	54.1	66	54.1	15		54.1			-7.0
560	2295	1		74.6	66	74.6	15		74.6			-7.0
561	2296	1		73.4	66	73.4		Snd Lvl	73.4			
		•	5.0			. 0.7	10		, 0.7	0.0		, , ,

RESULTS: SOUND LEVELS						E	NS2001					
562	2297	1	0.0	70.7	66	70.7	15	Snd Lvl	70.7	0.0	7	-7.0
563	2298	1	0.0	70.8	66	70.8	15	Snd Lvl	70.8	0.0	7	-7.0
564	2299	1	0.0	69.4	66	69.4	15	Snd Lvl	69.4	0.0	7	-7.0
565	2300	1	0.0	67.8	66	67.8	15	Snd Lvl	67.8	0.0	7	-7.0
566	2301	1	0.0	66.7	66	66.7	15	Snd Lvl	66.7	0.0	7	-7.0
567	2302	1	0.0	65.5	66	65.5	15		65.5	0.0	7	-7.0
568	2303	1	0.0	64.6	66	64.6	15		64.6	0.0	7	-7.0
569	2304	1	0.0	64.2	66	64.2	15		64.2	0.0	7	-7.0
570	2305	1	0.0	63.4	66	63.4	15		63.4	0.0	7	-7.0
571	2306	1	0.0	62.5	66	62.5	15		62.5	0.0	7	
572	2307	1	0.0	62.2	66	62.2	15		62.2	0.0	7	-7.0
573	2308	1	0.0	61.7	66	61.7	15		61.7	0.0	7	
574	2309	1	0.0	60.8	66	60.8	15		60.8	0.0	7	
575	2310	1	0.0	60.1	66	60.1	15		60.1	0.0	7	-7.0
576	2311	1	0.0	60.3	66		15		60.3	0.0	7	-7.0
577	2312	1	0.0	60.3	66	60.3	15		60.3	0.0	7	-7.0
578	2313	1	0.0	60.0	66	60.0	15		60.0	0.0	7	-7.0
579	2314	1	0.0	59.6	66	59.6	15		59.6	0.0	7	-7.0
580	2315	1	0.0	59.2	66	59.2	15		59.2	0.0	7	-7.0
581	2316	1	0.0	58.9	66	58.9	15		58.9	0.0	7	-7.0
582	2317	1	0.0	58.5	66	58.5	15		58.5	0.0	7	
583	2318	1	0.0	58.4	66	58.4	15		58.4	0.0	7	
584	2319	1	0.0	58.7	66	58.7	15		58.7	0.0	7	
585	2320	1	0.0	58.7	66	58.7	15		58.7	0.0	7	
586	2321	1	0.0	58.2	66		15		58.2	0.0	7	
587	2322	1	0.0	57.8	66		15		57.8	0.0	7	
588	2323	1	0.0	57.4	66	57.4	15		57.4	0.0	7	
589	2324	1	0.0	57.2	66		15		57.2	0.0	7	
590	2325	1	0.0	56.9	66		15		56.9	0.0	7	-7.0
591	2326	1	0.0	56.5	66		15		56.5	0.0	7	
592	2327	1	0.0	56.4	66		15		56.4	0.0	7	-7.0
593	2328	1	0.0	56.3	66		15		56.3	0.0	7	
594	2329	1	0.0	56.0	66	56.0	15		56.0	0.0	7	
595	2330	1	0.0	55.8	66	55.8	15		55.8	0.0	7	
596	2331	1	0.0	55.0	66	55.0	15		55.0	0.0	7	
597	2332	1	0.0	54.3	66		15		54.3	0.0	7	
598	2333	1	0.0	53.7	66		15		53.7	0.0	7	
599	2334	1	0.0	53.2	66		15		53.2	0.0	7	
600	2335	1	0.0	52.7	66		15		52.7	0.0	7	
601	2336	1	0.0	51.6	66		15		51.6	0.0	7	
602	2337	1	0.0	49.9	66	49.9	15		49.9	0.0	7	-7.0

RESULTS: SOUND LEVELS						1	ENS2001				
603	2338	1	0.0	56.7	66	56.7	15	 56.7	0.0	7	-7.0
604	2339	1	0.0	58.3	66	58.3	15	 58.3	0.0	7	-7.0
605	2340	1	0.0	58.6	66	58.6	15	 58.6	0.0	7	-7.0
606	2341	1	0.0	58.3	66	58.3	15	 58.3	0.0	7	-7.0
607	2342	1	0.0	58.4	66	58.4	15	 58.4	0.0	7	-7.0
608	2343	1	0.0	57.7	66	57.7	15	 57.7	0.0	7	-7.0
609	2344	1	0.0	57.3	66	57.3	15	 57.3	0.0	7	-7.0
610	2345	1	0.0	57.0	66	57.0	15	 57.0	0.0	7	-7.0
611	2346	1	0.0	56.6	66	56.6	15	 56.6	0.0	7	-7.0
612	2347	1	0.0	56.2	66	56.2	15	 56.2	0.0	7	-7.0
613	2348	1	0.0	55.7	66	55.7	15	 55.7	0.0	7	-7.0
614	2349	1	0.0	55.3	66	55.3	15	 55.3	0.0	7	-7.0
615	2350	1	0.0	55.0	66	55.0	15	 55.0	0.0	7	-7.0
616	2351	1	0.0	54.8	66	54.8	15	 54.8	0.0	7	-7.0
617	2352	1	0.0	54.6	66	54.6	15	 54.6	0.0	7	-7.0
618	15 4	1	0.0	54.6	66	54.6	15	 54.6	0.0	7	-7.0
619	2354	1	0.0	54.7	66	54.7	15	 54.7	0.0	7	-7.0
620	2355	1	0.0	54.7	66	54.7	15	 54.7	0.0	7	-7.0
621	2356	1	0.0	54.7	66	54.7	15	 54.7	0.0	7	-7.0
622	2357	1	0.0	54.5	66	54.5	15	 54.5	0.0	7	-7.0
623	2358	1	0.0	54.4	66	54.4	15	 54.4	0.0	7	-7.0
624	2359	1	0.0	54.3	66	54.3	15	 54.3	0.0	7	-7.0
625	2360	1	0.0	54.0	66	54.0	15	 54.0	0.0	7	-7.0
626	2361	1	0.0	54.1	66	54.1	15	 54.1	0.0	7	-7.0
627	2362	1	0.0	54.2	66	54.2	15	 54.2	0.0	7	-7.0
628	2363	1	0.0	54.2	66	54.2		 54.2	0.0	7	-7.0
629	2364	1	0.0	53.9	66	53.9		 53.9	0.0	7	-7.0
630	2365	1	0.0	53.6	66	53.6	15	 53.6	0.0	7	-7.0
631	2366	1	0.0	53.4	66	53.4	15	 53.4	0.0	7	-7.0
632	2367	1	0.0	53.1	66	53.1	15	 53.1	0.0	7	-7.0
633	2368	1	0.0	52.8	66	52.8		 52.8	0.0	7	
634	2370	1	0.0	52.6	66	52.6	15	 52.6	0.0	7	-7.0
635	2371	1	0.0	52.6	66	52.6		 52.6	0.0	7	-7.0
636	2372	1	0.0	52.4	66	52.4	15	 52.4	0.0	7	-7.0
637	2373	1	0.0	52.4	66	52.4	15	 52.4	0.0	7	-7.0
638	2374	1	0.0	51.8	66	51.8		 51.8	0.0	7	-7.0
639	2375	1	0.0	51.5	66	51.5	15	 51.5	0.0	7	-7.0
640	2376	1	0.0	50.7	66	50.7	15	 50.7	0.0	7	-7.0
641	2377	1	0.0	50.4	66	50.4	15	 50.4	0.0	7	-7.0
642	2378	1	0.0	50.0	66	50.0	15	 50.0	0.0	7	-7.0
643	2379	1	0.0	49.0	66	49.0	15	 49.0	0.0	7	-7.0

RESULTS: SOUND LEVELS							ENS2001			
644	2380	1	0.0	48.1	66	48.1	15	 48.1	0.0	7 -7.0
645	2381	1	0.0	46.9	66	46.9	15	 46.9	0.0	7 -7.0
646	2382	1	0.0	51.8	66	51.8	15	 51.8	0.0	7 -7.0
647	2383	1	0.0	53.0	66	53.0	15	 53.0	0.0	7 -7.0
648	2384	1	0.0	53.7	66	53.7	15	 53.7	0.0	7 -7.0
649	2385	1	0.0	53.6	66	53.6	15	 53.6	0.0	7 -7.0
650	2386	1	0.0	53.6	66	53.6	15	 53.6	0.0	7 -7.0
651	2387	1	0.0	53.4	66	53.4	15	 53.4	0.0	7 -7.0
652	2388	1	0.0	53.1	66	53.1	15	 53.1	0.0	7 -7.0
653	2389	1	0.0	52.8	66	52.8	15	 52.8	0.0	7 -7.0
654	2390	1	0.0	52.7	66	52.7	15	 52.7	0.0	7 -7.0
655	2391	1	0.0	52.4	66	52.4	15	 52.4	0.0	7 -7.0
656	2392	1	0.0	51.9	66	51.9	15	 51.9	0.0	7 -7.0
657	2393	1	0.0	51.5	66	51.5	15	 51.5	0.0	7 -7.0
658	2394	1	0.0	51.3	66	51.3	15	 51.3	0.0	7 -7.0
659	2395	1	0.0	51.1	66	51.1	15	 51.1	0.0	7 -7.0
660	2396	1	0.0	51.0	66	51.0	15	 51.0	0.0	7 -7.0
661	2397	1	0.0	51.0	66	51.0	15	 51.0	0.0	7 -7.0
662	2398	1	0.0	51.1	66	51.1	15	 51.1	0.0	7 -7.0
663	2399	1	0.0	51.2	66	51.2	15	 51.2	0.0	7 -7.0
664	2400	1	0.0	51.1	66	51.1	15	 51.1	0.0	7 -7.0
665	2401	1	0.0	51.2	66	51.2	15	 51.2	0.0	7 -7.0
666	2402	1	0.0	51.1	66	51.1	15	 51.1	0.0	7 -7.0
667	2403	1	0.0	50.9	66	50.9	15	 50.9	0.0	7 -7.0
668	2404	1	0.0	50.9	66	50.9	15	 50.9	0.0	7 -7.0
669	2405	1	0.0	50.9	66		15	 50.9		7 -7.0
670	2406	1	0.0	50.9	66	50.9	15	 50.9	0.0	
671	2407	1	0.0	51.0	66	51.0	15	 51.0	0.0	7 -7.0
672	2408	1	0.0	50.9	66	50.9	15	 50.9	0.0	7 -7.0
673	2409	1	0.0	50.5	66	50.5	15	 50.5		7 -7.0
674	2410	1	0.0	50.4	66	50.4	15	 50.4	0.0	
675	2411	1	0.0	50.1	66	50.1	15	 50.1		7 -7.0
676	2412	1	0.0	50.1	66	50.1	15	 50.1	0.0	7 -7.0
677	2413	1	0.0	49.9	66	49.9	15	 49.9	0.0	7 -7.0
678	2414	1	0.0	49.7	66	49.7	15	 49.7	0.0	
679	2415	1	0.0	49.6	66	49.6	15	 49.6		7 -7.0
680	2416	1	0.0	49.4	66	49.4	15	 49.4	0.0	7 -7.0
681	2417	1	0.0	49.1	66	49.1	15	 49.1	0.0	
682	2418	1	0.0	48.7	66	48.7	15	 48.7	0.0	7 -7.0
683	2419	1	0.0	48.5	66	48.5	15	 48.5		7 -7.0
684	2420	1	0.0	48.0	66	48.0	15	 48.0	0.0	7 -7.0

RESULTS: SOUND LEVELS							ENS2001			
685	2421	1	0.0	47.5	66	47.5	15	 47.5	0.0	7 -7.0
686	2422	1	0.0	46.5	66	46.5	15	 46.5	0.0	7 -7.0
687	2423	1	0.0	45.8	66	45.8	15	 45.8	0.0	7 -7.0
688	2424	1	0.0	44.9	66	44.9	15	 44.9	0.0	7 -7.0
689	2425	1	0.0	48.2	66	48.2	15	 48.2	0.0	7 -7.0
690	2426	1	0.0	49.3	66	49.3	15	 49.3	0.0	7 -7.0
691	2427	1	0.0	49.7	66	49.7	15	 49.7	0.0	7 -7.0
692	2428	1	0.0	50.0	66	50.0	15	 50.0	0.0	7 -7.0
693	2429	1	0.0	50.2	66	50.2	15	 50.2	0.0	7 -7.0
694	2430	1	0.0	50.0	66	50.0	15	 50.0	0.0	7 -7.0
695	2431	1	0.0	49.9	66	49.9	15	 49.9	0.0	7 -7.0
696	2432	1	0.0	49.7	66	49.7	15	 49.7	0.0	7 -7.0
697	2433	1	0.0	49.4	66	49.4	15	 49.4	0.0	7 -7.0
698	2434	1	0.0	49.2	66	49.2	15	 49.2	0.0	7 -7.0
699	2435	1	0.0	49.0	66	49.0	15	 49.0	0.0	7 -7.0
700	2436	1	0.0	48.8	66	48.8	15	 48.8	0.0	7 -7.0
701	2437	1	0.0	48.6	66	48.6	15	 48.6	0.0	7 -7.0
702	2438	1	0.0	48.5	66	48.5	15	 48.5	0.0	7 -7.0
703	2439	1	0.0	48.5	66	48.5	15	 48.5	0.0	7 -7.0
704	2440	1	0.0	48.5	66	48.5	15	 48.5	0.0	7 -7.0
705	2441	1	0.0	48.6	66	48.6	15	 48.6	0.0	7 -7.0
706	2442	1	0.0	48.6	66	48.6	15	 48.6	0.0	
707	2443	1	0.0	48.7	66	48.7	15	 48.7	0.0	7 -7.0
708	2444	1	0.0	48.7	66	48.7	15	 48.7	0.0	7 -7.0
709	2445	1	0.0	48.7	66	48.7	15	 48.7	0.0	7 -7.0
710	2446	1	0.0	48.6	66			 48.6	0.0	
711	2447	1	0.0	48.6	66	48.6	15	 48.6	0.0	
712	2448	1	0.0	48.7	66	48.7	15	 48.7	0.0	
713	2449	1	0.0	48.6	66	48.6	15	 48.6	0.0	
714	2450	1	0.0	48.7	66	48.7	15	 48.7	0.0	
715	2451	1	0.0	48.4	66	48.4	15	 48.4	0.0	
716	2452	1	0.0	48.3	66	48.3	15	 48.3	0.0	
717	2453	1	0.0	48.1	66	_	15	 48.1	0.0	
718	2454	1	0.0	47.9	66	47.9	15	 47.9	0.0	
719	2455	1	0.0	48.0	66	48.0	15	 48.0	0.0	
720	2456	1	0.0	47.7	66		15	 47.7	0.0	
721	2457	1	0.0	47.7	66	47.7	15	 47.7	0.0	
722	2458	1	0.0	47.5	66	47.5	15	 47.5	0.0	
723	2459	1	0.0	47.4	66		15	 47.4	0.0	
724	2460	1	0.0	47.2	66	47.2	15	 47.2	0.0	
725	2461	1	0.0	46.8	66	46.8	15	 46.8	0.0	7 -7.0

18

RESULTS: SOUND LEVELS						EN	NS2001				
726	2462	1	0.0	46.5	66	46.5	15	 46.5	0.0	7	-7.0
727	2463	1	0.0	46.2	66	46.2	15	 46.2	0.0	7	-7.0
728	2464	1	0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
729	2465	1	0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
730	2466	1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
731	2467	1	0.0	43.4	66	43.4	15	 43.4	0.0	7	-7.0
732	2468	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
733	2469	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
734	2470	1	0.0	47.1	66	47.1	15	 47.1	0.0	7	-7.0
735	2471	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
736	2472	1	0.0	47.7	66	47.7	15	 47.7	0.0	7	-7.0
737	2473	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
738	2474	1	0.0	47.5	66	47.5	15	 47.5	0.0	7	-7.0
739	2475	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
740	2476	1	0.0	47.4	66	47.4	15	 47.4	0.0	7	-7.0
741	2477	1	0.0	47.2	66	47.2	15	 47.2	0.0	7	-7.0
742	2478	1	0.0	47.0	66	47.0	15	 47.0	0.0	7	-7.0
743	2479	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
744	2480	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
745	2481	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
746	2482	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
747	2483	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
748	2484	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
749	2485	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
750	2486	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
751	2487	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
752	2488	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
753	2489	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
754	2490	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
755	2491	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
756	2498	1	0.0	46.9	66	46.9	15	 46.9	0.0	7	-7.0
757	2501	1	0.0	46.8	66	46.8	15	 46.8	0.0	7	-7.0
758	2502	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
759	2503	1	0.0	46.7	66	46.7	15	 46.7	0.0	7	-7.0
760	2504	1	0.0	46.4	66	46.4	15	 46.4	0.0	7	-7.0
761	2505	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	-7.0
762	2506	1	0.0	46.3	66	46.3	15	 46.3	0.0	7	- 7.0
763	2507	1	0.0	46.2	66	46.2	15	 46.2	0.0	7	- 7.0
764	2508	1	0.0	46.1	66	46.1	15	 46.1	0.0	7	-7.0
765	2509	1	0.0	46.0	66	46.0	15	 46.0	0.0	7	-7.0
766	2510	1	0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0

RESULTS: SOUND LEVELS						EN	NS2001				
767	2511	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
768	2512	1	0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
769	2513	1	0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
770	2514	1	0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
771	2515	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
772	2516	1	0.0	43.6	66	43.6	15	 43.6	0.0	7	-7.0
773	2517	1	0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
774	2518	1	0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
775	2519	1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
776	2520	1	0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0
777	2521	1	0.0	45.3	66	45.3	15	 45.3	0.0	7	-7.0
778	2522	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
779	2523	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
780	2524	1	0.0	45.8	66	45.8	15	 45.8	0.0	7	-7.0
781	2525	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
782	2526	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
783	2527	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
784	2528	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
785	2529	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
786	2530	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
787	2531	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
788	2532	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
789	2533	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
790	2534	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	- 7.0
791	2535	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	-7.0
792	2536	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	- 7.0
793	2537	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
794	2538	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
795	2539	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	- 7.0
796	2540	1	0.0	45.6	66	45.6	15	 45.6	0.0	7	-7.0
797	2541	1	0.0	45.7	66	45.7	15	 45.7	0.0	7	-7.0
798	2542	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	- 7.0
799	2543	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
800	2544	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
801	2545	1	0.0	45.5	66	45.5	15	 45.5	0.0	7	-7.0
802	2546	1	0.0	45.4	66	45.4	15	 45.4	0.0	7	- 7.0
803	2547	1	0.0	45.2	66	45.2	15	 45.2	0.0	7	-7.0
804	2548	1	0.0	45.1	66	45.1	15	 45.1	0.0	7	-7.0
805	2549	1	0.0	45.0	66	45.0	15	 45.0	0.0	7	-7.0
806	2550	1	0.0	44.9	66	44.9	15	 44.9	0.0	7	-7.0
807	2551	1	0.0	44.8	66	44.8	15	 44.8	0.0	7	-7.0

RESULTS: SOUND LEVELS						E	ENS2001				
808	2552	1	0.0	44.7	66	44.7	15	 44.7	0.0	7	-7.0
809	2553	1	0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
810	2554	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
811	2555	1	0.0	44.1	66	44.1	15	 44.1	0.0	7	-7.0
812	2556	1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
813	2557	1	0.0	43.5	66	43.5	15	 43.5	0.0	7	-7.0
814	2558	1	0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
815	2559	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
816	2560	1	0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
817	2561	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
818	2562	1	0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
819	2563	1	0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
820	2564	1	0.0	43.7	66	43.7	15	 43.7	0.0	7	-7.0
821	2565	1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0
822	2566	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
823	2567	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
824	2568	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
825	2569	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
826	2570	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
827	2571	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
828	2572	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
829	2573	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
830	2574	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
831	2575	1	0.0	44.3	66	44.3	15	 44.3	0.0	7	-7.0
832	2576	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
833	2577	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
834	2578	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
835	2579	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
836	2580	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
837	2581	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
838	2582	1	0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
839	2583	1	0.0	44.6	66	44.6	15	 44.6	0.0	7	-7.0
840	2584	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
841	2585	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
842	2586	1	0.0	44.5	66	44.5	15	 44.5	0.0	7	-7.0
843	2587	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
844	2588	1	0.0	44.4	66	44.4	15	 44.4	0.0	7	-7.0
845	2589	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
846	2590	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
847	2591	1	0.0	44.2	66	44.2	15	 44.2	0.0	7	-7.0
848	2592	1	0.0	44.0	66	44.0	15	 44.0	0.0	7	-7.0

RESULTS: SOUND LEVELS					EN	S2001				
849	2593	1 0.0	43.9	66	43.9	15	43.9	0.0	7	-7.0
850	2594	1 0.0	43.7	66	43.7	15	43.7	0.0	7	-7.0
851	2595	1 0.0	43.7	66	43.7	15	43.7	0.0	7	-7.0
852	2596	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
853	2597	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
854	2598	1 0.0	43.2	66	43.2	15	43.2	0.0	7	-7.0
855	2599	1 0.0	42.8	66	42.8	15	42.8	0.0	7	-7.0
856	2600	1 0.0	42.8	66	42.8	15	42.8	0.0	7	-7.0
857	2601	1 0.0	42.5	66	42.5	15	42.5	0.0	7	-7.0
858	2602	1 0.0	42.1	66	42.1	15	42.1	0.0	7	-7.0
859	2603	1 0.0	41.2	66	41.2	15	41.2	0.0	7	-7.0
860	2604	1 0.0	40.9	66	40.9	15	40.9	0.0	7	-7.0
861	2605	1 0.0	41.8	66	41.8	15	41.8	0.0	7	-7.0
862	2606	1 0.0	42.4	66	42.4	15	42.4	0.0	7	-7.0
863	2607	1 0.0	42.7	66	42.7	15	42.7	0.0	7	-7.0
864	2609	1 0.0	42.8	66	42.8	15	42.8	0.0	7	-7.0
865	2610	1 0.0	43.1	66	43.1	15	43.1	0.0	7	-7.0
866	2611	1 0.0	43.2	66	43.2	15	43.2	0.0	7	-7.0
867	2612	1 0.0	43.3	66	43.3	15	43.3	0.0	7	-7.0
868	2613	1 0.0	43.3	66	43.3	15	43.3	0.0	7	-7.0
869	2614	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
870	2615	1 0.0	43.3	66	43.3	15	43.3	0.0	7	-7.0
871	2616	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
872	2617	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
873	2618	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
874	2619	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
875	2620	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
876	2621	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
877	2622	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
878	2623	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
879	2624	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
880	2625	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
881	2626	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
882	2627	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
883	2628	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
884	2629	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
885	2630	1 0.0	43.6	66	43.6	15	43.6	0.0	7	-7.0
886	2631	1 0.0	43.5	66	43.5	15	43.5	0.0	7	-7.0
887	2632	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
888	2633	1 0.0	43.4	66	43.4	15	43.4	0.0	7	-7.0
889	2634	1 0.0	43.3	66	43.3	15	43.3	0.0	7	-7.0

RESULTS: SOUND LEVELS						EN	IS2001				
890	2635	1	0.0	43.3	66	43.3	15	 43.3	0.0	7	-7.0
891	2636	1	0.0	43.1	66	43.1	15	 43.1	0.0	7	-7.0
892	2637	1	0.0	43.0	66	43.0	15	 43.0	0.0	7	-7.0
893	2638	1	0.0	42.9	66	42.9	15	 42.9	0.0	7	-7.0
894	2639	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
895	2640	1	0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0
896	2641	1	0.0	42.5	66	42.5	15	 42.5	0.0	7	-7.0
897	2642	1	0.0	42.3	66	42.3	15	 42.3	0.0	7	-7.0
898	2643	1	0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
899	2644	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
900	2645	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
901	2646	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
902	2647	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
903	2649	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
904	2650	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
905	2651	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
906	2652	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
907	2653	1	0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
908	2654	1	0.0	42.1	66	42.1	15	 42.1	0.0	7	-7.0
909	2655	1	0.0	42.2	66	42.2	15	 42.2	0.0	7	-7.0
910	2656	1	0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
911	2657	1	0.0	42.4	66	42.4	15	 42.4	0.0	7	-7.0
912	2658	1	0.0	42.5	66	42.5	15	 42.5	0.0	7	- 7.0
913	2659	1	0.0	42.5	66	42.5	15	 42.5	0.0	7	- 7.0
914	2660	1	0.0	42.6	66	42.6	15	 42.6	0.0	7	- 7.0
915	2661	1	0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0
916	2662	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
917	2663	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
918	2664	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
919	2665	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
920	2666	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	-7.0
921	2667	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
922	2668	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
923	2669	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
924	2670	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
925	2671	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	-7.0
926	2672	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
927	2673	1	0.0	42.8	66	42.8	15	 42.8	0.0	7	- 7.0
928	2674	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	- 7.0
929	2675	1	0.0	42.7	66	42.7	15	 42.7	0.0	7	- 7.0
930	2676	1	0.0	42.6	66	42.6	15	 42.6	0.0	7	-7.0

RESULTS: SOUND LEVELS	ENS2001											
931	2677	1	0.0	42.7	66	42.7	15		42.7	0.0	7	-7.0
932	2678	1	0.0	42.6	66	42.6	15		42.6	0.0	7	-7.0
933	2679	1	0.0	42.5	66	42.5	15		42.5	0.0	7	-7.0
934	2680	1	0.0	42.4	66	42.4	15		42.4	0.0	7	-7.0
935	2681	1	0.0	42.3	66	42.3	15		42.3	0.0	7	-7.0
936	2682	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
937	2683	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
938	2684	1	0.0	41.8	66	41.8	15		41.8	0.0	7	-7.0
939	2685	1	0.0	41.8	66	41.8	15		41.8	0.0	7	-7.0
940	2686	1	0.0	41.5	66	41.5	15		41.5	0.0	7	-7.0
941	2688	1	0.0	41.5	66	41.5	15		41.5	0.0	7	-7.0
942	2689	1	0.0	41.3	66	41.3	15		41.3	0.0	7	-7.0
943	2690	1	0.0	40.6	66	40.6	15		40.6	0.0	7	-7.0
944	2691	1	0.0	40.8	66	40.8	15		40.8	0.0	7	-7.0
945	2692	1	0.0	40.0	66	40.0	15		40.0	0.0	7	-7.0
946	2693	1	0.0	39.6	66	39.6	15		39.6	0.0	7	-7.0
947	2694	1	0.0	40.2	66	40.2	15		40.2	0.0	7	-7.0
948	2695	1	0.0	40.8	66	40.8	15		40.8	0.0	7	-7.0
949	2696	1	0.0	40.9	66	40.9	15		40.9	0.0	7	-7.0
950	2697	1	0.0	41.1	66	41.1	15		41.1	0.0	7	-7.0
951	2698	1	0.0	41.3	66	41.3	15		41.3	0.0	7	-7.0
952	2699	1	0.0	41.5	66	41.5	15		41.5	0.0	7	-7.0
953	2700	1	0.0	41.6	66	41.6	15		41.6	0.0	7	-7.0
954	2701	1	0.0	41.7	66	41.7	15		41.7	0.0	7	-7.0
955	2702	1	0.0	41.7	66	41.7	15		41.7	0.0	7	-7.0
956	2703	1	0.0	41.8	66	41.8	15		41.8	0.0	7	-7.0
957	2704	1	0.0	41.9	66	41.9	15		41.9	0.0	7	-7.0
958	2705	1	0.0	42.0	66	42.0	15		42.0	0.0	7	-7.0
959	2706	1	0.0	42.0	66	42.0	15		42.0	0.0	7	-7.0
960	2707	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
961	2708	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
962	2709	1	0.0	42.0	66	42.0	15		42.0	0.0	7	-7.0
963	2710	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
964	2711	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
965	2712	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
966	2713	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
967	2714	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
968	2715	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
969	2716	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
970	2717	1	0.0	42.1	66	42.1	15		42.1	0.0	7	-7.0
971	2718	1	0.0	42.0	66	42.0	15		42.0	0.0	7	-7.0

RESULTS: SOUND LEVELS						ı	ENS2001				
972	2719	1	0.0	42.0	66	42.0	15	 42.0	0.0	7	-7.0
973	2720	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
974	2721	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
975	2722	1	0.0	41.9	66	41.9	15	 41.9	0.0	7	-7.0
976	2723	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
977	2724	1	0.0	41.8	66	41.8	15	 41.8	0.0	7	-7.0
978	2725	1	0.0	41.7	66	41.7	15	 41.7	0.0	7	-7.0
979	2726	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
980	2727	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
981	2728	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
982	2729	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
983	2730	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
984	2731	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
985	2732	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
986	2733	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
987	2734	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
988	2735	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
989	2736	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
990	2737	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
991	2738	1	0.0	39.9	66	39.9	15	 39.9	0.0	7	-7.0
992	2739	1	0.0	40.3	66	40.3	15	 40.3	0.0	7	-7.0
993	2740	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
994	2741	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
995	2742	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
996	2743	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
997	2744	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
998	2745	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
999	2746	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
1000	2747	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
1001	2748	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
1002	2749	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
1003	2750	1	0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
1004	2751	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1005	2752	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1006	2753	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1007	2754	1	0.0	41.6	66	41.6	15	 41.6	0.0	7	-7.0
1008	2755	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1009	2756	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1010	2757	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1011	2758	1	0.0	41.5	66	41.5	15	 41.5	0.0	7	-7.0
1010	0750	4	0.0	44 -	00	44 -	4-	44 =	0.0		7 0

2759

0.0

41.5

66

41.5

1012

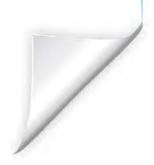
41.5

0.0

7

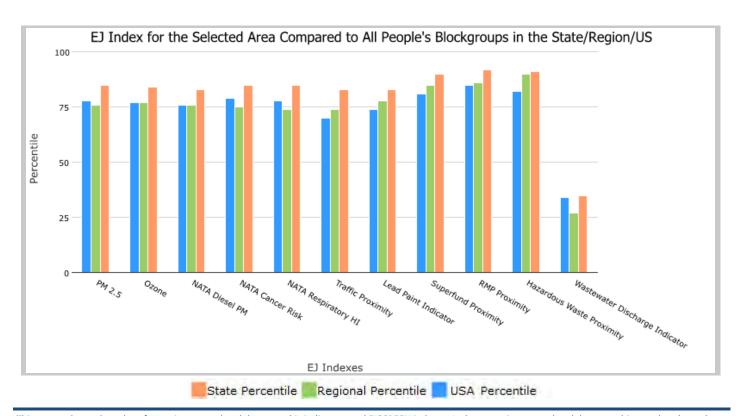
15

-7.0


RESULTS: SOUND LEVELS						EN	S2001				
1013	2760	1	0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
1014	2761	1	0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
1015	2762	1	0.0	41.4	66	41.4	15	 41.4	0.0	7	-7.0
1016	2763	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
1017	2764	1	0.0	41.3	66	41.3	15	 41.3	0.0	7	-7.0
1018	2765	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
1019	2766	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
1020	2767	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
1021	2768	1	0.0	41.2	66	41.2	15	 41.2	0.0	7	-7.0
1022	2769	1	0.0	41.1	66	41.1	15	 41.1	0.0	7	-7.0
1023	2771	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
1024	2772	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
1025	2773	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
1026	2774	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
1027	2775	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
1028	2776	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
1029	2777	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
1030	2778	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
1031	2779	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
1032	2780	1	0.0	38.8	66	38.8	15	 38.8	0.0	7	-7.0
1033	2781	1	0.0	39.1	66	39.1	15	 39.1	0.0	7	-7.0
1034	2782	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	-7.0
1035	2783	1	0.0	39.6	66	39.6	15	 39.6	0.0	7	-7.0
1036	2784	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
1037	2785	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
1038	2786	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
1039	2787	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
1040	2788	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
1041	2789	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
1042	2790	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
1043	2791	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
1044	2792	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
1045	2793	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
1046	2794	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1047	2795	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1048	2796	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
1049	2797	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
1050	2798	1	0.0	41.0	66	41.0	15	 41.0	0.0	7	-7.0
1051	2799	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1052	2800	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1053	2801	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0

RESULTS: SOUND LEVELS						E	NS2001				
1054	2802	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1055	2803	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1056	2804	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1057	2805	1	0.0	40.9	66	40.9	15	 40.9	0.0	7	-7.0
1058	2806	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
1059	2807	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
1060	2808	1	0.0	40.8	66	40.8	15	 40.8	0.0	7	-7.0
1061	2809	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	-7.0
1062	2810	1	0.0	40.7	66	40.7	15	 40.7	0.0	7	
1063	2811	1	0.0	40.6	66	40.6	15	 40.6	0.0	7	-7.0
1064	2812	1	0.0	40.5	66	40.5	15	 40.5	0.0	7	-7.0
1065	2813	1	0.0	40.4	66	40.4	15	 40.4	0.0	7	-7.0
1066	2814	1	0.0	40.2	66	40.2	15	 40.2	0.0	7	-7.0
1067	2815	1	0.0	40.1	66	40.1	15	 40.1	0.0	7	-7.0
1068	2816	1	0.0	40.0	66	40.0	15	 40.0	0.0	7	-7.0
1069	2817	1	0.0	39.8	66	39.8	15	 39.8	0.0	7	-7.0
1070	2818	1	0.0	39.7	66	39.7	15	 39.7	0.0	7	-7.0
1071	2819	1	0.0	39.5	66	39.5	15	 39.5	0.0	7	
1072	2820	1	0.0	39.2	66	39.2	15	 39.2	0.0	7	-7.0
1073	2821	1	0.0	39.0	66	39.0	15	 39.0	0.0	7	-7.0
1074	2822	1	0.0	38.6	66	38.6	15	 38.6	0.0	7	-7.0
1075	2823	1	0.0	38.4	66	38.4	15	 38.4	0.0	7	-7.0
Dwelling Units		# DUs	Noise Red	duction							
			Min	Avg	Max						
			dB	dB	dB						
All Selected		1071	0.0	0.0	0.0						
All Impacted		33	0.0	0.0	0.0						
All that meet NR Goal		0	0.0	0.0	0.0						

ATTACHMENT 8EJSCREEN Report


EJSCREEN Report (Version 2019)

1.0 miles Ring around the Area, TENNESSEE, EPA Region 4

Approximate Population: 5,466
Input Area (sq. miles): 5.96
Proposed Action Site

Selected Variables	State Percentile	EPA Region Percentile	USA Percentile
EJ Indexes			
EJ Index for PM2.5	85	76	78
EJ Index for Ozone	84	77	77
EJ Index for NATA* Diesel PM	83	76	76
EJ Index for NATA* Air Toxics Cancer Risk	85	75	79
EJ Index for NATA* Respiratory Hazard Index	85	74	78
EJ Index for Traffic Proximity and Volume	83	74	70
EJ Index for Lead Paint Indicator	83	78	74
EJ Index for Superfund Proximity	90	85	81
EJ Index for RMP Proximity	92	86	85
EJ Index for Hazardous Waste Proximity	91	90	82
EJ Index for Wastewater Discharge Indicator	35	27	34

This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

October 26, 2020 1/3

EJSCREEN Report (Version 2019)

1.0 miles Ring around the Area, TENNESSEE, EPA Region 4

Approximate Population: 5,466 Input Area (sq. miles): 5.96 Proposed Action Site

Sites reporting to EPA	
Superfund NPL	0
Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)	0

October 26, 2020 2/3

EJSCREEN Report (Version 2019)

1.0 miles Ring around the Area, TENNESSEE, EPA Region 4

Approximate Population: 5,466 Input Area (sq. miles): 5.96 Proposed Action Site

Selected Variables	Value	State Avg.	%ile in State	EPA Region Avg.	%ile in EPA Region	USA Avg.	%ile in USA
Environmental Indicators							
Particulate Matter (PM 2.5 in µg/m³)	9.16	9.04	57	8.59	66	8.3	74
Ozone (ppb)	43.9	44.4	38	40	68	43	51
NATA [*] Diesel PM (μg/m³)	0.459	0.396	67	0.417	60-70th	0.479	50-60th
NATA [*] Cancer Risk (lifetime risk per million)	38	35	76	36	60-70th	32	70-80th
NATA* Respiratory Hazard Index	0.53	0.48	74	0.52	50-60th	0.44	70-80th
Traffic Proximity and Volume (daily traffic count/distance to road)	150	260	64	350	55	750	42
Lead Paint Indicator (% Pre-1960 Housing)	0.064	0.2	32	0.15	45	0.28	31
Superfund Proximity (site count/km distance)	0.09	0.071	83	0.083	76	0.13	63
RMP Proximity (facility count/km distance)	0.8	0.53	80	0.6	76	0.74	71
Hazardous Waste Proximity (facility count/km distance)	0.95	0.61	81	0.52	84	4	63
Wastewater Discharge Indicator	2.7E-06	0.018	45	0.45	50	14	43
(toxicity-weighted concentration/m distance)							
Demographic Indicators							
Demographic Index	53%	32%	85	38%	75	36%	76
Minority Population	63%	26%	87	38%	77	39%	75
Low Income Population	43%	37%	62	37%	63	33%	70
Linguistically Isolated Population	0%	2%	66	3%	51	4%	45
Population With Less Than High School Education	12%	13%	50	13%	53	13%	60
Population Under 5 years of age	5%	6%	42	6%	44	6%	41
Population over 64 years of age	7%	15%	13	16%	13	15%	17

^{*} The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: https://www.epa.gov/national-air-toxics-assessment.

For additional information, see: www.epa.gov/environmentaljustice

EJSCREEN is a screening tool for pre-decisional use only. It can help identify areas that may warrant additional consideration, analysis, or outreach. It does not provide a basis for decision-making, but it may help identify potential areas of EJ concern. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports. This screening tool does not provide data on every environmental impact and demographic factor that may be relevant to a particular location. EJSCREEN outputs should be supplemented with additional information and local knowledge before taking any action to address potential EJ concerns.

October 26, 2020 3/3

EJSCREEN ACS Summary Report

Location: User-specified polygonal location

Ring (buffer): 1.0-miles radius
Description: Holmes Road

Summary of ACS Estimates	2013 - 2017
Population	5,761
Population Density (per sq. mile)	888
Minority Population	3,581
% Minority	62%
Households	1,788
Housing Units	1,962
Housing Units Built Before 1950	33
Per Capita Income	20,079
Land Area (sq. miles) (Source: SF1)	6.49
% Land Area	99%
Water Area (sq. miles) (Source: SF1)	0.08
% Water Area	1%

			. , ,
	2013 - 2017 ACS Estimates	Percent	MOE (±)
Population by Race			
Total	5,761	100%	727
Population Reporting One Race	5,705	99%	1,422
White	2,205	38%	594
Black	3,323	58%	542
American Indian	0	0%	18
Asian	29	1%	95
Pacific Islander	0	0%	18
Some Other Race	148	3%	155
Population Reporting Two or More Races	56	1%	173
Total Hispanic Population	140	2%	183
Total Non-Hispanic Population	5,621		
White Alone	2,180	38%	564
Black Alone	3,323	58%	542
American Indian Alone	0	0%	18
Non-Hispanic Asian Alone	29	1%	95
Pacific Islander Alone	0	0%	18
Other Race Alone	40	1%	61
Two or More Races Alone	49	1%	145
Population by Sex			
Male	2,948	51%	533
Female	2,813	49%	410
Population by Age			
Age 0-4	282	5%	211
Age 0-17	1,792	31%	411
Age 18+	3,969	69%	596
Age 65+	423	7%	174

Data Note: Detail may not sum to totals due to rounding. Hispanic population can be of any race. N/A means not available. **Source:** U.S. Census Bureau, American Community Survey (ACS) 2013 - 2017 ·

October 26, 2020 1/3

EJSCREEN ACS Summary Report

Location: User-specified polygonal location

Ring (buffer): 1.0-miles radius Description: Holmes Road

Population 25+ by Educational Attainment Total Less than 9th Grade 9th - 12th Grade, No Diploma High School Graduate Some College, No Degree Associate Degree Bachelor's Degree or more	3,525 99 340 1,181 1,275 254 630	100% 3% 10% 33% 36% 7%	442 167 144
Less than 9th Grade 9th - 12th Grade, No Diploma High School Graduate Some College, No Degree Associate Degree	99 340 1,181 1,275 254	3% 10% 33% 36%	167 144
9th - 12th Grade, No Diploma High School Graduate Some College, No Degree Associate Degree	340 1,181 1,275 254	10% 33% 36%	144
High School Graduate Some College, No Degree Associate Degree	1,181 1,275 254	33% 36%	
Some College, No Degree Associate Degree	1,275 254	36%	
Associate Degree	254		245
		70/	302
Bachelor's Degree or more	630	170	164
		18%	313
Population Age 5+ Years by Ability to Speak English			
Total	5,479	100%	624
Speak only English	5,258	96%	609
Non-English at Home ¹⁺²⁺³⁺⁴	221	4%	196
¹ Speak English "very well"	169	3%	149
² Speak English "well"	48	1%	77
³ Speak English "not well"	3	0%	38
⁴ Speak English "not at all"	1	0%	25
3+4Speak English "less than well"	4	0%	42
²⁺³⁺⁴ Speak English "less than very well"	52	1%	86
Linguistically Isolated Households*			
Total	1	100%	26
Speak Spanish	1	100%	19
Speak Other Indo-European Languages	0	0%	18
Speak Asian-Pacific Island Languages	0	0%	18
Speak Other Languages	0	0%	18
Households by Household Income			
Household Income Base	1,788	100%	182
<\$15,000	164	9%	70
\$15,000 - \$25,000	218	12%	84
\$25,000 - \$50,000	550	31%	158
\$50,000 - \$75,000	402	22%	170
\$75,000 +	454	25%	274
Occupied Housing Units by Tenure		2070	2
Total	1,788	100%	182
Owner Occupied	1,369	77%	187
Renter Occupied	419	23%	159
Employed Population Age 16+ Years	419	2370	109
Total	4,213	100%	514
In Labor Force	3,065	73%	484
Civilian Unemployed in Labor Force	285	7%	79
Not In Labor Force	1,148	27%	272

Data Note: Datail may not sum to totals due to rounding. Hispanic population can be of anyrace.

N/A means not available. Source: U.S. Census Bureau, American Community Survey (ACS)

October 26, 2020 2/3

^{*}Households in which no one 14 and over speaks English "very well" or speaks English only.

EJSCREEN ACS Summary Report

Location: User-specified polygonal location

Ring (buffer): 1.0-miles radius Description: Holmes Road

	2013 - 2017 ACS Estimates	Percent	MOE
llation by Language Spoken at Home*			
l (persons age 5 and above)	3,852	100%	
English	3,494	91%	۷
Spanish	327	8%	•
French	4	0%	
French Creole	N/A	N/A	1
Italian	N/A	N/A	1
Portuguese	N/A	N/A	ا
German	6	0%	
Yiddish	N/A	N/A	1
Other West Germanic	N/A	N/A	1
Scandinavian	N/A	N/A	1
Greek	N/A	N/A	1
Russian	N/A	N/A	1
Polish	N/A	N/A	1
Serbo-Croatian	N/A	N/A	1
Other Slavic	N/A	N/A	ı
Armenian	N/A	N/A	1
Persian	N/A	N/A	1
Gujarathi	N/A	N/A	1
Hindi	N/A	N/A	ı
Urdu	N/A	N/A	ı
Other Indic	N/A	N/A	1
Other Indo-European	8	0%	
Chinese	0	0%	
Japanese	N/A	N/A	ا
Korean	0	0%	
Mon-Khmer, Cambodian	N/A	N/A	1
Hmong	N/A	N/A	1
Thai	N/A	N/A	1
Laotian	N/A	N/A	1
Vietnamese	12	0%	
Other Asian	0	0%	
Tagalog	0	0%	
Other Pacific Island	N/A	N/A	1
Navajo	N/A	N/A	1
Other Native American	N/A	N/A	1
Hungarian	N/A	N/A	ا
Arabic	0	0%	
Hebrew	N/A	N/A	
African	N/A	N/A	1
Other and non-specified	0	0%	
Total Non-English	357	9%	(

Data Note: Detail may not sum to totals due to rounding. Hispanic popultion can be of any race. N/A means not available. **Source:** U.S. Census Bureau, American Community Survey (ACS) 2013 - 2017.

*Population by Language Spoken at Home is available at the census tract summary level and up.

October 26, 2020 3/3

NEPAssist Report

Proposed Action Site

Proposed Action Site

Schools
Churches

Churches

Project Buffer

		1.36,690		
0	0.38	0.75		1.5 m
0	0.5	1	2 km	

© 2020 Microsoft Corporation © 2020 Maxar ©CNES (2020) Distribution Airbus DS © 2020 TomTom, EPA OEI, OFA

Input Coordinates: 35.006160,-89.972033,35.006188,-89.963450,34.995051,-89.963278,34.9 89.971999,34.994967,-89.972033,35.006160,-89.972033	94967,-
Project Area	0.38 sq mi
Within 1 mile of an Ozone 8-hr (1997 standard) Non-Attainment/Maintenance Area?	yes
Within 1 mile of an Ozone 8-hr (2008 standard) Non-Attainment/Maintenance Area?	yes
Within 1 mile of a Lead (2008 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a SO2 1-hr (2010 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a PM2.5 24hr (2006 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a PM2.5 Annual (1997 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a PM2.5 Annual (2012 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a PM10 (1987 standard) Non-Attainment/Maintenance Area?	no
Within 1 mile of a Federal Land?	no
Within 1 mile of an impaired stream?	yes
Within 1 mile of an impaired waterbody?	no
Within 1 mile of a waterbody?	yes
Within 1 mile of a stream?	yes
Within 1 mile of an NWI wetland?	Available Online
Within 1 mile of a Brownfields site?	no
Within 1 mile of a Superfund site?	no
Within 1 mile of a Toxic Release Inventory (TRI) site?	yes
Within 1 mile of a water discharger (NPDES)?	yes
Within 1 mile of a hazardous waste (RCRA) facility?	yes

Within 1 mile of an air emission facility?	yes
Within 1 mile of a school?	no
Within 1 mile of an airport?	no
Within 1 mile of a hospital?	no
Within 1 mile of a designated sole source aquifer?	no
Within 1 mile of a historic property on the National Register of Historic Places?	no
Within 1 mile of a Toxic Substances Control Act (TSCA) site?	yes
Within 1 mile of a Land Cession Boundary?	yes
Within 1 mile of a tribal area (lower 48 states)?	no

Created on: 12/15/2020 9:46:34 AM

ATTACHMENT 9

Water Resources Information

National Flood Hazard Layer FIRMette

Legend SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLIL Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation - Coastal Transect Base Flood Elevation Line (BFE) Limit of Study **Jurisdiction Boundary** — --- Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature Digital Data Available

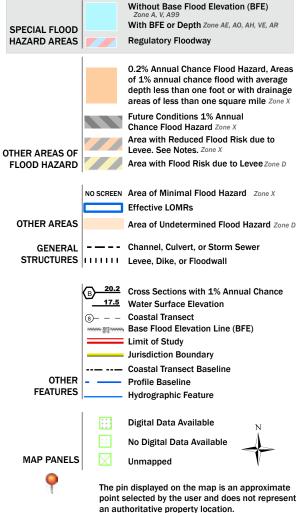
No Digital Data Available MAP PANELS Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/17/2020 at 12:00 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

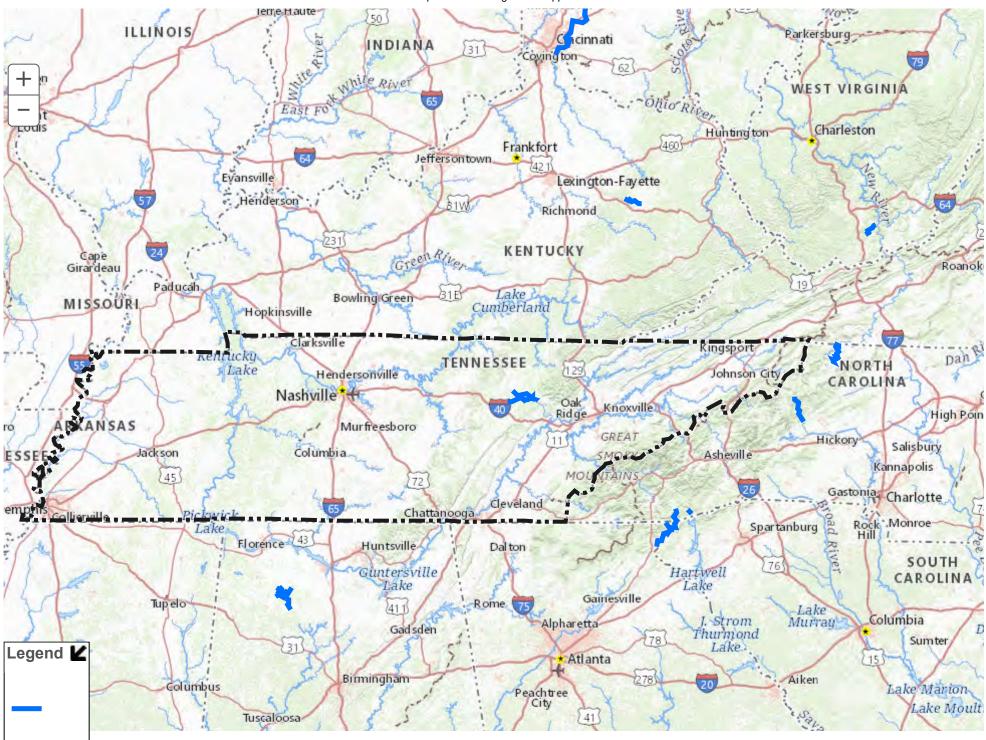
This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.



National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT



This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/17/2020 at 12:02 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

AQUATIC RESOURCE ASSESSMENT REPORT

250-ACRE TRACT AT EAST HOLMES ROAD AND SWINNEA ROAD SHELBY COUNTY, TENNESSEE

EnSafe Project Number: 0888821806

Prepared for:

Memphis-Shelby County Airport Authority 4225 Airways Boulevard Memphis, Tennessee 38116

June 2020

5724 Summer Trees Drive Memphis, Tennessee 38134 901-372-7962 | 800-588-7962 www.ensafe.com

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
2.0	SITE O	VERVIEW	1
	2.1	Clean Water Act Section 404 and 401 Potentially Jurisdictional Resources	2
	2.2	Non-jurisdictional Features	6
		TABLES	
Table	1	Wetland and Other Water Acreage and Location	4
Table 2	2	Stream Length and Termini	5
Table :	3	Wet Weather Conveyances Length and Termini	6
		ATTACHMENTS	
Attach	ment A	Site Figures	
Attach	ment B	TDEC Hydrologic Determination Field Data Sheets, Precipitation Table, and USACE Wetland Determination Data Forms	
Attach	ment C	Photo Log	

1.0 INTRODUCTION

EnSafe Inc. and Tioga Environmental Consultants Inc. conducted an aquatic assessment reconnaissance site visit on July 18, 2019, to assess for jurisdictional waters, including wetlands, streams, wet weather conveyances (WWCs), and other waters of the United States, on an approximately 250-acre tract southeast of the intersection of East Holmes Road and Swinnea Road in Memphis, Shelby County, Tennessee (Site). EnSafe conducted a formal delineation of aquatic resources at the Site on April 15 and 16, 2020, to verify the initial reconnaissance findings from 2019 and collect requisite data related to potentially jurisdictional aquatic resources for the purpose of obtaining formal concurrence from Tennessee Department of Environment and Conservation (TDEC).

Memphis-Shelby County Airport Authority (MSCAA) is proposing development within the Site, and these proposed impacts may require future permitting under the Clean Water Act (Sections 404 and 401) by the United States Army Corps of Engineers (USACE) and TDEC. The objective of this report is to support Section 404/401 permit applications that will allow for the development of the Site; additional details (e.g., preliminary design plans) will be provided as appropriate during the permitting process. As such, USACE and TDEC concurrences with a Preliminary Jurisdictional Determination and a Hydrologic Determination, respectively, would be used to avoid and/or minimize impacts to jurisdictional aquatic resources at the Site during a future permitting process.

Wetland delineation was conducted according to the USACE 1987 Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region Version 2.0 (Environmental Laboratory 2010) for wetlands. TDEC Guidance for Making Hydrologic Determinations (Version 1.5, April 2020) was used for stream determinations. Figures of the Site and surrounding area, including the Assessment findings, are included as Attachment A. Field data forms are documented as Attachment B, and Attachment C includes the photo log of features and conditions as observed during the Site visit.

2.0 SITE OVERVIEW

The Site is mostly within the Lower Nonconnah Creek watershed (Hydrologic Unit Code 080102110103); a portion of the Site, in the southwest quadrant, is within the Horn Lake Creek (Hydrologic Unit Code 080102110301) watershed. According to the Natural Resources Conservation Service, the soil types within the Site include: Collins silt loam, 0 to 2% slopes, occasionally flooded, brief duration; Falaya silt loam; Grenada complex, 5 to 12% slopes, severely eroded; Gullied land, silty(udorthent, silty); Loring silt loam, 2 to 5% slopes; Loring silt loam, 5 to 8% slopes, eroded; Loring silt loam, 5 to 12% slopes, severely eroded; Memphis silt loam, 2 to 5% slopes, eroded, north. Falaya silt loam, 5 to 12% slopes, severely eroded; Memphis silt loam, 2 to 5% slopes, eroded, north. Falaya silt loam

includes a minor hydric component (Waverly, 9%). The Site is identified on the National Wetland Inventory as potentially including freshwater ponds, linear freshwater forested/shrub wetlands, and riverine features.

2.1 Clean Water Act Section 404 and 401 Potentially Jurisdictional Resources

The Assessment identified 10 wetlands, six streams, and seven open water ponds that may be considered other waters, all of which may be TDEC-jurisdictional features based on hydrological connectivity to other aquatic resources and pursuant to Section 401 of the Clean Water Act (Tables 1, 2, and 3). Six upland data points were collected at locations in close proximity to wetlands, for reference purposes. Several of the linear aquatic features extended beyond the subject property, and assessment beyond the property boundary was not necessary due to the geographic scope of the proposed project.

Wetland 1 is comprised mostly of 60%/40% wetland/upland mosaic; there is an offshoot drainageway from Pond 5 into Wetland 1 that is excluded from the mosaic. Wetland 1 measures approximately 1.61 acres in size (including 1.14 acres of mosaic wetland). Wetland 1 receives drainage from Stream 1 that dissipates into overland surface water flow as it drains northward and eventually reconvenes into a stream at the downgradient terminus of Wetland 1 and continuing in a northwesterly direction as Stream 1. Wetland 1 vegetation is dominated by red maple (*Acer rubrum*), sweetgum (*Liquidambar styraciflua*), east woodland sedge (*Carex blanda*), and leathery rush (*Juncus coriaceus*).

Wetland 2 exhibits drainage patterns indicative of periods of overland sheet flow though most of its area, except for an upland "island" area present within Wetland 2. Wetland 2 measures approximately 0.35 acre in size. Hydrology is fed by seepage through the Pond 3 containment berm upgradient of Wetland 2. The perched water table observed is likely from shallow surface water surrounding the data collection point filling the soil pit. Wetland 2 vegetation is dominated by red maple, Chinese privet (*Ligustrum sinense*), American elm (*Ulmus americana*), and Virginia creeper (*Parthenocissus quinquefolia*).

Wetland 3 is a low-lying, mostly flat area just south of the toe of a slope that rises up to the gas pipeline easement cleared area; the wetland drains eastward into WWC 6. Wetland 3 measures approximately 0.13 acre in size. Wetland 3 vegetation is dominated by persimmon (*Diospyros virginiana*), water oak (*Quercus nigra*), silver maple (*Acer saccharinum*), Callery pear (*Pyrus calleryana*), Chinese privet, horsebrier (*Smilax rotundifolia*), and American elm.

Wetland 4 is a 60%/40% wetland/upland mosaic immediately upgradient of and adjacent to the inception of Stream 2. Wetland 4 measures approximately 0.19 acre in size and drains into

Stream 2. Surface water was observed in less than 50% of the wetland, and drainage patterns indicate times of overland sheet flow. Wetland 4 vegetation is dominated by American elm, Chinese privet, water oak, and American snowbell (*Styrax americanus*).

Wetland 5 is a winding drainageway, very narrow at some portions of its length, that drains into Stream 3. Wetland 5 measures approximately 0.25 acre in size. There is a shallow-ponded depressional area where the data was collected. Wetland 5 vegetation is dominated by American elm, sweetgum, Chinese privet, trumpet creeper (*Campsis radicans*), and Japanese honeysuckle (*Lonicera japonica*).

Wetlands 6 and 7 exhibit numerous puddles of shallow (approximately 1-2 inches deep) surface water and mucky surface soil within a drainageway where Stream 3 completely loses its morphology throughout these wetland areas. Wetlands 6 and 7 measure approximately 0.04 acre and 0.17 acre in size, respectively. Though not adjacent to each other, these wetlands are connected to each other and Wetland 5 through a drainageway (Stream 3). Dominant vegetation in common among these wetlands includes sweetgum, Chinese privet, American elm, and pignut hickory (*Carya glabra*).

Wetland 8 is an isolated depressional wetland at the toe of a slope and is not connected to any streams or WWCs. Wetland 8 measures approximately 0.01 acre in size. Wetland 8 vegetation is dominated by sweetgum, Chinese privet, and poison ivy (*Toxicodendron radicans*). Due to logistical constraints in the field, no USACE wetland determination data form was filled out for this feature.

Wetland 9 is a depressional feature that contained ponded surface water at the time of observation. Wetland 9 drains at the west end into WWC 9 and eventually into Wetland 10. Wetland 9 measures approximately 0.03 acre in size. Wetland 9 vegetation is dominated by sweetgum, cottonwood (*Populus deltoides*), water oak, American elm, privet, Indian wood-oats (*Chasmanthium latifolium*), and poison ivy.

Wetland 10 is a depressional area that receives hydrologic input at its east end from WWC 9, traversing through a low-elevation or breached point in a berm, and extending westward beyond the berm as a narrow drainageway that connects to Stream 5. Wetland 10 measures approximately 0.15 acre in size. Wetland 10 vegetation is dominated by cottonwood, sycamore (*Platanus occidentalis*), water oak, American elm, Chinese privet, Japanese stilt grass (*Microstegium vimineum*), and Virginia creeper. UPL 6 was taken as an upland reference point at the top of the berm that nearly bisects Wetland 10.

Table 1 provides approximate acreages and locations for onsite wetlands and ponds.

Wet	Table 1 Wetland and Other Water Acreage and Location		
Aquatic Resource	Approximate Acreage	Approximate Location	
Wetland 1	1.61	34.997631°, -89.965395°	
Wetland 2	0.35	34.999768°, -89.969078°	
Wetland 3	0.13	35.004463°, -89.966759°	
Wetland 4	0.19	35.001613°, -89.964715°	
Wetland 5	0.25	35.001480°, -89.964156°	
Wetland 6	0.04	35.002069°, -89.963553°	
Wetland 7	0.17	35.003052°, -89.963711°	
Wetland 8	0.01	35.004933°, -89.969684°	
Wetland 9	0.03	34.996997°, -89.968801°	
Wetland 10	0.15	34.996614°, -89.969313°	
Pond 1	0.13	35.003108°, -89.969937°	
Pond 2	0.82	35.000556°, -89.970864°	
Pond 3	0.67	34.999141°, -89.969426°	
Pond 4	0.14	34.996871°, -89.966122°	
Pond 5	0.59	34.997747°, -89.964092°	
Pond 6	0.02	35.000841°, -89.964221°	
Pond 7	0.59	35.005780°, -89.966152°	

In several wetlands where surface water was observed, soil pits dug for data collection within or adjacent to these areas collected water via the lateral migration of soil saturation or overland surface water flow into the pit. The appearance of water in these pits should not be confused with a groundwater seep or connection, unless the saturation within the soil itself is considered to be perched groundwater.

Multiple ponds seem to have been constructed in the past by berming the contour of the pond so that it holds water. In several instances, containment failures were observed that have resulted in pond surface water drainage either via seepage through the berm's base or breaches in the berm's profile. These failures are sources of several onsite wetlands that, in some cases, drain into onsite streams.

Table 2 provides onsite stream lengths and locations of upgradient onsite origins and downgradient onsite termini.

	Strea	Table 2 am Length and Termini	
Aquatic Resource	Approximate Linear Feet	Onsite Upgradient Origin	Onsite Downgradient Terminus
Stream 1	3395	34.995279°, -89.963291°	35.002212°, -89.971942°
Stream 2	1961	35.001832°, -89.965059°	35.005591°, -89.964569°
Stream 3	1521	35.001489°, -89.964020°	35.005405°, -89.963765°
Stream 4	699	35.005361°, -89.963375°	35.006217°, -89.965119°
Stream 5	675	34.996650°, -89.969974°	34.996083°, -89.972008°
Stream 6	1210	34.995170°, -89.969619°	34.996083°, -89.972008°

Stream 1 flows in a northwesterly direction across much of the site and is located within the Lower Nonconnah Creek watershed. WWCs 1, 2, 3, 4, 5, 7, and 8 drain into Stream 1. Stream 1 is a blue line stream (Hurricane Creek) on the USGS topographical map, but field observation showed that Stream 1 completely loses its morphology as it drains through Wetland 1. The onsite portion of Stream 1 measures approximately 3395 linear feet, including approximately 200 feet of buried reach that flows through a culvert underneath the southern power line easement. Stream 1 becomes Hurricane Creek at the approximate location where Wetland 2 drains into Stream 1. Hurricane Creek flows offsite to the northwest and eventually drains into Nonconnah Creek.

Streams 2 and 3 both flow roughly parallel in a northerly direction in the northeast quadrant of the Site within the Lower Nonconnah Creek watershed. Both streams drain into Stream 4, which flows in a northwesterly direction. Wetland 4 and WWC 6 drain into Stream 2. Wetland 5 drains into Stream 3, which completely loses its morphology where it drains through Wetlands 6 and 7. All three streams are blue line streams on the USGS topographical map. Streams 2 and 3 measure approximately 1961 and 1521 linear feet, respectively, while the onsite portion of Stream 4 measures approximately 699 linear feet.

Streams 5 and 6 both flow in a generally westerly direction and meet at a confluence near the Site's west property boundary. Stream 5 receives hydrologic input from Wetland 10. Stream 6 is a blue line stream on the USGS topographical map. Streams 5 and 6 are within the Horn Lake Creek watershed, and measure 675 and 1210 linear feet, respectively.

2.2 Non-jurisdictional Features

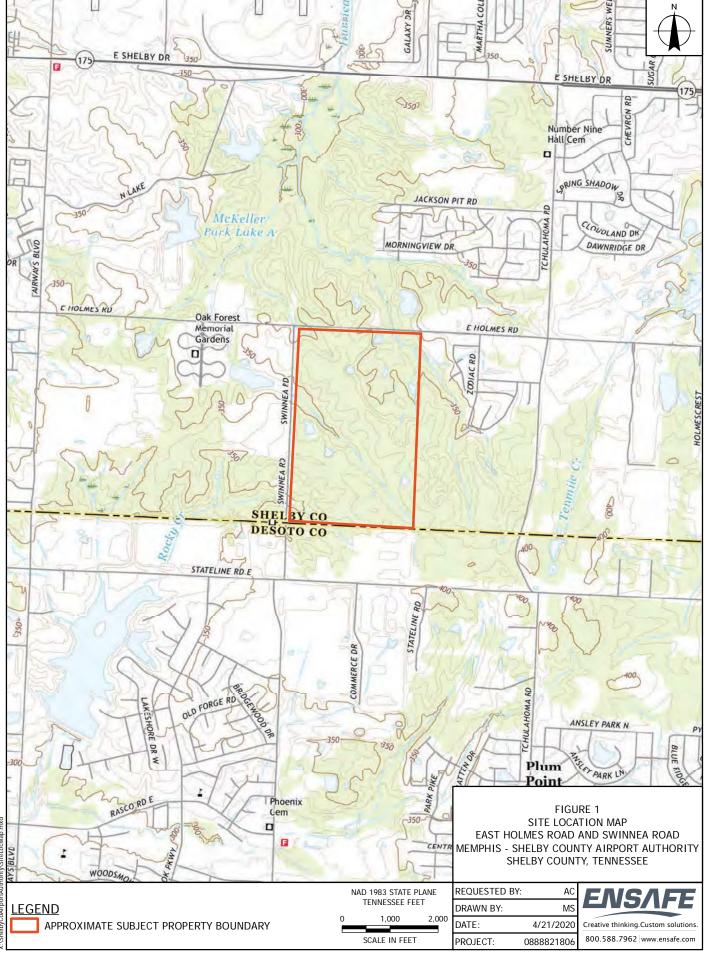
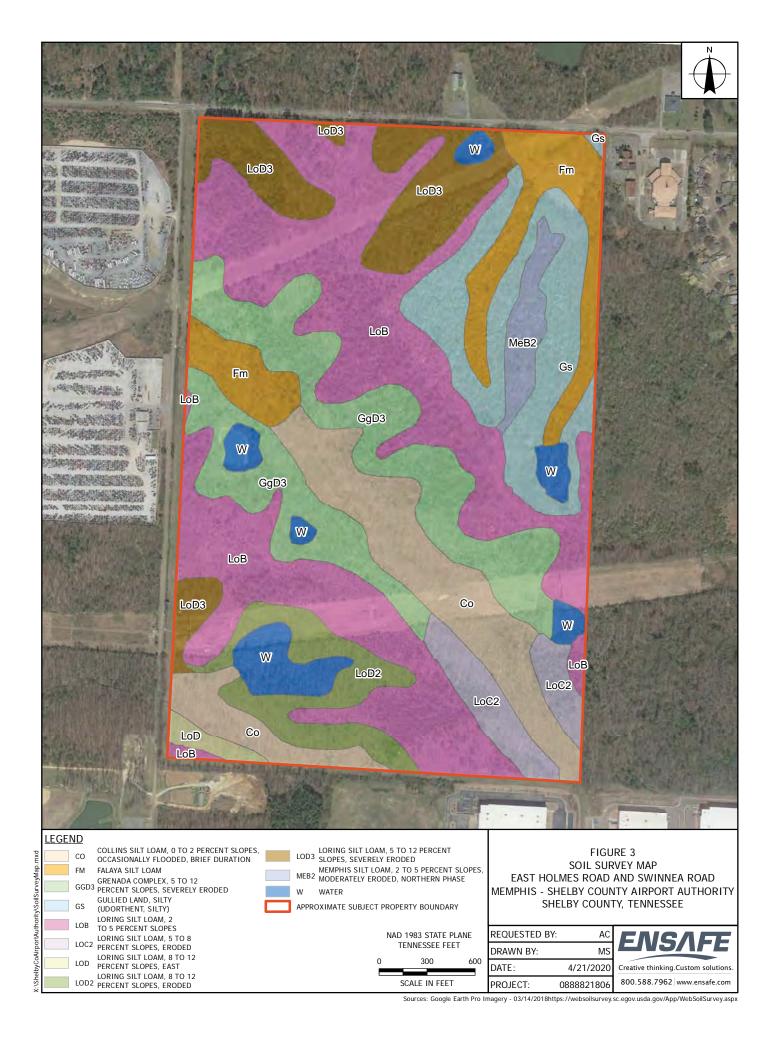
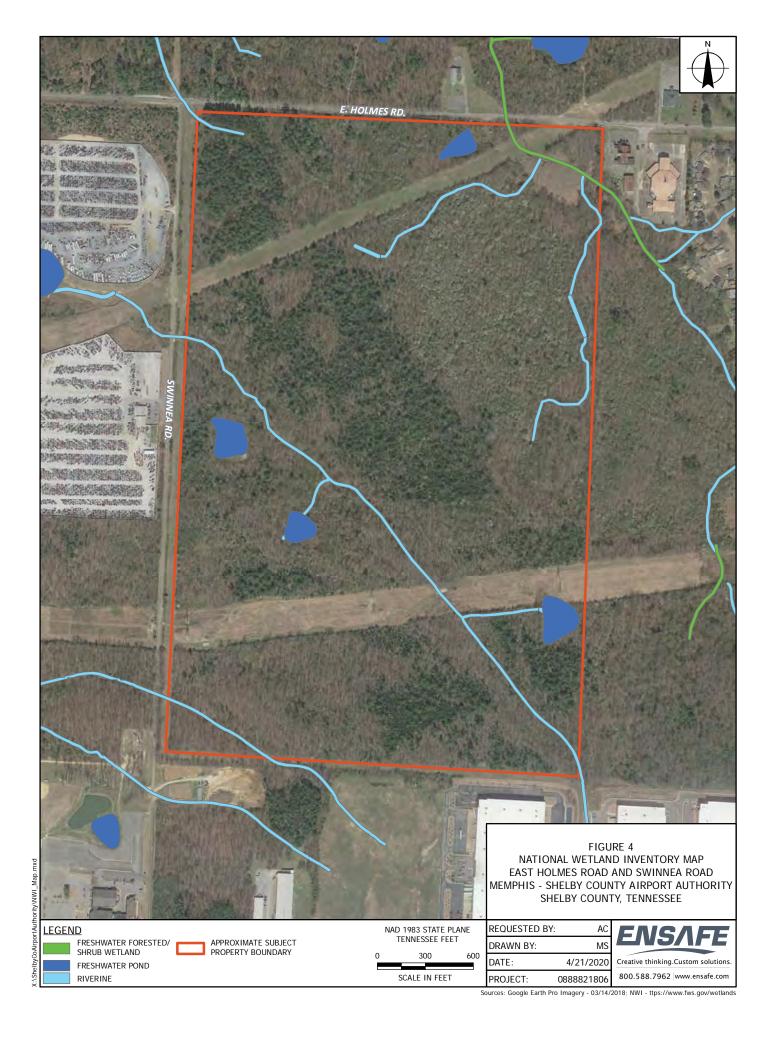
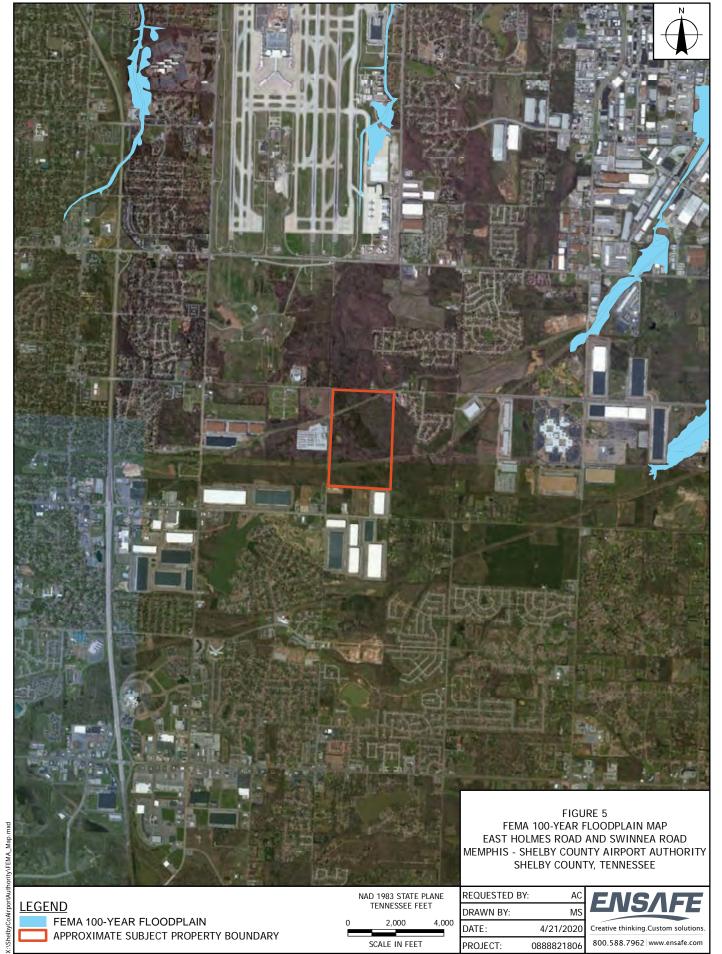

None of the non-jurisdictional features received a score greater than 19 points using the TDEC Hydrologic Determination (HD) methodology and no groundwater connections or seeps were observed other than surface water seepage through artificial pond berms or soil saturation within wetlands (as previously noted). Table 3 provides onsite WWC lengths and locations of upgradient onsite origins and downgradient onsite termini.


	Table 3 Wet Weather Conveyances Length and Termini		
Aquatic Resource	Approximate Linear Feet	Onsite Upgradient Origin	Onsite Downgradient Terminus
WWC 1	173	35.003487°, -89.970504°	35.003232°, -89.970026°
WWC 2	107	35.002983°, -89.969892° 35.002871°, -89.970095°	35.00215°, -89.970845°
WWC 3	107	35.002288°, -89.970818°	35.002027°, -89.970936°
WWC 4	447	35.001167°, -89.970770°	35.001401°, -89.970594°
WWC 5	101	35.000789°, -89.970637°	35.001310°, -89.9705207
WWC 6	200	35.004703°, -89.96651°	35.004646°, -89.965310°
WWC 7	500	34.999400°, -89.969556°	34.999475°, -89.969554°
WWC 8	27	34.999307°, -89.968201°	34.999674°, -89.968162°
WWC 9	184	34.996992°, -89.968841°	34.996677°, -89.969229°


As noted previously, multiple constructed ponds have undergone berm failures that have resulted in surface water draining from the pond either via seepage through the berm's base or breaches in the berm's profile. These failures are sources of several onsite WWCs that, in some cases, drain into onsite streams. However, the surface water seepage through the artificial berms should not be confused with a groundwater seep, even though in the HD data forms the term "subsurface discharge" was sometimes borrowed to communicate the surface water seepage through the berm.


The topographic map shows a blue line stream leaving the Site in the northwest corner, but the stream feature is no longer present. Earliest available historical aerial imagery shows that the power line easement that runs parallel to, and just west of, the east boundary of the Site has been present since 1997 or earlier. Site history was not further reviewed for this report with respect to disappearance of this feature and the installment of the power line easement.


Attachment A Site Figures

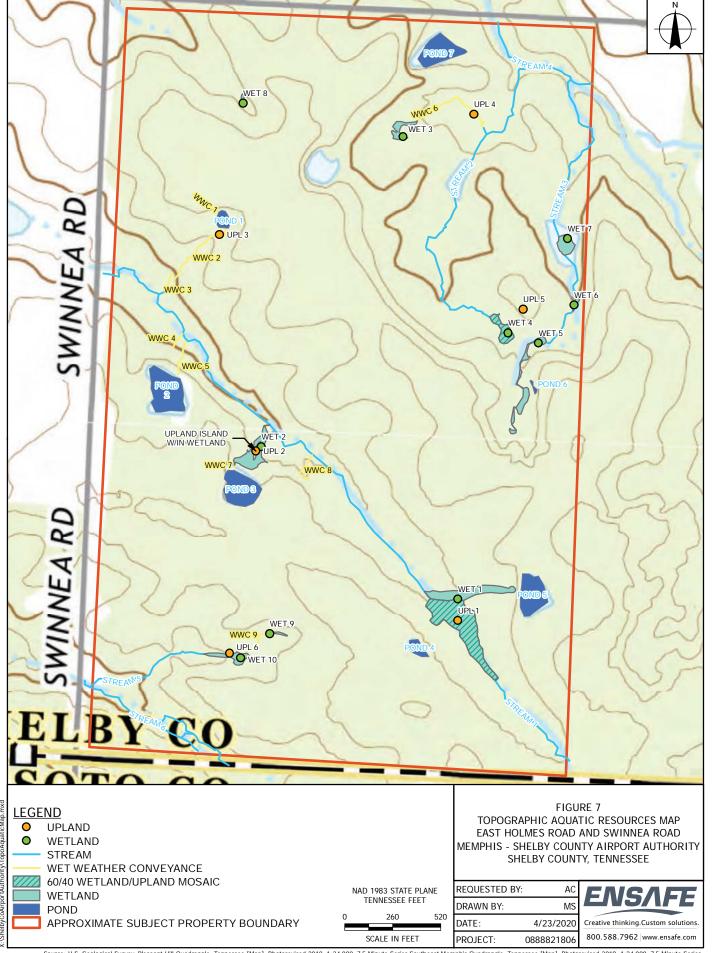
STREAM

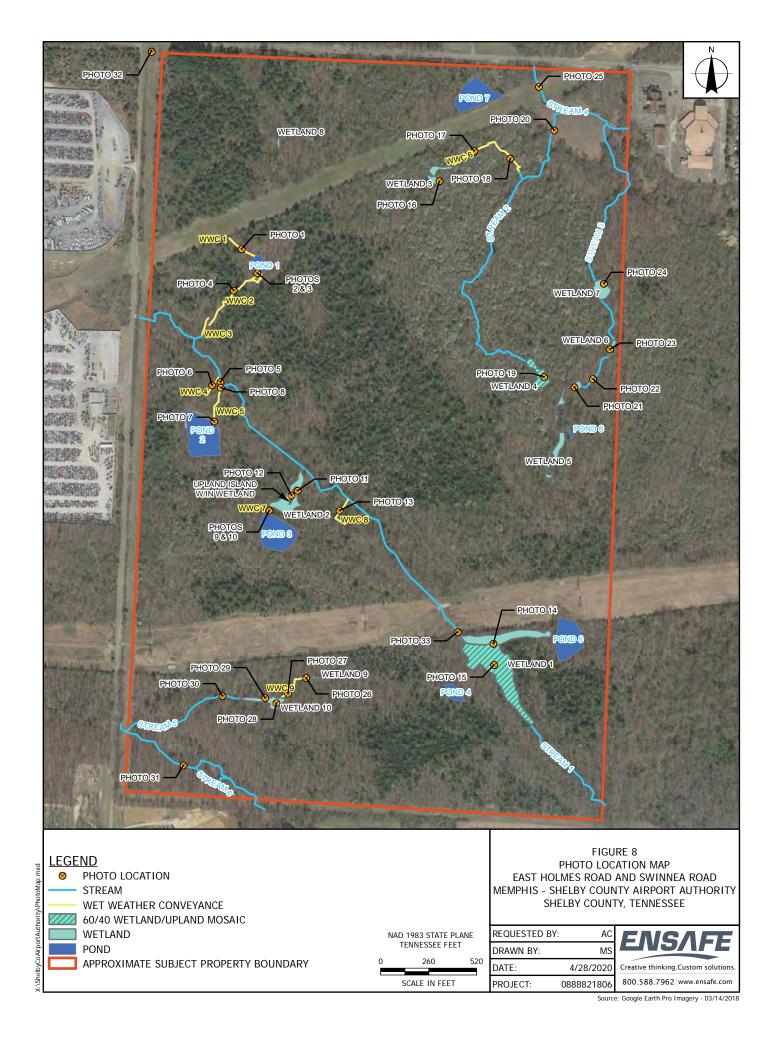
WET WEATHER CONVEYANCE
60/40 WETLAND/UPLAND MOSAIC

WETLAND

POND

APPROXIMATE SUBJECT PROPERTY BOUNDARY


NAD 1983 STATE PLANE TENNESSEE FEET


260 520

SCALE IN FEET FIGURE 6
AERIAL AQUATIC RESOURCES MAP
EAST HOLMES ROAD AND SWINNEA ROAD
MEMPHIS - SHELBY COUNTY AIRPORT AUTHORITY
SHELBY COUNTY, TENNESSEE

REQUESTED BY	: AC
DRAWN BY:	MS
DATE:	4/23/2020
PROJECT:	0888821806

Attachment B

TDEC Hydrologic Determination Field Data Sheets,

Precipitation Table, and

USACE Wetland Determination Data Forms

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

<u> </u>	04/13/2020	
Named Waterbody: Unnamed	Date/Time: 1500	
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :	
Site Name/Description: MSCAA - E. Holmes Road	Stream 1	
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN		
HUC (12 digit): 080102110103	Lat/Long: From: 34.99528, -89.96329	
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00221, -89. 97194	
Precipitation this Season vs. Normal: abnormally wet elevated average low abr Source of recent & seasonal precip data: NOAA and Memphis International Airport NOA Watershed Size: County:	A Weather Station Shelby County, TN	
Soil Type(s) / Geology: Collin silt loam 0 to 2% slopes, occasionally flooded, brief duration, Falaya silt	loam Source: Web Soil	
Surrounding Land Use: Undeveloped, Transmission Line, Commercial, Gas pipel	ine	
Degree of historical alteration to natural channel morphology & hydrology (circle one & d Severe Moderate Slight A	escribe fully in Notes) : bsent	

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations*, *Version 1.5*

Overall Hydrologic Determination = Stream
Secondary Indicator Score (if applicable) = 27.75
Justification / Notes :

A. Geomorphology (Subtotal = 14)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1	2	3
2. Sinuous channel	0 (D 1	2	3
3. In-channel structure: riffle-pool sequences	0	1 () 2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
Depositional bars or benches	Ö	1 (2	3
7. Braided channel	0	(1)	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	(3)
11. Grade controls	0	0.5	1 () 1.5
12. Natural valley or drainageway	0	0.5 () 1	1.5
13. At least second order channel on existing USGS or NRCS map	No:	=0	Yes	= 3

B. Hydrology (Subtotal = 6.25)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	(0)	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5) 1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	No :	= 0	Yes =	= 1.5>

C. Biology (Subtotal = 7.5)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1 () 0
21. Rooted plants in the thalweg 1	3 () 2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	Ō () 1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	(0)	1	2	3
26. Filamentous algae; periphyton	0	1	2	(3)
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

Focus is on the presence of terrestrial plants.

Focus is on the presence of aquatic or wetland plants.

19. 10YR 5/2 27.75 20. Strong network of fibrous roots upstream, fewer

Total Points = 27.75 dowstream

Under Normal Conditions, Watercourse is a Wet Weather 21. 1 patch of grass on bar in thalweg

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

23. 1 observed wit intense searching 26. Filamentous algae seen throughout reach

Notes: 1. Continuous bed and bank throughout most of channel w/ 1 large interruption at Wetland 1

- 2. ~ 1.1 ratio upstream, fairly straight after the first 1/4
- 3. 4-5 riffle/pool sequences observed along reach w/ large areas of pools or little hydrologic diversity
- 4. Incised through soil profile throughout most of reach (minus Wetland 1 and 2 culverts) and sorting of coarse texture in pools
- 6. Some bars and benches observed throughout reach, excluding Wetland 1
- 7. 2 islands observed upstream of Wetland 1
- 8. Some small areas of fresh deposit observed on benches
- 10. 1 large headcut upstream and 1 large headcut midway through reach
- 11. Several large roots and logs throughout reach acting with both moderate and strong longevity
- 12. Direction of flow apparent, topo contour lines show sloping with sloping toward reach observed, some artificial berms
- upstream 15. Flow easily observed in riffle areas, some areas of only pools or runs
 - 16. 10% of thalweg covered in leaf litter, mostly in pools
 - 17. Sediment found on plants and debris, and in small isolated patches along margins
 - 18. Sporadic patches of wrack lines observed, numerous drift piles seen throughout reach

27. Iron oxidizing observed

and along

wetland 1

Tennessee Division of Water Pollution Control, Version 1.5 04/16/2020 Date/Time: 1130 Named Waterbody: Unnamed Project ID: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc. Assessors/Affiliation: Stream 2 Site Name/Description: MSCAA - E. Holmes Road Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN Lat/Long: From: 35. 00183, -89.9650 080102110103 HUC (12 digit): Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in To: 35.00559, -89.96457 Precipitation this Season vs. Normal: abnormally wet elevated average low abnormally dry unknown Source of recent & seasonal precip data: NOAA and Memphis International Airport NOAA Weather Station County: Shelby County, TN Watershed Size:

Soil Type(s) / Geology: Falaya silt loam, Loring silt loam 2 to 5% slopes, Gullied land, Memphis silt loam, 2 to 5% slopes, Gullied land, Memphis silt loam, 2 to 5% slopes, moderately eroded

Surrounding Land Use: Undeveloped, gas pipeline

Degree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes) :

Severe Moderate Slight Absent

Source: Web Soil

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination = Stream
Secondary Indicator Score (if applicable) = 22.25
Justification / Notes :

A. Geomorphology (Subtotal = 12.5)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	(1)	2	3
3. In-channel structure: riffle-pool sequences	0	1 (2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
6. Depositional bars or benches	0	1	2 (3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0)	1	2	3
11. Grade controls	Q	0.5	(1)	1.5
12. Natural valley or drainageway	(0)	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes	= 3

B. Hydrology (Subtotal = 4.75)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	(0)	1	2	3
15. Water in channel and >48 hours since sig. rain	Ō	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0 (0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	(0.5)	1	1.5
19. Hydric soils in channel bed or sides of channel	(No:	=0	Yes =	: 1.5

C. Biology (Subtotal = 5)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	(2)	1	0
21. Rooted plants in the thalweg ¹	3	(2)	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	(0)	1	2	3
26. Filamentous algae; periphyton	Ō	(1)	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = ____22.25____

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. Steep "V" banks

- 2. ~ 1.1 ratio
- 3. Channel has good hydrologic diversity downstream but upstream is mostly pools
- 4. Throughout most of channel it is cut into soil profile with excellent sorting of soil textures
- 6. Bars and benches readily observed throughout most of reach
- 8. Small amounts of deposited silt on some benches
- 11. A few medium roots and woody present throughout reach and several small root clusters acting with moderate longevity
- 15. Flow is evident throughout reach
- 16. About 15% of the upstream side had leaf litter present
- 17. Some sediment observed in isolated areas upstream
- 18. Small organic piles observed upstream and midway through reach
- 20. Few fibrous roots observed in thalweg
- 21. Rumex crispus, willow, geranium maculatum, carex cherokeensis, sambucus canadensis
- 26. Some algae observed upstream

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5

,	04/10/2020
Named Waterbody: Unnamed	Date/Time: 1445
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	Stream 3
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphi	s, TN
HUC (12 digit): 080102110103	Lat/Long: From: 35.00149, -89.96402
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00541, -89.96377
Precipitation this Season vs. Normal: abnormally wet elevated average to Source of recent & seasonal precipidata: NOAA and Memphis International Airpo	ow abnormally dry unknown ort NOAA Weather Station
Watershed Size :	ounty: Shelby County, TN
Soil Type(s) / Geology: Falaya silt loam, Gullied land, Water	Source: Web Soil
Surrounding Land Use : Undeveloped, Commercial	
Degree of historical alteration to natural channel morphology & hydrology (circle Severe Moderate Slight	one & describe fully in Notes) : Absent
	<u> </u>

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Χ	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Χ	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Χ	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	Stream
Secondary Indicator Score (if applicable) =	26.25
Justification / Notes :	

A. Geomorphology (Subtotal = 13)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1	2 () 3
2. Sinuous channel	0	(2	3
3. In-channel structure: riffle-pool sequences	0	1	2 (3
Sorting of soil textures or other substrate	0	1	2 (3
5. Active/relic floodplain	(0)	0.5	1	1.5
Depositional bars or benches	Ō	1	2 (3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	Ō	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	(0)	1	2	3
11. Grade controls	Ö	0.5	(1)	1.5
12. Natural valley or drainageway	0	(0.5)	1	1.5
13. At least second order channel on existing USGS or NRCS map	No:	=0	Yes	= 3

B. Hydrology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	(2)	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	(0.5)	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	(No :	No = 0		= 1.5

C. Biology (Subtotal = 8.75)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	(1)	0
21. Rooted plants in the thalweg 1	3	(2)	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	Ō	1 () 2	3
26. Filamentous algae; periphyton	0	1 () 2	3
27. Iron oxidizing bacteria/fungus	0	0.5) 1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = __

16. ~10% of leaf litter in channel

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

26. Small patches observed in upstream areas 27. Iron oxidizing bacteria observed in a few areas along reach

Notes: 1. Strong continuous bed and bank observed downstream, upstream had some obvious inte	eruptions
2. 1.2 ratio	
3. Riffle and pool sequences prevalent downstream, but less diversity upstream	
4. Downstream has strong sorting and incised in soil profile, upstream has little sorting and not as inc	cised
6. Well developed bars and benches observed throughout most of reach, except between upstream	wetlands
8. Small amounts observed on a few benches	
11. Several small roots and some large wood debris acting with moderate longevity	
12. Topo lines show slight sloping toward reach	
15. Moving water easily seen in riffles and runs with some upstream areas of less hydrologic diversity	/

- 17. Sediment observed on organic drift piles in sporadic patches
- 18. Numerous small t medium drift piles observed throughout channel
- 20. Occasional patches of fibrous roots in thalweg and along margins, mostly upstream 21. Some small upland plants in the upstream area between wetlands
- 22. ~20 crayfish found in 1 sweep, but only in upstream half of reach
- 25. Sideswimmers, Chirinomidae, Corydalidae found with some effort

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5

	07/10/2020
Named Waterbody: Unnamed	Date/Time: 1200
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	Stream 4
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis	s, TN
HUC (12 digit): 080102110103	Lat/Long: From: 35,00536, -89,96338
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00622, -89.96512
Precipitation this Season vs. Normal: abnormally wet elevated average lo Source of recent & seasonal precip data: NOAA and Memphis International Airpo	
Watershed Size : C	ounty: Shelby County, TN
Soil Type(s) / Geology : Falaya silt loam	Source: Web Soil
Surrounding Land Use : Undeveloped, Gas pipeline, Gravel pit	
Degree of historical alteration to natural channel morphology & hydrology (circle Severe Moderate Slight	one & describe fully in Notes) : Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	wwc
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection		Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Χ	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination = Stream
Secondary Indicator Score (if applicable) =
Justification / Notes: Groundwater connection in 3 areas along west bank

Tennessee Division of Water Pollution Control, Version 1.5

·	07/13/2020
Named Waterbody: Unnamed	Date/Time: 1150
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	Stream 5
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN	
HUC (12 digit): 080102110301	Lat/Long: From: 34.99665, -89.9699
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 34.99608, -89.97201
Precipitation this Season vs. Normal: abnormally wet elevated average low abn Source of recent & seasonal precipidata: NOAA and Memphis International Airport NOA	ormally dry unknown A Weather Station
	Shelby County, TN
Soil Type(s) / Geology: Collin silt loam 0 to 2% slopes, occasionally flooded, brief duration, Loring silt 8 to 12% slopes, eroded, Water	Source: Web Soil
Surrounding Land Use: Undeveloped, Transmission Line	
Degree of historical alteration to natural channel morphology & hydrology (circle one & d Severe Moderate Slight A	escribe fully in Notes) : osent
	·

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Stream
23.5

A. Geomorphology (Subtotal = 12)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1 () 2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
6. Depositional bars or benches	0	1 () 2	3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	Ö	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	(2)	3
11. Grade controls	0	0.5	(1)	1.5
12. Natural valley or drainageway	0	(0.5)	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes	= 3

B. Hydrology (Subtotal = 6.25)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	(0)	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5) 1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	No = 0		Yes =	= 1.5)

C. Biology (Subtotal = 5.25)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	(0)
21. Rooted plants in the thalweg 1	3	(2)	1	Ö
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0	0.5) 1	1.5
25. Macrobenthos (record type & abundance)	0	1 (2	3
26. Filamentous algae; periphyton	0	(1)	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

Focus is on the presence of terrestrial plants.

² Focus is on the presence of aquatic or wetland plants.

Total Points = 23.5

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

- 21. 2-4 upland plants observed upstream
- 24. Several tadpoles observed
- 25. With some effort 2 Gammaridae and 1 Corydalidae observed
- 26. With intense searching 2 small patches were seen

Notes: 1. Clearly defined bed and bank with occasional interuptions

2. ~ 1.2 ratio

- 3. 4 riffle-pool sequences observed in channel
- 4. Slightly incised in soil profile, sorting of coarse materials from surrounding material easily observed and distinction between coarse and fines observed is a few places
- 6. 6 bars/benches observed in reach
- 8. Some alluvial deposits seen on benches
- 10. 1 large headcut midway through reach
- 11. Large wood and roots in channel providing moderate longevity
- 12. A slight downward grade into channel bed
- 15. Moving water observed in riffle areas with some standing pools
- 16. ~ 20% of the channel is covered in leaf litter
- 17. Sediment on some debris piles and channel margins
- 18. Numerous organic piles observed along reach, some wrack lines
- 19. 10YR 5/1
- 20. Strong network of fibrous roots observed through much of reach

Tennessee Division of Water Pollution Control. Version 1.5

Tennessee Division of Water Pollution Control, Version 1.	.5 <u>04/15/2020</u>
Named Waterbody: Unnamed	Date/Time: 1230
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	Stream 6
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN	
HUC (12 digit): 080102110301	Lat/Long: From: 34.99517, -89.9696
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 34.99608, -89.97201
Precipitation this Season vs. Normal: abnormally wet elevated average low abn Source of recent & seasonal precipidata: NOAA and Memphis International Airport NOA	ormally dry unknown A Weather Station
	Shelby County, TN
Soil Type(s) / Geology: Collin silt loam 0 to 2% slopes, occasionally flooded, brief duration, Loring silt 8 to 12% slopes, east	Source: Web Soil
Surrounding Land Use: Undeveloped, Transmission Line, Commercial	
Degree of historical alteration to natural channel morphology & hydrology (circle one & documents of the second of	escribe fully in Notes) : osent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	Stream
Secondary Indicator Score (if applicable) =	22.5
Justification / Notes :	

A. Geomorphology (Subtotal =9.75)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1 () 2	3
2. Sinuous channel	0	Θ	2	3
3. In-channel structure: riffle-pool sequences	0	1 () 2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
6. Depositional bars or benches	Ô	1 () 2	3
7. Braided channel	0	(1)	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1 () 1.5
12. Natural valley or drainageway	0	(0.5)	1	1.5
13. At least second order channel on existing USGS or NRCS map	No:	=0	Yes	= 3

B. Hydrology (Subtotal = 6.5)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	(0)	1	2	3
15. Water in channel and >48 hours since sig. rain	Ō	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	(L)	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	No = 0		Yes =	1.5

C. Biology (Subtotal = 6.25)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	3	2	1	(0)
21. Rooted plants in the thalweg 1	3	(2)	1	Õ
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	Ö	(1)	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0 () 1	2	3
26. Filamentous algae; periphyton	0	1	(2)	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5) 1	1.5

¹ Focus is on the presence of terrestrial plants.

² Focus is on the presence of aquatic or wetland plants.

Total Points =

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

21. poison ivy, privet, giant cane, Virginia creeper, observed upstream in thalweg

23. 1-2 found with intense searching

25. 2 water boatman found with intense searching 26. Found a few areas with large clumps of algae 28. 1 patch of OBL Ludwigia palustris

Notes: 1. Bed and bank demarcation observed with 1 medium area of less demarcation

•		4	\sim			
,	~	1	,	rat	۲ı	_
∠.				ıa	LI	L

- 3. Several riffle/pools downstream but uniform hydrology upstream with standing water
- 4. Slightly incised in soil profile downstream, coarse texture sorting downstream with upstream having little sorting and not as incised in profile
- 6. Bars and benches observed downstream with 1 observed upstream
- 7. 1 island within braid
- 8. Some small areas of fresh deposit observed on benches
- 11. Several large roots and logs acting with some longevity
- 12. Downstream has sloping into stream (also seen with topo lines), with upstream flat with surroundings
- 15. Flow observed in riffles downstream and standing pools upstream
- 16. ~ 20% of the channel is covered in leaf litter
- 17. Sediment found along margins but not much in thalweg
- 18. Several drift piles observed along reach, sporadic wrack lines
- 20. Strong network of fibrous roots observed through most of reach

Tennessee Division of Water Pollution Control, Version 1.5

04/16/2020 Named Waterbody: Date/Time: 0830 Unnamed Project ID: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc. Assessors/Affiliation: WWC 1 Site Name/Description: MSCAA - E. Holmes Road Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN Lat/Long: From: 35.00349, -89.97050 080102110103 HUC (12 digit): Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in To: 35.00323, -89.97003 Precipitation this Season vs. Normal: abnormally wet elevated average low abnormally dry unknown Source of recent & seasonal precip data: NOAA and Memphis International Airport NOAA Weather Station Shelby County, TN Watershed Size: County: Loring silt loam, 2 to 5% slopes, Grenada complex, 5 to 12% slopes, severely Soil Type(s) / Geology : croded Source: Web Soil Undeveloped, Gas pipeline Surrounding Land Use: Degree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes): Severe Moderate Slight Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species		(WWC)
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination = WWC	
Secondary Indicator Score (if applicable) =	
Justification / Notes: 1 isolated pool with 2 rusted drums in thalweg. Drains upland area to pond	

Tennessee Division of Water Pollution Control, Version 1.5 04/16/2020 Named Waterbody: Date/Time: 0900 Unnamed Project ID: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc. Assessors/Affiliation: WWC 2 Site Name/Description: MSCAA - E. Holmes Road Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN Lat/Long: From: 35.00298, -89.9698 080102110301 HUC (12 digit): Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in To: 35.00215, -89.97085 Precipitation this Season vs. Normal: abnormally wet elevated average low abnormally dry unknown Source of recent & seasonal precip data: NOAA and Memphis International Airport NOAA Weather Station Shelby County, TN County: Watershed Size: Falaya silt loam, Grenada complex, 5 to 12% slopes, severely eroded, Loring silt Soil Type(s) / Geology : loam 2 to 5% slopes Source: Web Soil Surrounding Land Use: Undeveloped

Primary Field Indicators Observed

Moderate

Degree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes) :

Slight

Absent

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Det	termination = WWC
Secondary Indicator Score	e (if applicable) = 12.25
Justification / Notes : con	nnects to bermed pond downstream

A. Geomorphology (Subtotal = 4.75)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	(1)	2	3
2. Sinuous channel	0 () 1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
6. Depositional bars or benches	0 () 1	2	3
7. Braided channel	(0)	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	(2)	3
11. Grade controls	0	0.5 () 1	1.5
12. Natural valley or drainageway	(0)	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No:	=0	Yes	= 3

B. Hydrology (Subtotal = 5.5)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1 (2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	√ No :	<u> </u>	Yes =	= 1.5

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	(0)
21. Rooted plants in the thalweg 1	3	2	1	(0)
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	(0)	1	2	3
26. Filamentous algae; periphyton	Ö	(1)	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1)	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

Focus is on the presence of terrestrial plants.

Total Points = 12.25

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. 1 area upstream has defined bed and bank

2. ~ 1.1

- 6. 1 bench observed at upstream curve
- 10. 1 large headcut starts reach from pond
- 11. Small roots in 4 places and some minor wood acting with short-term longevity
- 15. 1 isolated pool and bottom of headcut, 2 areas of standing water at upstream fork for about 30ft
- 16. ~60% leaf litter coverage
- 17. Sediment found on isolated drift piles
- 18. Numerous small to medium drift piles throughout reach
- 20. Strong network of fibrous roots in thalweg
- 21. Grasses, clovers, poison ivy, privet, observed throughout channel
- 26. some dried algae crusts observed in 2 small areas
- 27. Upstream 1/4 of reach has iron floc and oxidizing bacteria from pond seep
- 14. 1 upstream fork originates from seepage from pond on other side of berm

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5

04/16/2020 Date/Time: 1000 Named Waterbody: Unnamed Project ID: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc. Assessors/Affiliation: WWC3 Site Name/Description: MSCAA - E. Holmes Road Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN Lat/Long: From: 35.00229, -89.97082 080102110103 HUC (12 digit): To: 35.00203. -89.97094 Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in Precipitation this Season vs. Normal: abnormally wet elevated average low abnormally dry unknown Source of recent & seasonal precip data: NOAA and Memphis International Airport NOAA Weather Station Shelby County, TN Watershed Size: County: Soil Type(s) / Geology: Grenada complex, 5 to 12% slopes, severly eroded, Falaya silt loam Source: Web Soil Undeveloped Surrounding Land Use: Degree of historical alteration to natural channel morphology & hydrology (circle one & describe fully in Notes): Moderate Slight Absent Severe

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species		(WWC)
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	X	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination = WWC
Secondary Indicator Score (if applicable) =
Justification / Notes : Meeting finger from stream

Tennessee Division of Water Pollution Control, Version 1.5

Torriboded Division of Water Fondation Control, Vol.	04/16/2020
Named Waterbody: Unnamed	Date/Time: 1015
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 4
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis,	, TN
HUC (12 digit): 080102110103	Lat/Long: From: 35.0011789.9707
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00140, -89.97059
Precipitation this Season vs. Normal: abnormally wet elevated average low Source of recent & seasonal precipidata: NOAA and Memphis International Airport	
Watershed Size : Co	ounty: Shelby County, TN
Soil Type(s) / Geology: Grenada complex, 5 to 12% slopes, severely eroded, Falaya sil	t loam Source: Web Soil
Surrounding Land Use: Undeveloped	
Degree of historical alteration to natural channel morphology & hydrology (circle of Severe Moderate Slight)	ne & describe fully in Notes) : Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Χ	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	WWC
Secondary Indicator Score (if applicable) =	5.25
Justification / Notes :	

A. Geomorphology (Subtotal = 4.75)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	(1)	2	3
2. Sinuous channel	0 () 1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
Depositional bars or benches	0	1	2	3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	(2)	3
11. Grade controls	0	0.5	(1)	1.5
12. Natural valley or drainageway	0 (0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0 Yes		= 3	

B. Hydrology (Subtotal = 0.5)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0 (0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0 (0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	(No:	=0)	Yes =	= 1.5

C. Biology (Subtotal = 0)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	3	2	1	(0)
21. Rooted plants in the thalweg 1	3	2	1	(0)
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0)	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points =	5.25

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. Bed and bank not clearly defined except for at the headcut and when it slopes into stream 1

Notes . 1. Dea and bank not clearly defined except for at the neadedt and when it slopes into str
2. ~ 1.1
10. 1 large headcut at beginning of reach
11. 3 areas of medium to large roots acting with moderate longevity
12. Upland slightly slopes towards reach
16. Almost all of channel bed is covered with leaf litter except at headcut
17. Sediment found in 2 small isolated areas
18. 2 drift piles observed at headcut and 1 large root
20. Strong fibrous root network observed
21. Ferns, poison ivy, sycamore, privet, elm found growing in thalweg

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5

	0-1/10/2020
Named Waterbody: Unnamed	Date/Time: 1040
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 5
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN	
HUC (12 digit): 080102110103	Lat/Long: From: 35.00079, -89.9706
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00131, -89.97052
Precipitation this Season vs. Normal: abnormally wet elevated average low a Source of recent & seasonal precipidata: NOAA and Memphis International Airport NO	
Watershed Size : County	, ,,
Soil Type(s) / Geology: Grenada complex, 5 to 12% slopes, severely eroded, Falaya silt loam, Collin loam 0 to 2% slopes, occasionally flood, brief duration	s silt Source: Web Soil
Surrounding Land Use: Undeveloped	
Degree of historical alteration to natural channel morphology & hydrology (circle one & Severe Moderate Slight	describe fully in Notes) : Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Χ	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Χ	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	WWC
Secondary Indicator Score (if applicable) =	11.75
Justification / Notes :	

A. Geomorphology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	(1)	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
Depositional bars or benches	0	1	2	3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	(2)	3
11. Grade controls	0	(0.5)	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes	= 3

B. Hydrology (Subtotal = 5.75)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5 () 1	1.5
19. Hydric soils in channel bed or sides of channel	(No:	(No = 0)		= 1.5

C. Biology (Subtotal = 1.5)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	(0)
21. Rooted plants in the thalweg ¹	3	2	1	(0)
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	(0)	1	2	3
26. Filamentous algae; periphyton	Ö	1 (2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. Bed and bank observed at breach in berm around pond

- 4. Small amounts of soil sorting of coarse material
- 10. 1 large headcut downstream
- 11. Some small roots at downstream end
- 14. Overflow from breach in pond berm and 1 seep observed at base of berm
- 15. Flow observed in surface holes and riffle area
- 16. ~35% of channel is covered in leaf litter
- 17. Some sediment observed on minor drift piles
- 18. Several small debris piles at roots and 2 large piles closer to stream
- 20. Strong fibrous root network
- 21. Privet, poison ivy, Japanese honeysuckle, Virginia creeper
- 26. Dried filamentous algae crusts observed in the first upstream quarter of reach

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5 04/16/2020

	07/10/2020
Named Waterbody: Unnamed	Date/Time: 1330
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 6
Site Location: Southeast of E. Holmes Road and Swinnea Road, Mempl	his, TN
HUC (12 digit): 080102110103	Lat/Long: From: 35.00470, -89.9665
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 35.00465, -89.96531
Precipitation this Season vs. Normal: abnormally wet elevated average Source of recent & seasonal precip data: NOAA and Memphis International Air	
Watershed Size :	County: Shelby County, TN
Soil Type(s) / Geology: Loring silt loam, 5 to 12% slopes, severely eroded, Falaya silt loam 2 to 5% slopes, Gullied land	Source: Web Soil
Surrounding Land Use: Undeveloped, Gas pipeline	
Degree of historical alteration to natural channel morphology & hydrology (circles Severe Moderate Slight	le one & describe fully in Notes) : Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Χ	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	WWC
Secondary Indicator Score (if applicable) =	13.25
Justification / Notes :	

A. Geomorphology (Subtotal = 7)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	1 () 2	3
2. Sinuous channel	0	Θ	2	3
3. In-channel structure: riffle-pool sequences	0 () 1	2	3
Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
Depositional bars or benches	0	(1)	2	3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0)	1	2	3
11. Grade controls	0	0.5	(1)	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes	= 3

B. Hydrology (Subtotal = 3)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January – September)	1.5	Ð	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	(No:	(No = 0)		= 1.5

C. Biology (Subtotal = 3.25)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1 () 0
21. Rooted plants in the thalweg ¹	3	(2)	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0)	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	(0)	1	2	3
26. Filamentous algae; periphyton	0 () 1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0 (0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = 13.25

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. Bed and bank observed through about 40% of reach, 1 area of sheet flow

2. 1.1 ratio

- 3. most of reach is a run with 2 riffle areas
- 4. Downstream has some coarse sorting of soil textures, incised in soil profile in 2 places downstream
- 6. 1 bar and 2 benches
- 11. A few medium to large roots throughout thalweg acting with moderate longevity
- 15. 3 isolated pools and 1 area of wet hydrophytic zone
- 16. ~20% leaf litter coverage
- 18. Several small debris piles seen throughout reach, 2 areas of wrachlines
- 20. Strong fibrous root network in most of thalweg
- 21. Poison ivy, privet, and Virginia creeper observed in reach
- 26. 1 dried filamentous algae crusts present in sheet flow area
- 28. 2 small willows

² Focus is on the presence of aquatic or wetland plants.

Tennessee Division of Water Pollution Control, Version 1.5 04/15/2020

	04/13/2020
Named Waterbody: Unnamed	Date/Time: 1400
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 7
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN	
HUC (12 digit): 080102110103	Lat/Long: From: 34.99940, -89.9695
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 34.99948, -89.96955
Source of recent & seasonal precip data: NOAA and Memphis International Airport NOA	ormally dry unknown A Weather Station Shelby County, TN
Soil Type(s) / Geology: Grenada complex, 5 to 12% slopes, severly eroded, Water	Source: Web Soil
Surrounding Land Use: Undeveloped	
Degree of historical alteration to natural channel morphology & hydrology (circle one & de Severe Moderate (Slight) Ab	escribe fully in Notes) :

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Χ	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species		(WWC)
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Χ	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Tennessee Division of Water Pollution Control, Version 1.5 04/15/2020

	U+/13/2020
Named Waterbody: Unnamed	Date/Time: 1430
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 8
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis, TN	
HUC (12 digit): 080102110103	Lat/Long: From: 34.99931, -89.96820
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 34.99967, -89.96816
Precipitation this Season vs. Normal: abnormally wet elevated average low absource of recent & seasonal precipidata: NOAA and Memphis International Airport NOA	normally dry unknown AA Weather Station
Watershed Size : County:	Shelby County, TN
Soil Type(s) / Geology: Collin silt loam 0 to 2% slopes, occasionally flooded, brief duration, Grenada complex, 5 to 12% slopes, severly eroded	Source: Web Soil
Surrounding Land Use: Undeveloped	
Degree of historical alteration to natural channel morphology & hydrology (circle one & c Severe Moderate Slight	describe fully in Notes) :

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species		(WWC)
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination = WWC
Secondary Indicator Score (if applicable) =
Justification / Notes: Upland drainage into Stream 1, water was present, some sorting of soil textures.
No continuous bed and bank observed, dominated by upland veg. in much of reach.

Tennessee Division of Water Pollution Control, Version 1.5 04/15/2020

Named Waterbody: Unnamed	Date/Time: 1000
Assessors/Affiliation: V. Thornton QHP-IT, A. Conti QHP-IT / EnSafe Inc.	Project ID :
Site Name/Description: MSCAA - E. Holmes Road	WWC 9
Site Location: Southeast of E. Holmes Road and Swinnea Road, Memphis,	TN
HUC (12 digit): 080102110301	Lat/Long: From: 34.99699, -89.96884
Previous Rainfall (7-days): 04/08/2020 - 04/14/2020 3.02in	To: 34.99668, -89.96923
Precipitation this Season vs. Normal: abnormally wet elevated average low Source of recent & seasonal precipidata: NOAA and Memphis International Airpor	
Watershed Size : Co	unty: Shelby County, TN
Soil Type(s) / Geology: Loring silt loam 2 to 5% slopes, Loring silt loam 8 to 12% slopes, erode	ed, Water Source: Web Soil
Surrounding Land Use: Undeveloped, Transmission Line	
Degree of historical alteration to natural channel morphology & hydrology (circle o Severe Moderate Slight)	ne & describe fully in Notes) : Absent

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	wwc
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	N/A	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Χ	Stream
7. Presence of naturally occurring ground water table connection	Χ	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	N/A	Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Overall Hydrologic Determination =	WWC
Secondary Indicator Score (if applicable) =	11.75
Justification / Notes :	

A. Geomorphology (Subtotal = ⁵)	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	(1)	2	3
2. Sinuous channel	0 (D 1	2	3
3. In-channel structure: riffle-pool sequences	0 () 1	2	3
Sorting of soil textures or other substrate	0 () 1	2	3
5. Active/relic floodplain	(0)	0.5	1	1.5
6. Depositional bars or benches	0	1)	2	3
7. Braided channel	(0)	1	2	3
Recent alluvial deposits	0	0.5	1	1.5
Natural levees	0	1	2	3
10. Headcuts	0	(1)	2	3
11. Grade controls	0	(0.5)	1	1.5
12. Natural valley or drainageway	(0)	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes = 3	

B. Hydrology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	(0)	1	2	3
15. Water in channel and >48 hours since sig. rain	Ō	1 (2	3
16. Leaf litter in channel (January – September)	1.5) 1	0.5	0
17. Sediment on plants or on debris	0	0.5	D 1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	(1)	1.5
19. Hydric soils in channel bed or sides of channel	(No =	(No = 0) Yes =		= 1.5

C. Biology (Subtotal = 2.25)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	3	2	1	(0)
21. Rooted plants in the thalweg 1	3	(2)	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	(0)	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0 (0.5	1	1.5
28.Wetland plants in channel bed ²	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = 11.75

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes: 1. Majority of channel has obvious interruptions

2. ~ 1:1.1

- 3. Mostly uniform with 1-2 spots of hydrologic diversity
- 4. Not incised in soil profile, has some sorting of coarse materials from fines
- 6. 1 bar and 1 small bench observed throughout reach
- 10. 1 small headcut observed
- 11. A few small temporary grade controls seen
- 15. Water throughout reach but flow seen in only 1 spot
- 16. less than 20% leaf litter
- 17. Sediment observed in isolated areas on drift piles and plants
- 18. Drift piles found throughout reach and sporadic patches of wrack lines
- 19. 10YR3/4
- 20. Strong network of fibrous roots in channel
- 21. Some upland plants rooted in thalweg (Geum candadense, Sambucus canadensis)
- 27. 1 patch of iron oxidizing bacteria observed in reach

² Focus is on the presence of aquatic or wetland plants.

ast D. L. Maril		Minus One Std. Dev.	Normal (Mean	Plus One Std. Dev.	International Airport Weather	Condition		Month	Product of Previous
1st Dalam Manualla	Month	(DRY)	Inches)	(WET)	Airport	Condition (dry, wet, normal)	Condition Value	Weight Value	Product of Previous Two Columns
1 st Prior Month	March 2020	2.96 $(\sigma = 2.08)$	5.04	7.12 ($\sigma = 2.08$)	9.41	Wet	3	Х3	9
2 nd Prior Month F	February 2020	1.98 (σ = 2.28)	4.26	6.54 ($\sigma = 2.28$)	6.34	Normal	2	X2	4
3rd Prior Month	January 2020	1.51 $(\sigma = 2.85)$	4.36	7.21 ($\sigma = 2.85$)	6.44	Normal	2	X1	2

If sum is:	
6-9	The prior period has been drier than normal
10-14	The prior period has been normal
15-18	The prior period has been wetter than normal

Condition Value:	
Dry =	1
Normal =	2
Wet =	3

Conclusions: Previous 3-month period has had wetter than normal precipitation. Actual precipitation data from Memphis International Airport Weather Station and 30-year normal precipitation data for Shelby County, Tennessee, from the National Weather Service NOAA Online Weather Data; local monthly precipitation standard deviations for the previous 3 months from the NOAA Research Physical Sciences Division for Shelby County, Tennessee (https://www.esrl.noaa.gov/psd/).

Precipitation Summary, April 01 through April 14, 2020 Memphis International Airport Weather Station						
Date	Precipitation (inches)					
04/01/2020	0					
04/02/2020	0					
04/03/2020	0					
04/04/2020	0					
04/05/2020	0					
04/06/2020	0					
04/07/2020	0.18					
04/08/2020	0					
04/09/2020	0					
04/10/2020	0					
04/11/2020	0.29					
04/12/2020	2.60					
04/13/2020	0.13					
04/14/2020	0					
Total	3.20					

Source: Memphis International Airport weather station, approximately 1.00 mile north of the property.

30-Year Precipitation Averages for April for Shelby County, Tennessee (Closest NOAA data to the site; Memphis International Airport)						
Metric	Value (inches)					
Mean	5.57					
Standard Deviation	2.96					

Source: https://www.esrl.noaa.gov

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R City/County: Memphis, Shelby County Sampling Date: 4-15-2020 Project/Site: East Holmes Road and Swinnea Road State: TN Sampling Point: WET 1 Memphis - Shelby County Airport Authority Applicant/Owner: Investigator(s): Aaron Conti, Velita Thornton Section, Township, Range: Landform (hillside, terrace, etc.): flat Local relief (concave, convex, none): none Slope (%): 0-2 Long: -89.965395 Subregion (LRR or MLRA): LRR P, MLRA 134 Lat: 34.997631 Datum: NAD83 Soil Map Unit Name: Collins silt loam, 0-2% slopes, occasionally flooded, brief duration NWI classification: None No (If no, explain in Remarks.) Are climatic / hydrologic conditions on the site typical for this time of year? Yes X Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Is the Sampled Area Hvdric Soil Present? within a Wetland? Yes X No Yes X No Wetland Hydrology Present? Yes X Remarks: Wetland 1 is a comprised mostly of a 60/40 wetland/upland mosaic; there is an offshoot drainageway from Pond 5 into Wetland 1 that is excluded from the mosaic. See Figures 6 and 7 for geographic representation of wetlands and other onsite aquatic resources. **HYDROLOGY Wetland Hydrology Indicators:** Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) ____ Aquatic Fauna (B13) X Surface Water (A1) Sparsely Vegetated Concave Surface (B8) High Water Table (A2) Marl Deposits (B15) (LRR U) X Drainage Patterns (B10) X Saturation (A3) Hydrogen Sulfide Odor (C1) Moss Trim Lines (B16) Water Marks (B1) Oxidized Rhizospheres on Living Roots (C3) Dry-Season Water Table (C2) Sediment Deposits (B2) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Recent Iron Reduction in Tilled Soils (C6) Drift Deposits (B3) Saturation Visible on Aerial Imagery (C9) Thin Muck Surface (C7) X Geomorphic Position (D2) Algal Mat or Crust (B4) Other (Explain in Remarks) Iron Deposits (B5) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) X FAC-Neutral Test (D5) X Water-Stained Leaves (B9) Sphagnum Moss (D8) (LRR T, U) Field Observations: No _____ Depth (inches): ___ Surface Water Present? Water Table Present? Yes X No Saturation Present? Wetland Hydrology Present? (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: NWI, NRCS Soil Survey, USGS, ESRI, Google Earth Remarks: Hydrologic input is received from Stream 1 to the south and Pond 5 to the east. Throughout the wetland, Stream 1 completely loses is morphology and dissipates into overland surface water flow as it drains in a northwesterly direction and eventually regains stream morphology before flowing out of the forested area as Stream 1. Approximately 1.14 acres is wetland/upland mosaic area, while 0.47 acres that is fed by drainage from Pond 5 is true wetland.

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: WET 1 Absolute Dominant Indicator <u>Tree Stratum</u> (Plot size: r = 30') % Cover Species? Status **Dominance Test worksheet:** Acer rubrum FAC **Number of Dominant Species** Liquidambar styraciflua Yes FAC That Are OBL, FACW, or FAC: 3. Ulmus americana FAC **Total Number of Dominant** 4. (B) Species Across All Strata: 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply by: 70 =Total Cover OBL species x 1 = 35 20% of total cover: 14 x 2 = FACW species 50% of total cover: <u>Sapling/Shrub Stratum</u> (Plot size: r = 15') FAC species x 3 = 1. FACU species ____ x 4 = _ UPL species x 5 = ____ 3. Column Totals: (A) 4. Prevalence Index = B/A = **Hydrophytic Vegetation Indicators:** 5. 6. 1 - Rapid Test for Hydrophytic Vegetation 7. X 2 - Dominance Test is >50% 8. 3 - Prevalence Index is ≤3.01 =Total Cover Problematic Hydrophytic Vegetation¹ (Explain) 50% of total cover: _____ 20% of total cover: ____ <u>Herb Stratum</u> (Plot size: r = 5') Carex blanda FAC ¹Indicators of hydric soil and wetland hydrology must be **FACW** Juncus coriaceus 10 present, unless disturbed or problematic. 3. **FACU Definitions of Four Vegetation Strata:** Lonicera japonica 4. Parthenocissus quinquefolia **FACU** Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. Rosa multiflora **FACU** height. 6. 7. Sapling/Shrub - Woody plants, excluding vines, less 8. than 3 in. DBH and greater than 3.28 ft (1 m) tall. 9. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. 35 =Total Cover Woody Vine - All woody vines greater than 3.28 ft in 50% of total cover: ____18 ___ 20% of total cover: ____7 Woody Vine Stratum (Plot size: ____) 1. 2. 3. 4. Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? No Yes X Remarks: (If observed, list morphological adaptations below.)

Depth (inches) 0-3 3-11	Matrix Color (moist)		Podo	_							
	Color (moist)			x Featur							
		%	Color (moist)	%	Type ¹	Loc ²	Te	exture		Remarks	3
3-11	10YR 4/1	100					Loam	y/Clayey		roots prese	ent
	10YR 4/6	70	10YR 6/4	20	С	M			Di	istinct redox cond	centrations
			10YR 5/1	10	<u>C</u>	<u>M</u>			Pro	ominent redox cor	ncentrations
				_	_	_					
¹Type: C=Co	ncentration, D=Depl	etion, RM	=Reduced Matrix, f	MS=Mas	ked San	d Grains.		² Location: P	L=Por	re Lining, M=Matr	ix.
Hydric Soil Ir	ndicators: (Applica	ble to all	LRRs, unless other	erwise n	oted.)			Indicators f	or Pro	blematic Hydric	Soils ³ :
Histosol (A1)		Thin Dark S	urface (S	59) (LRR	S, T, U)		1 cm Mu	ıck (A9	9) (LRR O)	
Histic Epi	pedon (A2)		Barrier Islands 1 cm Muck (S12)					2 cm Mu	ıck (A1	10) (LRR S)	
Black His	tic (A3)		(MLRA 153B, 153D)							Redox (A16)	
Hydrogen Sulfide (A4)			Loamy Mucky Mineral (F1) (LRR O)					(outside MLRA 150A)			
Stratified Layers (A5)				Loamy Gleyed Matrix (F2)					Reduced Vertic (F18)		
Organic Bodies (A6) (LRR P, T, U)				X Depleted Matrix (F3)					(outside MLRA 150A, 150B)		
5 cm Mucky Mineral (A7) (LRR P, T, U)			Redox Dark Surface (F6)					Piedmont Floodplain Soils (F19) (LRR P, T)			
	esence (A8) (LRR U))	Depleted Da			Anomalous Bright Floodplain Soils (F20)					
1 cm Muck (A9) (LRR P, T)			Redox Depressions (F8)					•	4 153B	•	
	Below Dark Surface	(A11)	Marl (F10) (I		Red Parent Material (F21)						
	rk Surface (A12)		Depleted Oc	-	Very Shallow Dark Surface (F22)						
	airie Redox (A16) (M			, ,							
	ucky Mineral (S1) (L l	RR O, S)	Umbric Surf	•	Barrier Islands Low Chroma Matrix (TS7)						
	eyed Matrix (S4)		Delta Ochric	-	(MLRA 153B, 153D)						
Sandy Re			Reduced Ve								
	Matrix (S6)		Piedmont Fl	•	,						
	face (S7) (LRR P, S,	-	Anomalous	-			20)	2			
	e Below Surface (S8))	(MLRA 14		³ Indicators of hydrophytic vegetation and						
(LRR S	i, T, U)		Very Shallow Dark Surface (F22) (MLRA 138, 152A in FL, 154)				wetland hydrology must be present, unless disturbed or problematic.				
Restrictive L	ayer (if observed):		·								
Type:											
Depth (inc	ches):		<u></u> -				Hydri	c Soil Prese	nt?	Yes X	No
Remarks:											
	present in the top 3	inches be	low ground surface) .							
.,	p. 5555		g	-							

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: East Holmes Road and Swinnea R	Road C	ity/County: Memphis,	Shelby County	Sampling Date: 4-15-2020
Applicant/Owner: Memphis - Shelby County	Airport Authority		State: TN	Sampling Point: WET 2
Investigator(s): Aaron Conti, Velita Thornton	Section	n, Township, Range:		
Landform (hillside, terrace, etc.): sloped		ef (concave, convex, r	none): none	Slope (%): 0-12
Subregion (LRR or MLRA): LRR P, MLRA 134			9.969078	Datum: NAD83
	-		NWI classificati	
Soil Map Unit Name: Co & GgD3 (see remarks)		V V		
Are climatic / hydrologic conditions on the site typ	-	Yes X	No (If no, e	
Are Vegetation, Soil, or Hydrology				Yes X No
Are Vegetation, Soil, or Hydrology	naturally problematic	? (If needed, exp	lain any answers in Re	marks.)
SUMMARY OF FINDINGS – Attach sit	te map showing samp	ling point location	ons, transects, im	portant features, etc.
Hydrophytic Vegetation Present? Yes	s X No Is	the Sampled Area		
Hydric Soil Present? Yes	s X No wi	ithin a Wetland?	Yes_X_	No
Wetland Hydrology Present? Yes	s X No			
Remarks:	•			
Wetland 2 exhibits drainage patterns indicative of	•	•		land "island" area.
Hydrologic input received via seepage through t Co = Collins silt loam, 0 to 2 percent slopes, occ		, 0	a 2.	
GgD3 = Grenada complex, 5 to 12 percent slope				
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required;	check all that apply)		Surface Soil Crack	
X Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetate	d Concave Surface (B8)
X High Water Table (A2)	Marl Deposits (B15) (LRR	U)	Drainage Patterns	(B10)
X Saturation (A3)	Hydrogen Sulfide Odor (C1)	Moss Trim Lines (E	316)
Water Marks (B1)	Oxidized Rhizospheres on	Living Roots (C3)	Dry-Season Water	Table (C2)
Sediment Deposits (B2)	Presence of Reduced Iron	(C4)	Crayfish Burrows (C8)
Drift Deposits (B3)	Recent Iron Reduction in T	illed Soils (C6)	Saturation Visible	on Aerial Imagery (C9)
X Algal Mat or Crust (B4)	Thin Muck Surface (C7)		X Geomorphic Positi	on (D2)
X Iron Deposits (B5)	Other (Explain in Remarks)		Shallow Aquitard (
Inundation Visible on Aerial Imagery (B7)		-	FAC-Neutral Test	` '
X Water-Stained Leaves (B9)		<u> </u>	Sphagnum Moss (D8) (LRR T, U)
Field Observations:				
	Depth (inches):			
Water Table Present? Yes X No	Depth (inches): Depth (inches):	2		
	Depth (inches):	2 Wetland F	lydrology Present?	Yes <u>X</u> No
(includes capillary fringe) Describe Recorded Data (stream gauge, monito	oring well aerial photos, prev	ious inspections) if av	ailahla:	
NWI, NRCS Soil Survey, USGS, ESRI, Google I	•	ious irispections), ii av	anabic.	
Remarks:				
Hydrology is fed by seepage through pond berm			le (A2) observed is like	ly from shallow surface
water around data collection point filling the soil	pit. B9: Few leaves present.			

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: WET 2 Absolute **Dominant** Indicator <u>Tree Stratum</u> (Plot size: r = 30') % Cover Species? Status Dominance Test worksheet: 1. Acer rubrum FAC Number of Dominant Species Yes FAC That Are OBL. FACW, or FAC: 2. Liaustrum sinense (A) 10 3. Prunus serotina No **FACU** Total Number of Dominant 4. Species Across All Strata: (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 75.0% (A/B) 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply by: 70 =Total Cover OBL species 50% of total cover: 20% of total cover: **FACW** species Sapling/Shrub Stratum (Plot size: r = 15' FAC species x 3 = FACU species 1. Ulmus americana x 4 = 2. x 5 = UPL species 3. Column Totals: (B) 4. Prevalence Index = B/A = 5. Hydrophytic Vegetation Indicators: 6. 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 7. 3 - Prevalence Index is ≤3.01 8. Problematic Hydrophytic Vegetation¹ (Explain) 15 =Total Cover 20% of total cover: 50% of total cover: 8 Herb Stratum (Plot size: r = 5') Parthenocissus quinquefolia **FACU** 1. ¹Indicators of hydric soil and wetland hydrology must be Ligustrum sinense 10 FAC present, unless disturbed or problematic. 2. **Definitions of Four Vegetation Strata:** 10 3. Toxicodendron radicans No FAC 5 No FAC 4. Rubus argutus Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. height. 6. 7. Sapling/Shrub - Woody plants, excluding vines, less 8. than 3 in. DBH and greater than 3.28 ft (1 m) tall. 9. 10. Herb - All herbaceous (non-woody) plants, regardless 11. of size, and woody plants less than 3.28 ft tall. Woody Vine - All woody vines greater than 3.28 ft in =Total Cover 50% of total cover: 33 20% of total cover: Woody Vine Stratum (Plot size:) 1. 2. 3. 4. Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (If observed, list morphological adaptations below.)

SOIL Sampling Point: WET 2

Profile Desc	ription: (Describe t	o the dep	th needed to docu	ument tl	he indica	ator or c	onfirm the absence o	f indicators.)			
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-2	10YR 2/1	65	10YR 4/1	20	С	M	Mucky Loam/Clay	mucky			
			10YR 4/6	15	С	M		Prominent redox concentrations			
2-12	10YR 5/6	60	10YR 5/1	30	C	M	Loamy/Clayey	Prominent redox concentrations			
			10YR 3/6	10	<u>C</u>	<u>M</u>		Faint redox concentrations			
1- 0.0			D 1 114 (1 1				21				
	ncentration, D=Depl					Grains		PL=Pore Lining, M=Matrix.			
-	ndicators: (Applical	ble to all			-	C T III		or Problematic Hydric Soils ³ :			
Histosol (Thin Dark Su	`	, •			uck (A9) (LRR O)			
	ipedon (A2)		Barrier Island			12)		uck (A10) (LRR S)			
Black His	` '		(MLRA 15		•	DD (0)		rairie Redox (A16)			
	n Sulfide (A4)		Loamy Muck	-		.RR ()	•	de MLRA 150A)			
	Layers (AS)	T 11)	Loamy Gleye					d Vertic (F18)			
	Bodies (A6) (LRR P,	-	X Depleted Ma				•	de MLRA 150A, 150B)			
	cky Mineral (A7) (LR	-						nt Floodplain Soils (F19) (LRR P, T)			
	esence (A8) (LRR U)		Depleted Da					ous Bright Floodplain Soils (F20)			
	ck (A9) (LRR P, T)	(111)			(ГО)		(MLRA 153B) Red Parent Material (F21)				
	Below Dark Surface rk Surface (A12)	(A11)	Marl (F10) (L Depleted Oc	-	1\ /MI D /	\ 151\	Very Shallow Dark Surface (F22)				
	airie Redox (A16) (M	I DA 150		`	, .	•		de MLRA 138, 152A in FL, 154)			
	ucky Mineral (S1) (L l		Umbric Surfa				•	slands Low Chroma Matrix (TS7)			
	leyed Matrix (S4)	KIK O, 3)	Delta Ochric			-		(MLRA 153B, 153D)			
	edox (S5)		Reduced Ve			-		Explain in Remarks)			
	Matrix (S6)		Piedmont Flo	•			· — `	Explain in Kemarks)			
	face (S7) (LRR P, S,	T 11\	Anomalous I				· ·				
	e Below Surface (S8)	-	(MLRA 14	•		•	•	ors of hydrophytic vegetation and			
(LRR S	` '	•	•					nd hydrology must be present,			
(LIXIX C	5, 1, 0,			Very Shallow Dark Surface (F22) (MLRA 138, 152A in FL, 154)				s disturbed or problematic.			
Postrictivo I	.ayer (if observed):		(2.07.10	o, 1027	=,	· · · ·	1	o distance of problematic.			
Type:	ayer (ii observed).										
Depth (in	ches):						Hydric Soil Prese	nt? Yes X No			
Remarks:							1				
Hydric matrix	present in the top 3	inches be	low ground surface								

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET - Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: East Holmes Road and Swinne	ea Road	City/County: Memphis,	Shelby County	Sampling Date: 4-16-2020		
Applicant/Owner: Memphis - Shelby Cou	nty Airport Authority		State: TN	Sampling Point: WET 3		
Investigator(s): Aaron Conti, Velita Thornton	Se	ction, Township, Range:				
Landform (hillside, terrace, etc.): flat area n		relief (concave, convex,		Slope (%): 0-2		
Subregion (LRR or MLRA): LRR P, MLRA 1		•	89.966759	Datum: NAD83		
Soil Map Unit Name: Loring silt loam, 5 to 12			NWI classification			
Are climatic / hydrologic conditions on the site				xplain in Remarks.)		
Are Vegetation, Soil, or Hydro			Circumstances" present?			
Are Vegetation, Soil, or Hydro	logynaturally problem	atic? (If needed, exp	plain any answers in Rer	marks.)		
SUMMARY OF FINDINGS – Attach	site map showing sar	mpling point location	ons, transects, imp	portant features, etc.		
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area				
	Yes X No	within a Wetland?	Yes_X_	No		
Wetland Hydrology Present?	Yes X No					
Remarks: Wetland 3 is a low-lying, mostly flat area jus eastward into WWC 6.	t south of the toe of a slope th	nat rises up to the gas pip	peline easement cleared	area; the wetland drains		
HYDROLOGY						
Wetland Hydrology Indicators:			Secondary Indicators (r	minimum of two required)		
Primary Indicators (minimum of one is require	red; check all that apply)		Surface Soil Cracks	s (B6)		
X Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetated	d Concave Surface (B8)		
High Water Table (A2)	Marl Deposits (B15) (LF					
X Saturation (A3)	Hydrogen Sulfide Odor		Moss Trim Lines (E	,		
Water Marks (B1)	Oxidized Rhizospheres		Dry-Season Water			
Sediment Deposits (B2)	Presence of Reduced Ir		Crayfish Burrows (0			
Drift Deposits (B3)	Recent Iron Reduction i			on Aerial Imagery (C9)		
Algal Mat or Crust (B4) Iron Deposits (B5)	X Thin Muck Surface (C7) Other (Explain in Rema		X Geomorphic Position X Shallow Aquitard (I	, ,		
Inundation Visible on Aerial Imagery (B7		iks)	X FAC-Neutral Test (•		
Water-Stained Leaves (B9)	,		Sphagnum Moss (I	·		
Field Observations:		<u> </u>	Opriagram Moss (E	50) (ERRY 1, 0)		
Surface Water Present? Yes X	No Depth (inches):	. 2				
Water Table Present? Yes						
Saturation Present? Yes X	No Depth (inches):		Hydrology Present?	Yes X No		
(includes capillary fringe)			.,	····_		
Describe Recorded Data (stream gauge, mc NWI, NRCS Soil Survey, USGS, ESRI, Goo	0 / 1 /1	revious inspections), if a	vailable:			
Remarks: D2: Drains into a linear non-water of the Uni	ted States. D3: hard cap at 9	inches; possibly concret	e from historical foundat	ion.		

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: WET 3 Absolute Dominant Indicator Tree Stratum (Plot size: % Cover Species? Status **Dominance Test worksheet:** Diospyros virginiana FAC Yes **Number of Dominant Species** 35 FAC That Are OBL. FACW, or FAC: 2. Liquidambar stvraciflua Yes 10 (A) 25 3. Ulmus americana Yes FAC **Total Number of Dominant** No 4. Liquidambar styraciflua 20 FAC Species Across All Strata: 10 (B) 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% (A/B) 7. Prevalence Index worksheet: 8. Total % Cover of: Multiply by: 120 =Total Cover OBL species 50% of total cover: 60 20% of total cover: **FACW** species Sapling/Shrub Stratum (Plot size: r = 15' **FAC** species x 3 =FAC **FACU** species Diospyros virginiana Quercus niara Yes FAC UPL species 2. x 5 = 3. Ligustrum sinense 10 Yes FAC Column Totals: (B) 4. Prevalence Index = B/A = **Hydrophytic Vegetation Indicators:** 5. 6. 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 7. 3 - Prevalence Index is ≤3.01 8. Problematic Hydrophytic Vegetation¹ (Explain) 40 =Total Cover 20% of total cover: 50% of total cover: 20 Herb Stratum (Plot size: r = 5') Smilax rotundifolia FAC ¹Indicators of hydric soil and wetland hydrology must be Diospyros virginiana Yes FAC present, unless disturbed or problematic. **Definitions of Four Vegetation Strata:** 3. Ulmus americana 3 Yes FAC 2 FACW 4. Cyperus pseudovegetus No Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. Persicaria maculosa 2 No **FACW** height. 6. 7. Sapling/Shrub - Woody plants, excluding vines, less 8. than 3 in. DBH and greater than 3.28 ft (1 m) tall. 9. 10 Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. =Total Cover Woody Vine - All woody vines greater than 3.28 ft in height. 50% of total cover: 10 20% of total cover: Woody Vine Stratum (Plot size: r = 30') Smilax rotundifolia FAC 1. 2. 3. 4. Hydrophytic =Total Cover Vegetation 50% of total cover: 15 20% of total cover: Present? Yes X Remarks: (If observed, list morphological adaptations below.)

SOIL Sampling Point: WET 3

Profile Desc	ription: (Describe t	o the dep	th needed to docu	ıment t	he indica	tor or co	onfirm the absence	of indicators.)		
Depth	Matrix		Redox	k Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-2	10YR 5/1	85	10YR 5/6	15	<u>C</u>	<u>M</u>	Loamy/Clayey	few roots and organic debris present		
2-9	10YR 5/4	75	10YR 5/1	15	С	M	Loamy/Clayey	Distinct redox concentrations		
			10YR 3/4	10	С	M		Faint redox concentrations		
¹ Type: C=Co	ncentration, D=Depl	etion, RM=	Reduced Matrix, N	/S=Mas	ked Sand	Grains.	² Location:	PL=Pore Lining, M=Matrix.		
Hydric Soil I	ndicators: (Applica	ble to all L	RRs, unless othe	rwise n	oted.)		Indicators	for Problematic Hydric Soils ³ :		
Histosol	(A1)		Thin Dark Su	ırface (S	9) (LRR	S, T, U)	1 cm M	luck (A9) (LRR O)		
Histic Ep	ipedon (A2)		Barrier Island	ds 1 cm	Muck (S	12)	2 cm N	luck (A10) (LRR S)		
Black His	stic (A3)		(MLRA 15	3B, 153	D)		Coast I	Prairie Redox (A16)		
	n Sulfide (A4)		Loamy Muck		-	RR O)		side MLRA 150A)		
Stratified	Layers (A5)		Loamy Gleye	ed Matri	x (F2)		Reduce	ed Vertic (F18)		
Organic I	Bodies (A6) (LRR P,	T, U)	X Depleted Ma	trix (F3)			(outs	side MLRA 150A, 150B)		
5 cm Mu	cky Mineral (A7) (LR	R P, T, U)	Redox Dark	Surface	(F6)		Piedmo	ont Floodplain Soils (F19) (LRR P, T)		
Muck Pre	esence (A8) (LRR U)		Depleted Da	rk Surfa	ce (F7)		Anomalous Bright Floodplain Soils (F			
1 cm Mu	ck (A9) (LRR P, T)		X Redox Depre	essions	(F8)		(MLF	RA 153B)		
	Below Dark Surface	(A11)	Marl (F10) (L	-				arent Material (F21)		
	rk Surface (A12)		Depleted Oc	`	, .	•		hallow Dark Surface (F22)		
	airie Redox (A16) (M		<i></i>					side MLRA 138, 152A in FL, 154)		
	ucky Mineral (S1) (L l	RR O, S)	Umbric Surfa			-				
	leyed Matrix (S4)		Delta Ochric			-	(MLRA 153B, 153D)			
	edox (S5)		Reduced Ve	,			· — `	Explain in Remarks)		
	Matrix (S6)		Piedmont Flo							
	face (S7) (LRR P, S,	-	Anomalous E	•	•	•	•	tons of hardwards discounted as and		
	e Below Surface (S8))	(MLRA 14					tors of hydrophytic vegetation and		
(LKK	S, T, U)		Very Shallow (MLRA 13		,	,	wetland hydrology must be present, unless disturbed or problematic.			
Postrictivo I	.ayer (if observed):		(WERA 13	0, 13ZA	. III FE, 1	J 4)	unie	ss disturbed of problematic.		
	Jnkown (concrete?)									
Depth (in	ches):	9					Hydric Soil Prese	ent? Yes X No		
Remarks:	<u> </u>						,			
	orical building founda	itions may	be present around	this are	a.					

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: East Holmes Road and Swinnea	Road	City/County: Memphis,	Shelby County Sa	ampling Date: 4-16-2020
Applicant/Owner: Memphis - Shelby Count	ty Airport Authority		State: TN Sa	ampling Point: WET 4
Investigator(s): Aaron Conti, Velita Thornton	Se	ction, Township, Range:		
Landform (hillside, terrace, etc.): flat	Local	relief (concave, convex, r	none): none	Slope (%): 2-5
Subregion (LRR or MLRA): LRR P, MLRA 134	1 Lat: 35.001613	Long: -8	9.964715	Datum: NAD83
Soil Map Unit Name: Gs and MeB2 (see rema			NWI classification	· None
Are climatic / hydrologic conditions on the site t		Yes X		
, -				
Are Vegetation, Soil, or Hydrolo	<u> </u>		rcumstances" present?	
Are Vegetation, Soil, or Hydrolo SUMMARY OF FINDINGS – Attach s	·		lain any answers in Rema	
	· · ·		, , ,	,
	es X No	Is the Sampled Area		
	es X No No	within a Wetland?	Yes <u>X</u> N	° <u> </u>
Wetland Hydrology Present? Y Remarks:	es X No			
Gs = Gullied land, silty (udorthent, silty) MeB2 = Memphis silt loam, 2 to 5 percent slop Wetland 4 is a 60/40 wetland/upland mosaic in than 50 percent of the wetland, and drainage	mmediately upgradient of a	nd adjacent to the inception	on of a Stream 2. Surface	water observed in less
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators (mir	•
Primary Indicators (minimum of one is require			Surface Soil Cracks (
X Surface Water (A1)	Aquatic Fauna (B13)	- -		Concave Surface (B8)
X High Water Table (A2)	Marl Deposits (B15) (LF		X Drainage Patterns (B	
X Saturation (A3)	Hydrogen Sulfide Odor	•	Moss Trim Lines (B16	
Water Marks (B1)	Oxidized Rhizospheres	-	Dry-Season Water Ta	
Sediment Deposits (B2)	Presence of Reduced II Recent Iron Reduction		Crayfish Burrows (C8 Saturation Visible on	
Drift Deposits (B3) Algal Mat or Crust (B4)	Thin Muck Surface (C7)	` ′	X Geomorphic Position	
Iron Deposits (B5)	Other (Explain in Rema		Shallow Aquitard (D3	, ,
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Kema	- Into	X FAC-Neutral Test (D5	,
X Water-Stained Leaves (B9)		-	Sphagnum Moss (D8	
Field Observations:		<u> </u>		, (======
	No Depth (inches)	. 2		
	No Depth (inches)			
	No Depth (inches)		lydrology Present?	Yes X No
(includes capillary fringe)			,	· · · · · · · · · · · · · · · · · · ·
Describe Recorded Data (stream gauge, mon NWI, NRCS Soil Survey, USGS, ESRI, Googl		previous inspections), if av	ailable:	
Remarks: Wetland 4 is a 60/40 wetland/upland mosaic in than 50% of the area. Wetland 4 drains into S	, , ,	nd adjacent to the inception	on of a Stream 2. Surface	water observed in less

Absolute % Cover 55 25 10	Dominant Species? Yes Yes No	FAC FAC FAC	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: Total Number of Dominant Species Across All Strata:	5 (A)
25 10	Yes No	FAC	That Are OBL, FACW, or FAC: Total Number of Dominant	
10	No		That Are OBL, FACW, or FAC: Total Number of Dominant	
		FAC		F (D)
				5 (B)
			Percent of Dominant Species That Are OBL, FACW, or FAC:	100.0%(A/B)
			Prevalence Index worksheet:	
			Total % Cover of:	Multiply by:
90	=Total Cover		OBL species x	(1 =
45 20%	of total cover:	18	FACW species x	(2 =
)			FAC species x	(3=
20	Yes	FAC	FACU species x	(4 =
10	Yes	FAC		(5 =
5	No	FACU	Column Totals: (A)	(B)
			Prevalence Index = B/A =	=
			Hydrophytic Vegetation Indica	tors:
				-
35	=Total Cover			
		7		getation (=/tp/am)
	or total coron			
5	Vas	FΔCW	1	
		171011	present, unless disturbed or prob	olematic.
			Definitions of Four Vegetation	Strata:
			Tree – Woody plants, excluding more in diameter at breast heigh height.	
			Sapling/Shrub – Woody plants, than 3 in. DBH and greater than	
			Herb – All herbaceous (non-woo of size, and woody plants less the	,,,
	Total Cause		Manada Wina Allumada da dia sa	
		4		greater than 3.28 ft in
3 20%	of total cover:	1	Tiolgit.	
			Hydrophytic	
	=Total Cover			
	of total cover:		Present? Yes X	No
	90 45 20% 10 5 35 18 20% 5 5 3 20%			Total % Cover of: OBL species Section OBL species Section Sectio

Profile Desc	ription: (Describe	to the dep	th needed to docu	ıment tl	he indica	ator or co	onfirm the absence of	of indicators.)	
Depth	Matrix		Redox	k Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-3	10YR 5/1	100					Loamy/Clayey	Topped with organic debris	
3-8	10YR 6/1	60	10YR 5/6	40	<u>C</u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
8-12	10YR 6/1	50	10YR 5/6	25	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations	
			10YR 3/3	20	C	<u>M</u>		Distinct redox concentrations	
			10YR 2/2	5	С	<u>M</u>		Prominent redox concentrations	
	oncentration, D=Dep					d Grains.		PL=Pore Lining, M=Matrix.	
-	ndicators: (Applica	ble to all						or Problematic Hydric Soils ³ :	
Histosol	` '		Thin Dark Su	,				uck (A9) (LRR O)	
	ipedon (A2)		Barrier Island			12)		uck (A10) (LRR S)	
Black His	` '		(MLRA 15	3B, 153	D)		Coast F	rairie Redox (A16)	
Hydroge	n Sulfide (A4)		Loamy Muck	y Miner	al (F1) (L	.RR O)	(outs	ide MLRA 150A)	
Stratified	Layers (A5)		Loamy Gleye	ed Matri	x (F2)		Reduce	d Vertic (F18)	
Organic Bodies (A6) (LRR P, T, U) X Depleted Matrix (F3) (outside MLRA 150A, 150B)						ide MLRA 150A, 150B)			
5 cm Mucky Mineral (A7) (LRR P, T, U) Redox Dark Surface (F6) Piedmont Floodplain Soils (F19) (L						nt Floodplain Soils (F19) (LRR P, T)			
Muck Presence (A8) (LRR U) Depleted Dark Surface (F7) Anomalous Bright Floodplain Soils						ous Bright Floodplain Soils (F20)			
1 cm Mu	ck (A9) (LRR P, T)		X Redox Depre	essions	ons (F8) (MLRA 153B)				
Depleted Below Dark Surface (A11) Marl (F10) (LRR U) Red Parent Material (F21)						rent Material (F21)			
Thick Dark Surface (A12) Depleted Ochric (F11) (MLRA 151)						A 151)	Very Sh	allow Dark Surface (F22)	
Coast Prairie Redox (A16) (MLRA 150A) X Iron-Manganese Masses (F12) (LRR O, P, T) (outside MLRA 13						ide MLRA 138, 152A in FL, 154)			
Sandy M	ucky Mineral (S1) (L	.RR O, S)	Umbric Surfa	ace (F13	3) (LRR F	P, T, U)	Barrier	Islands Low Chroma Matrix (TS7)	
Sandy G	leyed Matrix (S4)		Delta Ochric	(F17) (I	MLRA 15	51)	(MLR	A 153B, 153D)	
Sandy R	edox (S5)		Reduced Ver	rtic (F18) (MLRA	150A, 1	50B) Other (E	Explain in Remarks)	
Stripped	Matrix (S6)		Piedmont Flo	odplain	Soils (F	19) (MLR	A 149A)		
Dark Sur	face (S7) (LRR P, S	, T, U)	Anomalous E	Bright Fl	oodplain	Soils (F2	0)		
	e Below Surface (S8	-	(MLRA 14	-				ors of hydrophytic vegetation and	
(LRR	S, T, U)		Very Shallow	Dark S	urface (F	- - -22)	wetland hydrology must be present,		
	-		(MLRA 13	8, 152A	in FL, 1	54)	unles	s disturbed or problematic.	
Restrictive L	ayer (if observed):								
Туре:									
Depth (in	nches):						Hydric Soil Prese	nt? Yes X No	
Remarks:									
I									

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swir	nnea Road	City/County: Memphis	, Shelby County	Sampling Date: 4-16-2020	
	ounty Airport Authority		State: TN		
Investigator(s): Aaron Conti, Velita Thornto	on Se	ction, Township, Range:			
Landform (hillside, terrace, etc.): drainag	eway Local	relief (concave, convex,	none): concave	Slope (%):	
Subregion (LRR or MLRA): LRR P, MLRA	•	•	89.964156	Datum: NAD 83	
Soil Map Unit Name: Fm and Gs (see rem			NWI classificat		
· · · · · · · · · · · · · · · · · · ·	,	. Vac V			
Are climatic / hydrologic conditions on the				explain in Remarks.)	
Are Vegetation, Soil, or Hyd				? Yes X No	
Are Vegetation, Soil, or Hyd	·		xplain any answers in Re		
SUMMARY OF FINDINGS – Attac	ch site map showing sai	mpling point locati	ons, transects, im	portant features, etc.	
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No	
Wetland Hydrology Present?	Yes X No				
Remarks:					
Fm = Falaya silt loam					
Gs = Gullied land, silty (udorthent, silty) Wetland 5 is a winding drainageway, very	narrow at some portions of its	length that drains into S	tream 3. There is a sha	llowly-ponded depressional	
area where the data was collected.	Harrow at some portions of its	eligili, illai diamo mic S	liediii 5. Tilolo io a cilo	mowry-portuou depressional	
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)	
Primary Indicators (minimum of one is rec	uired: check all that apply)		Surface Soil Crack		
X Surface Water (A1)	Aquatic Fauna (B13)			ed Concave Surface (B8)	
X High Water Table (A2) Marl Deposits (B15) (LRR U) Drainage Patterns (B10)					
X Saturation (A3)	Hydrogen Sulfide Odor	· ·	Moss Trim Lines (
Water Marks (B1)	Oxidized Rhizospheres		Dry-Season Wate		
X Sediment Deposits (B2)	Presence of Reduced In		Crayfish Burrows		
Drift Deposits (B3)	Recent Iron Reduction i	` '		on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Thin Muck Surface (C7)	, ,	X Geomorphic Posit		
Iron Deposits (B5)	Other (Explain in Rema		Shallow Aquitard		
Inundation Visible on Aerial Imagery (,	FAC-Neutral Test	` '	
X Water-Stained Leaves (B9)	,		Sphagnum Moss		
Field Observations:				<u>· </u>	
Surface Water Present? Yes X	No Depth (inches)	:6			
Water Table Present? Yes X	No Depth (inches)				
Saturation Present? Yes X	No Depth (inches)	: 12 Wetland	Hydrology Present?	Yes X No	
(includes capillary fringe)					
Describe Recorded Data (stream gauge,	• • •	previous inspections), if a	vailable:		
NWI, NRCS Soil Survey, USGS, ESRI, G	ogle Earth				
Remarks:	the manufactor and the	. 9 9			
Water table observed is likely seepage fro	m surrounding surface water in	ito soil pit.			

e Stratum (Plot size: r = 30')		Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
Ulmus americana		40	Yes	FAC	Number of Dominant Species		
Liquidambar styraciflua		25	Yes	FAC	That Are OBL, FACW, or FAC:	5	(A)
Quercus nigra		15	No	FAC	Total Number of Dominant Species Across All Strata:	6	(B)
					Percent of Dominant Species That Are OBL, FACW, or FAC:	83.3%	(A/B)
					Prevalence Index worksheet:		<u> </u>
					Total % Cover of:	/lultiply by:	
		80	=Total Cover		OBL species x 1 =		
50% of total cover:	40	20%	of total cover:	16	FACW species x 2 =		
$\frac{-}{\text{sling/Shrub Stratum}} \text{ (Plot size: } r = 15'$)				FAC species x 3 =		
Ulmus americana	—′	25	Yes	FAC	FACU species x 4 =		
Ligustrum sinense		10	Yes	FAC	UPL species x 5 =	-	
Ligadi am omonoc		10	100	17.0	Column Totals: (A)	-	<u> </u> (В
					Prevalence Index = B/A =		— (B
					Hydrophytic Vegetation Indicators		_
					1 - Rapid Test for Hydrophytic V	egetation	
					X 2 - Dominance Test is >50%		
					3 - Prevalence Index is ≤3.0 ¹	. 1	
	_		=Total Cover		Problematic Hydrophytic Vegeta	ition' (Expl	ain)
50% of total cover:	18	20%	of total cover:	7			
b Stratum (Plot size: r =5')							
Campsis radicans		15	Yes	FAC	¹ Indicators of hydric soil and wetland	l hydrology	must b
Lonicera japonica		10	Yes	FACU	present, unless disturbed or problem	atic.	
Ligustrum sinense		5	No	FAC	Definitions of Four Vegetation Str	ata:	
Smilax rotundifolia		5	No	FAC	Tree - Woody plants, excluding vine	es, 3 in. (7.6	6 cm) c
Toxicodendron radicans		5	<u>No</u>	FAC	more in diameter at breast height (D height.	BH), regard	dless o
					Sapling/Shrub – Woody plants, exc than 3 in. DBH and greater than 3.28		
					Herb – All herbaceous (non-woody) of size, and woody plants less than 3		ardless
		40	=Total Cover		Woody Vine – All woody vines great	ter than 3.2	28 ft in
50% of total cover:	20	20%	of total cover:	8	height.		
ody Vine Stratum (Plot size:							
	•						
			Total Carre		Hydrophytic		
	_		=Total Cover		Vegetation		
50% of total cover:		200/	of total cover:		Present? Yes X No	•	

Profile Desc	ription: (Describe t	to the dep	th needed to doc	ument t	he indica	ator or co	onfirm the absence o	f indicators.)			
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-3	10YR 3/1	85	10YR 6/2	15	С	M		Distinct redox concentrations			
3-12	10YR 6/2	55	10YR 4/6	25	<u>C</u>	<u>M</u>		Prominent redox concentrations			
			10YR 3/3	15	C	M		Distinct redox concentrations			
			10YR 3/2	5	<u>C</u>	M		Distinct redox concentrations			
¹ Type: C=Co	oncentration, D=Depl	etion, RM=	Reduced Matrix, N	/IS=Mas	ked San	d Grains.		L=Pore Lining, M=Matrix.			
-	Indicators: (Applica	ble to all I			-			or Problematic Hydric Soils ³ :			
Histosol	, ,		Thin Dark S			-		uck (A9) (LRR O)			
	pipedon (A2)		Barrier Islan			12)		uck (A10) (LRR S)			
Black His			(MLRA 15 Loamy Muck		-	BB (0)		rairie Redox (A16) de MLRA 150A)			
	n Sulfide (A4) I Layers (A5)		Loamy Gley			.KK U)	•	de MERA 130A) d Vertic (F18)			
	Bodies (A6) (LRR P,	T III	X Depleted Ma		` '			de MLRA 150A, 150B)			
	cky Mineral (A7) (LR	-		` '			Piedmont Floodplain Soils (F19) (LR				
	esence (A8) (LRR U)	_	Depleted Da		` '			ous Bright Floodplain Soils (F20)			
	ck (A9) (LRR P, T)	•	Redox Depre		` ,		(MLRA 153B)				
Depleted Below Dark Surface (A11) Marl (F10) (LRR U) Red Parent Material (F21)											
Thick Dark Surface (A12) Depleted Ochric (F11) (MLRA 151)						A 151)	Very Sh	allow Dark Surface (F22)			
Coast Prairie Redox (A16) (MLRA 150A) X Iron-Manganese Masses (F12) (LRR						-	O, P, T) (outsi	de MLRA 138, 152A in FL, 154)			
Sandy M	Sandy Mucky Mineral (S1) (LRR O, S) Umbric Surface (F13) (LRR P, T, U)					P, T, U)	Barrier Islands Low Chroma Matrix (TS7)				
Sandy G	leyed Matrix (S4)		Delta Ochric	(F17) (I	VILRA 15	51)	(MLR	A 153B, 153D)			
Sandy R	edox (S5)		Reduced Ve	rtic (F18	B) (MLRA	150A, 1	50B) Other (E	xplain in Remarks)			
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	RA 149A)				
Dark Sur	face (S7) (LRR P, S	, T, U)	Anomalous I	Bright Fl	oodplain	Soils (F2	· ·				
	e Below Surface (S8)	(MLRA 14					ors of hydrophytic vegetation and			
(LRR S	S, T, U)		Very Shallov				wetland hydrology must be present, unless disturbed or problematic.				
			(MLRA 13	8, 152A	in FL, 1	54)	unles	s disturbed or problematic.			
	_ayer (if observed):										
Type:											
Depth (in	nches):						Hydric Soil Prese	nt? Yes X No			
Remarks:											

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	a Road	City/County: Memphis,	Shelby County	Sampling Date: 4-16-2020
Applicant/Owner: Memphis - Shelby Cour	nty Airport Authority		State: TN	Sampling Point: WET 6
Investigator(s): Aaron Conti, Velita Thornton		ion, Township, Range:		
Landform (hillside, terrace, etc.): drainagew		elief (concave, convex,		Slope (%):
Subregion (LRR or MLRA): LRR P, MLRA 13			89.963553	Datum: NAD 83
	<u> </u>			
Soil Map Unit Name: Falaya silt loam	tunical for this time of warm?	V V	NWI classificat	
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)
Are Vegetation, Soil, or Hydrol	<u></u>		Circumstances" present	
Are Vegetation, Soil, or Hydrol	ogynaturally problema	tic? (If needed, ex	plain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locati	ons, transects, im	portant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area		
		within a Wetland?	Yes X	No
•	Yes X No			
Remarks:				
Wetland 6 exhibits numerous scattered pudd		and mucky surface soil w	within a drainageway ar	ea where Stream 3
completely loses its morphology througout th	is wetland.			
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	
X Surface Water (A1)	Aquatic Fauna (B13)	_		ed Concave Surface (B8)
High Water Table (A2)	Marl Deposits (B15) (LRI	R U)	X Drainage Patterns	s (B10)
X Saturation (A3)	Hydrogen Sulfide Odor (0	C1)	Moss Trim Lines (B16)
Water Marks (B1)	Oxidized Rhizospheres o	on Living Roots (C3)	Dry-Season Wate	r Table (C2)
Sediment Deposits (B2)	Presence of Reduced Iro	n (C4)	Crayfish Burrows	(C8)
Drift Deposits (B3)	Recent Iron Reduction in	Tilled Soils (C6)	Saturation Visible	on Aerial Imagery (C9)
Algal Mat or Crust (B4)	X Thin Muck Surface (C7)		X Geomorphic Posit	ion (D2)
Iron Deposits (B5)	Other (Explain in Remark	(s)	Shallow Aquitard	(D3)
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test	(D5)
Water-Stained Leaves (B9)			Sphagnum Moss	(D8) (LRR T, U)
Field Observations:				
Surface Water Present? Yes X	No Depth (inches):			
	No X Depth (inches):			
Saturation Present? Yes X	No Depth (inches):	12 Wetland	Hydrology Present?	Yes X No
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mor	•	evious inspections), if a	vailable:	
NWI, NRCS Soil Survey, USGS, ESRI, Goog	jle Earth			
Remarks:				
Nemarks.				

Status	Dominance Test worksheet:		
FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	5	_(A)
	Total Number of Dominant Species Across All Strata:	9	(B)
	Percent of Dominant Species That Are OBL, FACW, or FAC:	55.6%	(A/B)
	Prevalence Index worksheet:		
	Total % Cover of:	Multiply by:	
	OBL species x ^	1 =	
12	FACW species x 2	2 =	
	FAC species x3	3 =	
FACU		4 =	
FAC	UPL species x 5	5 =	
	Column Totals: (A)		(B)
	Prevalence Index = B/A =		
	Hydrophytic Vegetation Indicate	ors:	
	1 - Rapid Test for Hydrophytic	c Vegetation	
	X 2 - Dominance Test is >50%		
	3 - Prevalence Index is ≤3.0 ¹		
	Problematic Hydrophytic Veg	etation ¹ (Expl	ain)
10			
FAC	¹ Indicators of hydric soil and wetla	and hydrology	must he
FAC	present, unless disturbed or probl		must be
FAC	Definitions of Four Vegetation S		
FACU	Tree – Woody plants, excluding v		S cm) or
FACU	more in diameter at breast height		
FAC	height.		
FACU			
FAC	Sapling/Shrub – Woody plants, e		
	than 3 in. DBH and greater than 3	3.28 π (1 m) ta	III.
	Herb – All herbaceous (non-wood	,,,	ardless
	of size, and woody plants less that	in 3.28 ft tall.	
	Woody Vine – All woody vines gr	eater than 3.2	28 ft in
8	height.	oator triair o.z	
FACU			
	Hydrophytic		
4		Na	
<u> </u>	Present? Yes X	NO	
	1	Vegetation	Vegetation

Profile Desc	ription: (Describe to	the depth	needed to docu	ıment th	ne indica	tor or co	onfirm the ab	sence o	f indicators.)		
Depth	Matrix		Redo	x Featur	es				-		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture)	Remarks		
0-3	10YR 3/1	100					Loamy/Cla	iyey			
3-10	10YR 5/2	70	10YR 3/4	25	С	M	Loamy/Cla	iyey	Distinct redox concentrations		
			10YR 2/2	5	<u>C</u>	<u>M</u>			Distinct redox concentrations		
¹ Type: C=Cc	oncentration, D=Deple	tion RM-F	Peduced Matrix N	 1S_Mas	ked Sand	d Grains	2l oc	ation: P	L=Pore Lining, M=Matrix.		
	ndicators: (Applicat					J Grains.			or Problematic Hydric Soils ³ :		
Histosol		no to an Ei	Thin Dark Su		-	S. T. U)			uck (A9) (LRR O)		
	ipedon (A2)	•	Barrier Island	,	, .				uck (A10) (LRR S)		
Black His		•	(MLRA 15			,			rairie Redox (A16)		
— Hydrogei	n Sulfide (A4)		Loamy Muck	y Minera	al (F1) (L	RR O)			de MLRA 150A)		
	Layers (A5)	•	Loamy Gleye	ed Matrix	(F2)	•		Reduce	d Vertic (F18)		
	Bodies (A6) (LRR P,	T, U)	X Depleted Ma	trix (F3)				(outsi	de MLRA 150A, 150B)		
5 cm Mu	cky Mineral (A7) (LRf	R P, T, U)	Redox Dark	Surface	(F6)			Piedmor	nt Floodplain Soils (F19) (LRR P, T)		
Muck Pre	esence (A8) (LRR U)	•	Depleted Da	rk Surfa	ce (F7)			Anomalo	ous Bright Floodplain Soils (F20)		
1 cm Mu	ck (A9) (LRR P, T)	•	Redox Depre	essions	(F8)			(MLR	A 153B)		
X Depleted	Below Dark Surface	(A11)	Marl (F10) (L	RR U)			Red Parent Material (F21)				
Thick Da	rk Surface (A12)	•	Depleted Oc	hric (F1	1) (MLR	151)	Very Shallow Dark Surface (F22)				
Coast Pr	airie Redox (A16) (MI	RA 150A)	X Iron-Mangan	ese Mas	sses (F12	2) (LRR (R O, P, T) (outside MLRA 138, 152A in FL, 154)				
Sandy M	ucky Mineral (S1) (LF	RR O, S)	Umbric Surfa	ace (F13) (LRR F	P, T, U)	Barrier Islands Low Chroma Matrix (TS7)				
Sandy G	leyed Matrix (S4)		Delta Ochric	(F17) (N	ILRA 15	1)		(MLR	A 153B, 153D)		
Sandy R	edox (S5)		Reduced Ve	rtic (F18) (MLRA	150A, 1	50B)	Other (E	xplain in Remarks)		
Stripped	Matrix (S6)		Piedmont Flo	oodplain	Soils (F	19) (MLR	A 149A)				
Dark Sur	face (S7) (LRR P, S,	T, U)	Anomalous E	Bright Flo	oodplain	Soils (F2	0)				
Polyvalue	e Below Surface (S8)		(MLRA 14	9A, 153	C, 153D)			³ Indicato	ors of hydrophytic vegetation and		
(LRR S	S, T, U)		Very Shallov	/ Dark S	urface (F	22)		wetlaı	nd hydrology must be present,		
			(MLRA 13	8, 152A	in FL, 1	54)		unles	s disturbed or problematic.		
Restrictive L Type:	.ayer (if observed):										
Depth (in	iches):						Hydric So	il Presei	nt? Yes X No		
Remarks:											
rtomanto.											

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	ea Road	City/County: Memphis	, Shelby County	Sampling Date: 4-16-2020
Applicant/Owner: Memphis - Shelby Cou	nty Airport Authority		State: TN	Sampling Point: WET 6
Investigator(s): Aaron Conti, Velita Thornton	Sec	tion, Township, Range:		
Landform (hillside, terrace, etc.): drainagew	•	elief (concave, convex,	none): none	Slope (%):
Subregion (LRR or MLRA): LRR P, MLRA 1:	•		89.963711	Datum: NAD 83
Soil Map Unit Name: Falaya silt loam and G			NWI classifica	
				-
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)
Are Vegetation, Soil, or Hydrol			Circumstances" present	
Are Vegetation, Soil, or Hydrol	ogynaturally problema	atic? (If needed, ex	plain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing sam	npling point locati	ons, transects, in	nportant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area		
		within a Wetland?	Yes X	No
Wetland Hydrology Present?	Yes X No			
Remarks: Wetland 7 exhibits numerous scattered pudd completely loses its morphology througout the		and mucky surface soil	within a drainageway ar	rea where Stream 3
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	` '
X Surface Water (A1)	Aquatic Fauna (B13)			ed Concave Surface (B8)
High Water Table (A2)	Marl Deposits (B15) (LR	-	X Drainage Patterns	
X Saturation (A3)	Hydrogen Sulfide Odor (Moss Trim Lines (
Water Marks (B1)	Oxidized Rhizospheres of		Dry-Season Water	
Sediment Deposits (B2)	Presence of Reduced Iro		Crayfish Burrows	
X Drift Deposits (B3)	Recent Iron Reduction in	1 Tilled Solis (Co)		on Aerial Imagery (C9)
Algal Mat or Crust (B4)	X Thin Muck Surface (C7) Other (Explain in Remark	la)	X Geomorphic Posit	
Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7		KS)	Shallow Aquitard FAC-Neutral Test	
X Water-Stained Leaves (B9))		Sphagnum Moss	
Field Observations:		1	Opinagina	(50) (2:00:1, 5)
Surface Water Present? Yes X	No Depth (inches):	1		
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes X	No Depth (inches):		Hydrology Present?	Yes X No
(includes capillary fringe)			11941-010-99	<u>,, </u>
Describe Recorded Data (stream gauge, mo NWI, NRCS Soil Survey, USGS, ESRI, Goog	•	evious inspections), if a	vailable:	
Remarks:				

/es FA /es FA /es FA No FAC No FAC Cover	Number of Dominant Species That Are OBL, FACW, or FAC: 6 (A) Total Number of Dominant Species Across All Strata: 7 (B) Percent of Dominant Species That Are OBL, FACW, or FAC: 85.7% (A/B) Prevalence Index worksheet: Total % Cover of: Multiply by: OBL species x1 = 6 FACW species x2 = FAC species x3 = FAC uple species x4 = AC UPL species x5 = Column Totals: (A) (B) ACU Prevalence Index = B/A = AC Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain)
All cover: 6 Yes FA Yes FA Yes FA No FA No FA Cover Cover All cover: 22 Yes FA	Species Across All Strata: 7 (B) Percent of Dominant Species That Are OBL, FACW, or FAC: 85.7% (A/B) Prevalence Index worksheet: Total % Cover of: Multiply by: OBL species
All cover: 6 Yes FA Yes FA Yes FA No FA No FA Cover Cover All cover: 22 Yes FA	That Are OBL, FACW, or FAC: 85.7% (A/B) Prevalence Index worksheet: Total % Cover of: Multiply by: OBL species x 1 = FACW species x 2 = FAC species x 4 = AC UPL species x 5 = Column Totals: (A) (B) Prevalence Index = B/A = AC Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
All cover: 6 Yes FA Yes FA Yes FA No FA No FA Cover Cover All cover: 22 Yes FA	Total % Cover of: Multiply by:
All cover: 6 Yes FA Yes FA Yes FA No FA No FA Cover Cover All cover: 22 Yes FA	OBL species
All cover: 6 Yes FA Yes FA Yes FA No FA No FA Cover Cover All cover: 22 Yes FA	FACW species x 2 = FAC species x 3 = AC FACU species x 4 = AC UPL species x 5 = Column Totals: (A) (B) Prevalence Index = B/A = AC Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Yes FA Yes FA Yes FA No FA No FA Cover Cover al cover: 22 Yes FAC	FAC species x 3 = FACU species x 4 = AC UPL species x 5 = Column Totals: (A) (B) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) Problematic Hydrophytic Vegetation¹ ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Yes FA Yes FA No FAC No FAC Cover al cover: 22 Yes FAC	FAC species x 3 = FACU species x 4 = AC UPL species x 5 = Column Totals: (A) (B) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) Problematic Hydrophytic Vegetation¹ ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Yes FA Yes FA No FAC No FA	AC UPL species x 5 = Column Totals: (A) (B) ACU Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU 1 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Yes FA No FAC No FA Cover al cover: 22 Yes FAC	AC UPL species x 5 = Column Totals: (A) (B) ACU Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU 1 Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
No FAC No FA Cover al cover: 22 Yes FAC	ACU Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) 22 ACU ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Cover al cover: 22	ACU Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) 22 ACU ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Cover al cover: 22	AC Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
Cover al cover: 22	1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) 22 ACU ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
al cover: 22	X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
al cover: 22	3 - Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
al cover: 22	Problematic Hydrophytic Vegetation¹ (Explain) ACU ACU Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
al cover: 22	ACU ACU AC AC AC AC AC AC AC AC AC AC AC AC AC
res FAC	ACU AC Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
	present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
	present, unless disturbed or problematic. Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
- TA	Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
	more in diameter at breast height (DBH), regardless of height.
	height.
	
	Sapling/Shrub – Woody plants, excluding vines, less
	than 3 in. DBH and greater than 3.28 ft (1 m) tall.
	
	Herb – All herbaceous (non-woody) plants, regardless
	of size, and woody plants less than 3.28 ft tall.
Cover	Woody Vine – All woody vines greater than 3.28 ft in
al cover: 8	8 height.
es FA	AC
	Livetrombytic
Cover	Hydrophytic Vegetation
al cover: 3	3 Present? Yes X No
	Cover

Profile Desci	ription: (Describe t	o the dep	th needed to docu	ument tl	ne indica	tor or co	onfirm the absence of	of indicators.)			
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-3	10YR 2/1	100					Loamy/Clayey	Mucky, roots present			
3-6	10YR 3/1	100					Loamy/Clayey				
6-12	10YR 5/1	50	10YR 3/4	30	С	<u>M</u>	Loamy/Clayey	Distinct redox concentrations			
			10YR 4/6	20	С	M		Prominent redox concentrations			
	ncentration, D=Deple					d Grains.		PL=Pore Lining, M=Matrix.			
-	ndicators: (Applical	ble to all l			-		Indicators t	for Problematic Hydric Soils ³ :			
Histosol (,		Thin Dark Su	urface (S	9) (LRR	S, T, U)	1 cm M	uck (A9) (LRR O)			
Histic Epi	pedon (A2)		Barrier Island	ds 1 cm	Muck (S	12)	2 cm M	uck (A10) (LRR S)			
Black His	tic (A3)		(MLRA 15	3B, 153	D)		Coast F	Prairie Redox (A16)			
Hydroger	Sulfide (A4)		Loamy Muck	ky Minera	al (F1) (L	RR O)	(outs	ide MLRA 150A)			
Stratified	Layers (A5)		Loamy Gleye	ed Matri	x (F2)		Reduced Vertic (F18)				
Organic E	Bodies (A6) (LRR P,	T, U)	X Depleted Ma	atrix (F3)			(outside MLRA 150A, 150B)				
5 cm Mud	cky Mineral (A7) (LR	ineral (A7) (LRR P, T, U) Redox Dark Surface (F6) Piedmont Floodplain Soils (F19)						nt Floodplain Soils (F19) (LRR P, T)			
Muck Pre	sence (A8) (LRR U)	e (A8) (LRR U) Depleted Dark Surface (F7) Anomalous Bright Floodplain Soi						ous Bright Floodplain Soils (F20)			
1 cm Mud	ck (A9) (LRR P, T)		Redox Depre	essions	(F8)	(MLRA 153B)					
Depleted	Below Dark Surface	Marl (F10) (L	_RR U)			Red Pa	rent Material (F21)				
Thick Dark Surface (A12) Depleted O				hric (F1	1) (MLR	151)	Very Sh	nallow Dark Surface (F22)			
					ide MLRA 138, 152A in FL, 154)						
Sandy Mucky Mineral (S1) (LRR O, S) X Umbric Surface (F13) (LRR P, T, U)					Barrier	Barrier Islands Low Chroma Matrix (TS7)					
Sandy GI	eyed Matrix (S4)		Delta Ochric	Delta Ochric (F17) (MLRA 151) (MLRA 153B, 153D)							
Sandy Re	edox (S5)		Reduced Ve	rtic (F18) (MLRA	150A, 1	50B) Other (E	Explain in Remarks)			
Stripped	Matrix (S6)		Piedmont Flo	oodplain	Soils (F	19) (MLR	A 149A)				
Dark Surf	face (S7) (LRR P, S ,	T, U)	Anomalous I	Bright Fl	oodplain	Soils (F2	(0)				
Polyvalue	e Below Surface (S8)		(MLRA 14	9A, 153	C, 153D)		³ Indicators of hydrophytic vegetation and				
(LRR S	S, T, U)		Very Shallov	v Dark S	urface (F	22)	wetland hydrology must be present,				
			(MLRA 13	8, 152A	in FL, 1	54)	unles	s disturbed or problematic.			
	ayer (if observed):										
Type: _ Depth (in	ahaa):						Hydric Soil Prese	nt? Von V No			
' '	cnes).						nyaric Soil Prese	nt? Yes <u>X</u> No			
Remarks:											

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	ea Road	City/County: Memphis	Shelby County	Sampling Date: 4-15-2020	
Applicant/Owner: Memphis - Shelby Cou			State: TN	Sampling Point: WET 9	
Investigator(s): Aaron Conti, Velita Thornton	Sect	tion, Township, Range:			
Landform (hillside, terrace, etc.): depression	n Local r	elief (concave, convex,	none): concave	Slope (%):	
Subregion (LRR or MLRA): LRR P, MLRA 1:		•	39.9688007	Datum: NAD83	
Soil Map Unit Name: Loring silt loam, 8 to 12		~	NWI classificat		
Are climatic / hydrologic conditions on the site		Vec Y			
		Yes X		explain in Remarks.)	
Are Vegetation, Soil, or Hydro			circumstances" present		
Are Vegetation, Soil, or Hydro			plain any answers in Re	•	
SUMMARY OF FINDINGS – Attach	site map showing sam	npling point locati	ons, transects, im	nportant features, etc.	
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
		within a Wetland?	Yes X	No	
Wetland Hydrology Present?	Yes X No				
Remarks: Wetland 9 is a depressional feature with por subsequently drains into Wetland 10.	nded surface water observed. \	Wetland 9 drains at the	western end into a line:	ar non-WOTUS that	
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)	
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	ks (B6)	
X Surface Water (A1)	Aquatic Fauna (B13)			ed Concave Surface (B8)	
X High Water Table (A2)	Marl Deposits (B15) (LRR U) X Drainage Patterns (B10)				
X Saturation (A3)	Hydrogen Sulfide Odor (0		Moss Trim Lines (
Water Marks (B1)	Oxidized Rhizospheres of		Dry-Season Wate		
Sediment Deposits (B2)	Presence of Reduced Iro		Crayfish Burrows		
Drift Deposits (B3)	Recent Iron Reduction in	Tilled Soils (C6)		on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Thin Muck Surface (C7)		Geomorphic Posit		
Iron Deposits (B5)	Other (Explain in Remark	KS)	Shallow Aquitard		
Inundation Visible on Aerial Imagery (B7	')		FAC-Neutral Test	` '	
X Water-Stained Leaves (B9)		Г	Sphagnum Moss	(D8) (LKK I, U)	
Field Observations:		_			
Surface Water Present? Yes X	No Depth (inches):	3			
Water Table Present? Yes X	No Depth (inches):	2 Wattand		Waa W Na	
Saturation Present? Yes X	No Depth (inches):	12 Wetland	Hydrology Present?	Yes X No	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	enitoring well perial photos pr	ovious inspections) if a	vailable:		
NWI, NRCS Soil Survey, USGS, ESRI, Goo		evious irispections,, ir a	valiable.		
Remarks:					
romano.					

	A	D . 1	La de la			
Tree Stratum (Plot size: r = 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
. Liquidambar styraciflua	45	Yes	FAC			
2. Populus deltoides	15	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	8	(A)
3. Quercus nigra	15	Yes	FAC			_ (' ')
4. Ulmus americana	15	Yes	FAC	Total Number of Dominant Species Across All Strata:	8	(B)
5.	10	103	170		0	— (D)
6.				Percent of Dominant Species That Are OBL, FACW, or FAC:	100.0%	(A/B)
7				Prevalence Index worksheet:		_(' '-'
3.				Total % Cover of:	Multiply by:	
·	90	=Total Cover		OBL species x 1		
50% of total cover:		of total cover:	18	FACW species x 2	-	
Sapling/Shrub Stratum (Plot size: r = 15'	1 2070	or total cover.		FAC species x 3		
1. Quercus nigra	20	Yes	FAC	FACU species x 4		
2. Ligustrum sinense	10	Yes	FAC	UPL species x 5		
3. Carya glabra	5	No	FACU	Column Totals: (A)	, –	— (B)
4. Diospyros virginiana	5	No	FAC	Prevalence Index = B/A =		— ^(B)
5.		INU	FAC	Hydrophytic Vegetation Indicate		
-				' ' '		
5.				1 - Rapid Test for Hydrophytic	vegetation	
7.				X 2 - Dominance Test is >50%		
B				3 - Prevalence Index is ≤3.0¹	1	
		=Total Cover	_	Problematic Hydrophytic Vege	etation (Expla	aın)
	20 20%	of total cover:	8			
Herb Stratum (Plot size: r = 5')						
1. Chasmanthium latifolium	40	Yes	FAC	¹ Indicators of hydric soil and wetla		must be
2. Geum canadense	5	No	FAC	present, unless disturbed or proble		
3. Ligustrum sinense	5	No	FAC	Definitions of Four Vegetation S	Strata:	
4. Lonicera japonica	5	No	FACU	Tree - Woody plants, excluding vi		
5. Parthenocissus quinquefolia	5	No	FACU	more in diameter at breast height height.	(DBH), regard	dless of
6. Sambucus canadensis	5	No	FAC	neight.		
7. Liquidambar styraciflua	3	No	FAC	Sapling/Shrub – Woody plants, e	excluding vine	s less
8. Galium aparine	2	No	FACU	than 3 in. DBH and greater than 3	•	-
9. Toxicodendron radicans	2	No	FAC			
10				Herb – All herbaceous (non-wood	v) plants, reg	ardless
11				of size, and woody plants less that	,,,	a. a. o o o
12						
	72	=Total Cover		Woody Vine – All woody vines gre	eater than 3.2	28 ft in
50% of total cover:	36 20%	of total cover:	15	height.		
Woody Vine Stratum (Plot size: r = 30')						
1. Toxicodendron radicans	15	Yes	FAC			
2						
3						
4						
5.				Usdrankstia		
	15	=Total Cover		Hydrophytic Vegetation		
			0			
50% of total cover:	8 20%	of total cover:	3		No	

Profile Desc	ription: (Describe to	the dep	th needed to docu	ıment tl	he indica	ator or co	onfirm th	e absence o	f indicators.)		
Depth	Matrix		Redox	k Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Te	xture	Remarks		
0-2	10YR 5/2	85	5YR 4/6	10	С	М	Loam	y/Clayey	Prominent redox concentrations		
			7.5YR 5/8	5	С	PL			Prominent redox concentrations		
2-12	10YR 5/6	83	7.5YR 5/6	12	<u>C</u>	<u>M</u>	Loam	y/Clayey	Faint redox concentrations		
			10YR 5/1	5	<u>C</u>	<u>M</u>			Prominent redox concentrations		
1 _{Transa} C. Co			Dadward Matrix N					21 anations D	U. Dana Lining M. Matrix		
	ncentration, D=Deple					d Grains.			L=Pore Lining, M=Matrix.		
-	ndicators: (Applicat	ole to all L				C T II)			or Problematic Hydric Soils ³ :		
Histosol (Thin Dark Su	,					ick (A9) (LRR O)		
	ipedon (A2)		Barrier Island (MLRA 15		,	12)			roirio Podox (A16)		
Black His	n Sulfide (A4)		Loamy Muck		•	PP (1)			rairie Redox (A16) de MLRA 150A)		
	Layers (A5)		Loamy Gleye			KK O)		•	d Vertic (F18)		
	Bodies (A6) (LRR P,	T U)	X Depleted Ma						de MLRA 150A, 150B)		
	cky Mineral (A7) (LRF	-	Redox Dark	, ,							
Muck Presence (A8) (LRR U) Depleted Dark Surface (F7)								Piedmont Floodplain Soils (F19) (LRR I Anomalous Bright Floodplain Soils (F20			
1 cm Muck (A9) (LRR P, T) X Redox Depressions (F8)								(MLRA 153B)			
Depleted Below Dark Surface (A11) Marl (F10) (LRR U)								•	ent Material (F21)		
Thick Dark Surface (A12) The Depleted Delow Dark Surface (A11) Depleted Ochric (F11) (MLRA 151)						A 151)			allow Dark Surface (F22)		
	airie Redox (A16) (MI	_RA 150A				-	O, P, T)		de MLRA 138, 152A in FL, 154)		
	ucky Mineral (S1) (LF		Umbric Surfa					•	slands Low Chroma Matrix (TS7)		
	leyed Matrix (S4)		Delta Ochric			-	(MLRA 153B, 153D)				
	edox (S5)		Reduced Ve			-	50B)				
	Matrix (S6)		Piedmont Flo	odplain	Soils (F	19) (MLR	RA 149A)				
Dark Sur	face (S7) (LRR P, S,	T, U)	Anomalous E	Bright Fl	oodplain	Soils (F2	20)				
Polyvalue	e Below Surface (S8)		(MLRA 14	9A, 153	C, 153D))		³ Indicato	ors of hydrophytic vegetation and		
(LRR S	S, T, U)		Very Shallow	Dark S	Surface (F	22)	wetland hydrology must be present,				
			(MLRA 13	8, 152A	in FL, 1	54)	unless disturbed or problematic.				
Restrictive L	.ayer (if observed):										
Type:											
Depth (in	ches):						Hydri	c Soil Preser	nt? Yes <u>X</u> No		
Remarks:											

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swi	nnea Road	City/County: Memphis	s, Shelby County	Sampling Date: 4-15-2020		
Applicant/Owner: Memphis - Shelby 0	County Airport Authority		State: TN	Sampling Point: WET 10		
Investigator(s): Aaron Conti, Velita Thornt	on Sec	ction, Township, Range:	<u> </u>			
Landform (hillside, terrace, etc.): depres	sion & linear drainageway Local	relief (concave, convex	, none): concave	Slope (%):		
Subregion (LRR or MLRA): LRR P, MLRA			-89.969313	Datum: NAD83		
Soil Map Unit Name: Water	<u> </u>		NWI classificat			
·	aita tumiaal fan thia timaa af usano	V V				
Are climatic / hydrologic conditions on the	• • • • • • • • • • • • • • • • • • • •	Yes X		explain in Remarks.)		
Are Vegetation, Soil, or Hy			Circumstances" present?	Yes X No		
Are Vegetation, Soil, or Hy	drologynaturally problema	atic? (If needed, ex	cplain any answers in Re	emarks.)		
SUMMARY OF FINDINGS – Atta	ch site map showing san	npling point locat	ions, transects, im	portant features, etc.		
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area				
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No		
Wetland Hydrology Present?	Yes X No					
Remarks:						
Wetland 10 is a depressional area that re	, , ,			•		
breached point in a berm, and extending	westward beyond the berm as a	narrow drainageway th	at connects to Stream 5			
HYDROLOGY						
			Casardan, ladiaatan	(animina af t na m. ina d)		
Wetland Hydrology Indicators:	guired: abook all that apply)		•	(minimum of two required)		
Primary Indicators (minimum of one is red X Surface Water (A1)	Aquatic Fauna (B13)		Surface Soil Crack	ed Concave Surface (B8)		
X High Water Table (A2)	Marl Deposits (B15) (LR	R II)	X Drainage Patterns			
X Saturation (A3)	Hydrogen Sulfide Odor (Moss Trim Lines (
Water Marks (B1)		on Living Roots (C3) Dry-Season Water Table (C2)				
Sediment Deposits (B2)	Presence of Reduced Iro					
Drift Deposits (B3)	Recent Iron Reduction in	· · · · · · · · · · · · · · · · ·				
Algal Mat or Crust (B4)	Thin Muck Surface (C7)					
Iron Deposits (B5)	Other (Explain in Remar	·				
Inundation Visible on Aerial Imagery		,	FAC-Neutral Test	(D5)		
X Water-Stained Leaves (B9)			Sphagnum Moss ((D8) (LRR T, U)		
Field Observations:						
Surface Water Present? Yes X	No Depth (inches):	6				
Water Table Present? Yes X	No Depth (inches):	3				
Saturation Present? Yes X	No Depth (inches):	15 Wetland	Hydrology Present?	Yes X No		
(includes capillary fringe)						
Describe Recorded Data (stream gauge,	• • • • • • • • • • • • • • • • • • • •	revious inspections), if a	available:			
NWI, NRCS Soil Survey, USGS, ESRI, G	oogle Earth					
Demonto						
Remarks:						

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: **WET 10** Absolute Dominant Indicator Tree Stratum (Plot size: r = 30') % Cover Species? Status **Dominance Test worksheet:** 1. Populus deltoides 25 Yes FAC Number of Dominant Species 20 **FACW** That Are OBL. FACW, or FAC: 2. Platanus occidentalis Yes (A) 15 3. Quercus nigra Yes FAC **Total Number of Dominant** 15 FAC 7 4. Ulmus americana Yes Species Across All Strata: (B) 5. 10 No **FAC** Ligustrum sinense Percent of Dominant Species 10 6. No FAC That Are OBL, FACW, or FAC: 85.7% Liquidambar styraciflua (A/B) 7. Carya glabra 5 No **FACU** Prevalence Index worksheet: 8. Total % Cover of: Multiply by: =Total Cover 100 OBL species x 1 = 50% of total cover: 20% of total cover: **FACW** species Sapling/Shrub Stratum (Plot size: r = 15' x 3 = ____ FAC species **FACU** species x 4 = 1. Ligustrum sinense Yes x 5 = 2. UPL species 3. Column Totals: (B) 4. Prevalence Index = B/A = **Hydrophytic Vegetation Indicators:** 5. 6. 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 7. 3 - Prevalence Index is ≤3.01 8. 15 Problematic Hydrophytic Vegetation¹ (Explain) =Total Cover 20% of total cover: 50% of total cover: 8 Herb Stratum (Plot size: r = 5') Microstegium vimineum 1. Yes FAC ¹Indicators of hydric soil and wetland hydrology must be Parthenocissus quinquefolia 30 Yes **FACU** present, unless disturbed or problematic. 2. 15 **Definitions of Four Vegetation Strata:** 3. Carex blanda No FAC 12 4. Rosa multiflora No **FACU** Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of 5. Parthenocissus quinquefolia 5 No **FACU** height. 3 No FAC 6. Rubus argutus 7. 2 Galium aparine No **FACU** Sapling/Shrub - Woody plants, excluding vines, less 8. than 3 in. DBH and greater than 3.28 ft (1 m) tall. 9. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody Vine - All woody vines greater than 3.28 ft in =Total Cover height. 50% of total cover: 64 20% of total cover: Woody Vine Stratum (Plot size: r = 30') 1. 3. Hydrophytic =Total Cover Vegetation 50% of total cover: 20% of total cover: Present? Yes X No Remarks: (If observed, list morphological adaptations below.)

Profile Desc	cription: (Describe to	the dep	th needed to docu	ument t	he indica	tor or co	onfirm th	ne absence	of indicators.)	
Depth	Matrix			x Featu						
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Te	exture	Remarks	
0-6	10YR 5/1	80	10YR 5/6	20	<u>C</u>	<u>M</u>	Loam	y/Clayey	Prominent redox concentrations	
6-15	10YR 4/1	85	10YR 5/8	10	<u>C</u>	<u>M</u>			Prominent redox concentrations	
			10YR 5/4	5	С	M			Distinct redox concentrations	
¹Type: C=C	oncentration, D=Deple	etion, RM=	Reduced Matrix, N	√S=Mas	ked San	d Grains.		² Location:	PL=Pore Lining, M=Matrix.	
Hydric Soil	Indicators: (Applicat	ole to all L	RRs, unless othe	erwise r	noted.)			Indicators	for Problematic Hydric Soils ³ :	
Histosol	(A1)		Thin Dark Su	urface (S	59) (LRR	S, T, U)		1 cm M	luck (A9) (LRR O)	
Histic Ep	pipedon (A2)		Barrier Island	ds 1 cm	Muck (S	12)		2 cm N	luck (A10) (LRR S)	
	istic (A3)		(MLRA 15			•			Prairie Redox (A16)	
	en Sulfide (A4)		Loamy Muck		-	RR O)			ide MLRA 150A)	
	d Layers (A5)		Loamy Gleye	-		,		Reduce	ed Vertic (F18)	
	Bodies (A6) (LRR P,	T. U)	X Depleted Ma						ide MLRA 150A, 150B)	
	ucky Mineral (A7) (LRI	-	Redox Dark	` '				•	ont Floodplain Soils (F19) (LRR P, T)	
	resence (A8) (LRR U)	,.,.,	Depleted Da		` '				lous Bright Floodplain Soils (F20)	
	1 cm Muck (A9) (LRR P, T) X Redox Depressions (F8)								A 153B)	
	1 cm Muck (A9) (LRR P, T)X Redox Depressions (F8) Depleted Below Dark Surface (A11) Marl (F10) (LRR U)							-	arent Material (F21)	
	ark Surface (A12)	(, , , ,	Depleted Oc		1) (MLR	151)			nallow Dark Surface (F22)	
	rairie Redox (A16) (M I	RA 150A				-	O. P. T)		ide MLRA 138, 152A in FL, 154)	
	/lucky Mineral (S1) (LF		Umbric Surfa		`	, .	-, . , . ,	•	Islands Low Chroma Matrix (TS7)	
	Gleyed Matrix (S4)	-, -,	Delta Ochric			-			A 153B, 153D)	
	Redox (S5)		Reduced Ve			•	50B)	•	Explain in Remarks)	
	Matrix (S6)		Piedmont Flo	•			•		explain in resiliance)	
	rface (S7) (LRR P, S,	T. U)	Anomalous I				-			
	ue Below Surface (S8)	., .,	(MLRA 14	_			-0)	³ Indicat	tors of hydrophytic vegetation and	
	S, T, U)		Very Shallov				wetland hydrology must be present			
(Little	0, 1, 0,		(MLRA 13		,	,			ss disturbed or problematic.	
Restrictive	Layer (if observed):		(-,	,	,				
Type:										
Depth (i	nches):						Hydri	c Soil Prese	ent? Yes X No	
Remarks:										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	ea Road	City/County: Memphis	, Shelby County	Sampling Date: 4-15-2020			
Applicant/Owner: Memphis - Shelby Cou	nty Airport Authority	<u> </u>	State: TN	Sampling Point: UPL 1			
Investigator(s): Aaron Conti, Velita Thornton	Sec	tion, Township, Range:					
Landform (hillside, terrace, etc.): flat		relief (concave, convex,		Slope (%): 0-2			
Subregion (LRR or MLRA): LRR P, MLRA 1	_	•	89.965413	Datum: NAD83			
							
Soil Map Unit Name: Collins silt loam, 0-2%	•		NWI classifica				
Are climatic / hydrologic conditions on the site				explain in Remarks.)			
Are Vegetation, Soil, or Hydro			Circumstances" present	? Yes X No			
Are Vegetation, Soil, or Hydro	logynaturally problema	atic? (If needed, ex	plain any answers in R	emarks.)			
SUMMARY OF FINDINGS – Attach	site map showing san	npling point locati	ons, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area					
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X			
Wetland Hydrology Present?	Yes X No						
Remarks:							
Upland 1 is taken within the 60/40 wetland/u	upland mosaic area of Wetlan	d 1, to confirm that upla	nd soil conditions exist	within the mosaic area. See			
Figures 6 and 7 for geographic representation	on of Wetland 1 mosaic area.						
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is require	ed; check all that apply)	_	Surface Soil Crac	ks (B6)			
Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetate	ed Concave Surface (B8)			
High Water Table (A2)	Marl Deposits (B15) (LR	R U)	X Drainage Patterns	s (B10)			
X Saturation (A3)	Hydrogen Sulfide Odor (C1) Moss Trim Lines (B16)					
Water Marks (B1)	Oxidized Rhizospheres	es on Living Roots (C3) Dry-Season Water Table (C2)					
Sediment Deposits (B2)	Presence of Reduced Iro						
Drift Deposits (B3)	Recent Iron Reduction in	on in Tilled Soils (C6) Saturation Visible on Aerial Imagery (C9)					
Algal Mat or Crust (B4)	Thin Muck Surface (C7)	(C7) X Geomorphic Position (D2)					
Iron Deposits (B5)	Other (Explain in Remar	·ks)	Shallow Aquitard	(D3)			
Inundation Visible on Aerial Imagery (B7	')		FAC-Neutral Test	(D5)			
X Water-Stained Leaves (B9)			Sphagnum Moss	(D8) (LRR T, U)			
Field Observations:							
Surface Water Present? Yes	No X Depth (inches):						
Water Table Present? Yes	No X Depth (inches):						
Saturation Present? Yes	No X Depth (inches):	Wetland	Hydrology Present?	Yes X No			
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mo	• • • • • • • • • • • • • • • • • • • •	revious inspections), if a	vailable:				
NWI, NRCS Soil Survey, USGS, ESRI, Goo	gle Earth						
December							
Remarks:							

	Yes Yes Yes	FAC FAC UPL	Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: Total Number of Dominant Species Across All Strata: Percent of Dominant Species	4 5	_ (A
10 10	Yes	FAC	That Are OBL, FACW, or FAC: Total Number of Dominant Species Across All Strata: Percent of Dominant Species		_ `
10			Total Number of Dominant Species Across All Strata: Percent of Dominant Species		_ `
25			Species Across All Strata: Percent of Dominant Species	5	
25					(E
25			That Are OBL, FACW, or FAC:	80.0%	(A
25			Prevalence Index worksheet:		
			Total % Cover of:	Multiply by:	
40 0000	=Total Cover		OBL species x 1	l =	
13 20%	of total cover:	5	FACW species x 2	2 =	
)			FAC species x 3	3 =	
			FACU species x 4	1 =	
				5 =	
			Column Totals: (A)		
			Prevalence Index = B/A =	-	_
				ors:	_
				- 3	
·	=Total Cover			etation ¹ (Expl:	ain)
				, (=, t)	۰)
	or total cover.				
15	Vos	EAC			
					mι
			·		
					_
	INO	FAC	* *		
			•	(DBH), regard	JIE
			Sapling/Shrub - Woody plants, e	excluding vine	s, I
			Herb – All herbaceous (non-wood	v) plants, reg	ard
				eater than 3.2	28 f
13 20%	of total cover:	5	neight.		
			Hydrophytic		
	=Total Cover		1		
20%	of total cover:			No	
	20% 15 5 3 2	=Total Cover 20% of total cover: 15	=Total Cover	Column Totals:	Column Totals:

Profile Desc	ription: (Describe t	o the dept	h needed to docu	ıment th	ne indica	tor or co	onfirm the absence o	f indicators.)		
Depth	Matrix		Redox	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-2	10YR 5/3	70	10YR 5/1	20	C	M	Loamy/Clayey			
			10YR 4/4	10	С	<u>M</u>		Faint redox concentrations		
2-12	10YR 4/3	78	10YR 6/3	10	<u>C</u>	M	Loamy/Clayey	Faint redox concentrations		
			10YR 3/4	10	<u>C</u>	<u>M</u>		Faint redox concentrations		
			10YR 5/1	3	<u>C</u>	<u>M</u>		Distinct redox concentrations		
l ———			10YR 2/2	2	<u>C</u>	<u>M</u>		Faint redox concentrations		
1							2			
	ncentration, D=Deple					d Grains.		PL=Pore Lining, M=Matrix.		
-	ndicators: (Applical	ble to all L				C T !!\		or Problematic Hydric Soils ³ :		
Histosol			Thin Dark Su			-		uck (A9) (LRR O)		
	ipedon (A2)		Barrier Island			12)		uck (A10) (LRR S)		
Black His			(MLRA 15		-			rairie Redox (A16)		
	n Sulfide (A4)		Loamy Muck	•	· , •	RR O)	•	de MLRA 150A)		
	Layers (A5)		Loamy Gleye					d Vertic (F18)		
	Bodies (A6) (LRR P,	-	Depleted Ma	` '			•	de MLRA 150A, 150B)		
	cky Mineral (A7) (LR	_	Redox Dark		` '			nt Floodplain Soils (F19) (LRR P, T)		
	esence (A8) (LRR U)		Depleted Da	rk Surfa	ce (F7)			ous Bright Floodplain Soils (F20)		
	ck (A9) (LRR P, T)		Redox Depre			A 153B)				
	Below Dark Surface	(A11)	Marl (F10) (L					rent Material (F21)		
	rk Surface (A12)		Depleted Oc	`	, .	•	 ′	allow Dark Surface (F22)		
	airie Redox (A16) (M		' —							
	ucky Mineral (S1) (Ll	RR O, S)	Umbric Surfa			-	Barrier Islands Low Chroma Matrix (TS7)			
	leyed Matrix (S4)		Delta Ochric			-	(MLRA 153B, 153D)			
Sandy R	edox (S5)		Reduced Ver	rtic (F18) (MLRA	150A, 1	50B) Other (E	explain in Remarks)		
Stripped	Matrix (S6)		Piedmont Flo							
Dark Sur	face (S7) (LRR P, S,	T, U)	Anomalous E	Bright Flo	oodplain	Soils (F2				
Polyvalue	e Below Surface (S8))	(MLRA 14	9A, 153	C, 153D))	³ Indicate	ors of hydrophytic vegetation and		
(LRR S	S, T, U)		Very Shallow	/ Dark S	Surface (F	22)	wetland hydrology must be present,			
			(MLRA 13	8, 152A	in FL, 1	54)	unles	s disturbed or problematic.		
Restrictive L	.ayer (if observed):									
Type:										
Depth (in	ches):						Hydric Soil Prese	nt? Yes No_X_		
Remarks:										

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	a Road	City/County: Me	mphis, Shelby County	Sampling Date: 4-15-20			
Applicant/Owner: Memphis - Shelby Cour	nty Airport Authority		State: TN	Sampling Point: UPL 2			
Investigator(s): Aaron Conti, Velita Thornton	Sec	ction, Township, R	ange:	_			
Landform (hillside, terrace, etc.): sloped	Local	relief (concave, co	onvex, none): convex	Slope (%): 5-12			
Subregion (LRR or MLRA): LRR P, MLRA 13	34 Lat: 34.99971	L	ong: -89.969186	Datum: NAD83			
Soil Map Unit Name: Grenada complex, 5 to			NWI classifica				
Are climatic / hydrologic conditions on the site	· · · · · · · · · · · · · · · · · · ·			explain in Remarks.)			
		_					
Are Vegetation, Soil, or Hydrole			rmal Circumstances" present				
Are Vegetation, Soil, or Hydrolo	<u> </u>		ed, explain any answers in R				
SUMMARY OF FINDINGS – Attach	site map showing sar	mpling point l	ocations, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled	Area				
Hydric Soil Present?	Yes No X	within a Wetland	d? Yes	No X			
Wetland Hydrology Present?	Yes No X						
Remarks:							
Upland 2 data was collected at an upland "isl	land" mound within Wetland	2 area.					
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac				
Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetat	ed Concave Surface (B8)			
High Water Table (A2)	Marl Deposits (B15) (LR	RR U)	Drainage Pattern	s (B10)			
Saturation (A3)	Hydrogen Sulfide Odor	(C1) Moss Trim Lines (B16)					
Water Marks (B1)	Oxidized Rhizospheres	s on Living Roots (C3) Dry-Season Water Table (C2)					
Sediment Deposits (B2)	Presence of Reduced Ir	on (C4)	Crayfish Burrows	(C8)			
Drift Deposits (B3)	Recent Iron Reduction i	n Tilled Soils (C6)	Saturation Visible	e on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Thin Muck Surface (C7)		Geomorphic Posi				
Iron Deposits (B5)	Other (Explain in Remai	rks)	Shallow Aquitard				
Inundation Visible on Aerial Imagery (B7))		FAC-Neutral Test	` '			
Water-Stained Leaves (B9)			Sphagnum Moss	(D8) (LRR T, U)			
Field Observations:							
Surface Water Present? Yes	No X Depth (inches):						
Water Table Present? Yes	No X Depth (inches):						
Saturation Present? Yes	No X Depth (inches):	: We	tland Hydrology Present?	Yes No X			
(includes capillary fringe) Describe Recorded Data (stream gauge, more	nitaring wall parial photos p	rovious inspection	a) if available:				
NWI, NRCS Soil Survey, USGS, ESRI, Good	• • • • • • • • • • • • • • • • • • • •	revious inspection	s), ii avallable.				
	,,,						
Remarks:							
Upland 2 data was collected at an upland "isl	land" within Wetland 2 area;	as such, there is h	nydrology nearby (i.e., through	hout Wetland 2) that is not			
applicable to the upland "island" area. See W	letland 2 Data Form for addit	tional details.					

ee Stratum (Plot size: r = 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
Ligustrum sinense	70	Yes	FAC	Number of Dominant Species		
Liquidambar styraciflua	25	Yes	FAC	That Are OBL, FACW, or FAC:	2	(A)
-				Total Number of Dominant	_	
				Species Across All Strata:	3	(B)
				Percent of Dominant Species That Are OBL, FACW, or FAC:	66.7%	(A/B)
				Prevalence Index worksheet:	00.7 70	_(/////)
				Total % Cover of:	Multiply by:	
	95	=Total Cover				
50% of total cover:		of total cover:	19	FACW species x 2	=	
oling/Shrub Stratum (Plot size: r = 15'	1 20%	oi total cover.	19	FAC species x 3		—
	_'			· · · · · · · · · · · · · · · · · · ·		
					=	—
_				UPL species x 5		— _(D)
				Column Totals: (A)		(B)
				Prevalence Index = B/A =		
				Hydrophytic Vegetation Indicator		
				1 - Rapid Test for Hydrophytic	Vegetation	
				X 2 - Dominance Test is >50%		
				3 - Prevalence Index is ≤3.0 ¹		
		=Total Cover		Problematic Hydrophytic Vege	tation ¹ (Expl	ain)
50% of total cover:	20%	of total cover:				
b Stratum (Plot size: r = 5')						
Parthenocissus quinquefolia	25	Yes	FACU	¹ Indicators of hydric soil and wetlar	nd hydrology	must b
Ligustrum sinense	5	No	FAC	present, unless disturbed or proble	matic.	
Carex blanda	3	No	FAC	Definitions of Four Vegetation St	trata:	
Acer rubrum	2	No	FAC	Tree - Woody plants, excluding vir	nes, 3 in. (7.6	6 cm) o
Galium aparine	2	No	more in diameter at breast height (DBH), regard	dless of	
				height.		
				Cardina/Charle \\/\aadvalaadvalaada		
				Sapling/Shrub – Woody plants, exthan 3 in. DBH and greater than 3.2		
					_0 () to	
				1	.	
				Herb – All herbaceous (non-woody of size, and woody plants less than		ardiess
				of size, and woody plants less than	1 3.20 It tall.	
	37	=Total Cover		Woody Vine - All woody vines gre	ater than 3.2	28 ft in
50% of total cover:	19 20%	of total cover:	8	height.		
ody Vine Stratum (Plot size: r = 30')						
	<u> </u>					
				Hydrophytic		
		=Total Cover		Vegetation	_	
50% of total cover:	200/	of total cover:		Present? Yes X	No	

Profile Desc	ription: (Describe to	o the dept	h needed to doc	ument th	ne indica	tor or co	onfirm th	ne absence of	findicators.)	
Depth	Matrix			x Featur						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Te	exture	Rem	arks
0-4	10YR 3/3	70	10YR 4/6	30	С	M			Distinct redox	concentrations
4-12	10YR 4/6	85	10YR 3/3	15	С	M			Distinct redox	concentrations
			_							
¹ Type: C=Co	oncentration, D=Deple	etion. RM=	Reduced Matrix. N	//S=Mas	ked Sand	Grains.		² Location: Pl	L=Pore Lining, M=I	Matrix.
	ndicators: (Applical								or Problematic Hy	•
Histosol			Thin Dark S			S, T, U)			ck (A9) (LRR O)	
Histic Ep	ipedon (A2)		Barrier Islan	ds 1 cm	Muck (S	12)		2 cm Mu	ck (A10) (LRR S)	
Black His	stic (A3)		(MLRA 15	3B, 153	D)			Coast Pr	airie Redox (A16)	
	n Sulfide (A4)		Loamy Muck	-		RR O)	(outside MLRA 150A)			
	Layers (A5)		Loamy Gley		(F2)			Reduced Vertic (F18)		
	Bodies (A6) (LRR P,	-	Depleted Ma	` ′	(Fo)			(outside MLRA 150A, 150B)		
	cky Mineral (A7) (LR I	R P, I, U)	Redox Dark Depleted Da		` '			Piedmont Floodplain Soils (F19) (LRR F Anomalous Bright Floodplain Soils (F20		
	esence (A8) (LRR U) ck (A9) (LRR P, T)		Redox Depr		, ,				ius впупі гюбиріа. . 153В)	11 30115 (F20)
Depleted Below Dark Surface (A11) Marl (F10) (LRR U)								-	ent Material (F21)	
Thick Dark Surface (A12) — Depleted Ochric (F11) (MLRA 151)					151)			allow Dark Surface	(F22)	
Coast Prairie Redox (A16) (MLRA 150A) Iron-Manganese Masses (F12) (LRI					-), P, T)	(outsid	de MLRA 138, 152	A in FL, 154)	
Sandy M	ucky Mineral (S1) (LF	RR O, S)	Umbric Surfa	ace (F13) (LRR P	, T, U)	Barrier Islands Low Chroma Matrix (TS7)			a Matrix (TS7)
Sandy G	leyed Matrix (S4)		Delta Ochric	(F17) (N	ILRA 15	1)	(MLRA 153B, 153D)			
	edox (S5)		Reduced Ve	,			•		xplain in Remarks)	
	Matrix (S6)		Piedmont Fl				-			
	face (S7) (LRR P, S, e Below Surface (S8)		Anomalous	_			(0)	3Indianta	ro of budrophytic v	a actation and
	е веюж Sunace (So) S, T, U)		(MLRA 14 Very Shallov		-		³ Indicators of hydrophytic vegetation and			
(LIVIV	3, 1, 0)		(MLRA 13				wetland hydrology must be present, unless disturbed or problematic.			
Restrictive L	_ayer (if observed):			-,	,	,				
Type:	, ,									
Depth (in	nches):						Hydri	ic Soil Presen	it? Yes	No X
Remarks:	·									
Possibly fill m	naterial present within	the uplan	d "island" area.							

WETLAND DETERMINATION DATA SHEET - Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinner	a Road C	City/County: Memphis	, Shelby County	Sampling Date: 4-16-2020		
Applicant/Owner: Memphis - Shelby Coun	ty Airport Authority		State: TN	Sampling Point: UPL 3		
Investigator(s): Aaron Conti, Velita Thornton	Section	on, Township, Range:				
Landform (hillside, terrace, etc.): flat	Local re	lief (concave, convex,	none): none	Slope (%):		
Subregion (LRR or MLRA): LRR P, MLRA 13		•	89.9700026	Datum: NAD83		
Soil Map Unit Name: Grenada complex, 5 to 7			NWI classification			
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)		
, -						
Are Vegetation, Soil, or Hydrold			Circumstances" present			
Are Vegetation, Soil, or Hydrold	' <u></u>		plain any answers in Re	,		
SUMMARY OF FINDINGS – Attach	site map showing samp	pling point locati	ons, transects, im	portant features, etc.		
Hydrophytic Vegetation Present?	res X No Is	s the Sampled Area				
		vithin a Wetland?	Yes	No X		
	res X No					
Remarks:						
Data was collected at Upland 3 to investigate						
hydrology from seepage / overflow from a ber	m that containing Pond 1 surfa	ace water. Hydric soil	not observed at Upland	3.		
HYDROLOGY						
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)		
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	ks (B6)		
X Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetate	ed Concave Surface (B8)		
High Water Table (A2)	Marl Deposits (B15) (LRR	-	X Drainage Patterns			
X Saturation (A3)	Hydrogen Sulfide Odor (C		Moss Trim Lines (
Water Marks (B1)	Oxidized Rhizospheres on					
Sediment Deposits (B2)	Presence of Reduced Iron					
Drift Deposits (B3)	Recent Iron Reduction in 1	Tilled Soils (C6)		on Aerial Imagery (C9)		
Algal Mat or Crust (B4)	Thin Muck Surface (C7)					
X Iron Deposits (B5)	Other (Explain in Remarks	5)	Shallow Aquitard			
Inundation Visible on Aerial Imagery (B7)			FAC-Neutral Test	` '		
X Water-Stained Leaves (B9)			Sphagnum Moss	(D8) (LRR T, U)		
Field Observations:						
Surface Water Present? Yes X	No Depth (inches):					
Water Table Present? Yes	No X Depth (inches):			, .,		
	No Depth (inches):	10 Wetland	Hydrology Present?	Yes <u>X</u> No		
(includes capillary fringe)	-:	eleva inapactions) if s	··-ilahla.			
Describe Recorded Data (stream gauge, mon NWI, NRCS Soil Survey, USGS, ESRI, Googl		vious inspections), ii a	ivaliable:			
Remarks:						

ee Stratum (Plot size: r = 30')	Absolute % Cover		Indicator Status	Dominance Test worksheet:		
Ulmus americana	50	Yes	FAC			
Liquidambar styraciflua	30	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:	7	(A)
				Total Number of Dominant Species Across All Strata:	9	(B)
				Percent of Dominant Species That Are OBL, FACW, or FAC:	77.8%	(A/l
-				Prevalence Index worksheet:		
				Total % Cover of:	Multiply by:	<u>:</u>
	80	_=Total Cover		OBL species x 1	=	
50% of total cover:	40 209	% of total cover:	16	FACW species x 2	=	
pling/Shrub Stratum (Plot size: r = 30'	_)			FAC species x 3	=	
Ligustrum sinense	10	Yes	FAC	FACU species x 4	=	
Quercus falcata	10	Yes	FACU	UPL species x 5	=	
				Column Totals: (A)		(
				Prevalence Index = B/A =		
	_			Hydrophytic Vegetation Indicator	rs:	
				1 - Rapid Test for Hydrophytic	Vegetation	
	_			X 2 - Dominance Test is >50%		
				3 - Prevalence Index is ≤3.0 ¹		
	20	=Total Cover		Problematic Hydrophytic Veget	tation ¹ (Expl	lain)
50% of total cover:	10 200	% of total cover:	4	1		
rb Stratum (Plot size: r = 5')						
Chasmanthium latifolium	10	Yes	FAC	¹ Indicators of hydric soil and wetlar	nd hydrology	, mue
Ligustrum sinense	<u> </u>	Yes	FAC	present, unless disturbed or proble		/ IIIus
Smilax rotundifolia	5	Yes	FAC	Definitions of Four Vegetation St		
Carya glabra	3	No	FACU	Tree – Woody plants, excluding vir		6 cm)
Lonicera japonica	3	No	FACU	more in diameter at breast height (
Solidago gigantea	3	No	FACW	height.	,, 0	
Galium aparine		No	FACU			
Myosotis macrosperma		No	FAC	Sapling/Shrub – Woody plants, ex		
Quercus falcata		No	FACU	than 3 in. DBH and greater than 3.2	28 ft (1 m) ta	all.
. Rubus argutus	2	No No	FAC			
		110		Herb – All herbaceous (non-woody of size, and woody plants less than		-
•	37	=Total Cover		Woody Vine – All woody vines gre	ater than 3.	28 ft i
50% of total cover:	19 209	- % of total cover:	8	height.		
oody Vine Stratum (Plot size: r = 30')					
Parthenocissus quinquefolia	5	Yes	FACU			
Vitis rotundifolia		Yes	FAC			
	- 					
	_					
		-Total Carrage		Hydrophytic		
	10	_=Total Cover	•	Vegetation		
50% of total cover:	5 20°	% of total cover:	2	Present? Yes X	No	

Profile Descr	ription: (Describe t	o the dep	th needed to docu	ıment t	he indica	ator or co	onfirm the absence o	f indicators.)			
Depth	Matrix			x Featur							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-10	10YR 4/6	45	10YR 6/1	40	С	M		Prominent redox concentrations			
			10YR 3/6	15	C	M		Faint redox concentrations			
			_								
							<u> </u>	_			
1 _T 0. 0.			Dadward Matrix N				21	J. Dans Lining M. Matrix			
	ncentration, D=Deple ndicators: (Applical					d Grains.		L=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ :			
Histosol (ole to all i	Thin Dark Su		-	S T III		ick (A9) (LRR O)			
	pedon (A2)		Barrier Island			-		ick (A10) (LRR S)			
Black His			(MLRA 15			,		rairie Redox (A16)			
	n Sulfide (A4)		Loamy Muck		-	RR O)		de MLRA 150A)			
Stratified	Layers (A5)		Loamy Gleye	ed Matri	x (F2)		Reduced	d Vertic (F18)			
Organic E	Bodies (A6) (LRR P,	T, U)	Depleted Ma	trix (F3))		(outsi	de MLRA 150A, 150B)			
	cky Mineral (A7) (LR I	-			` '			nt Floodplain Soils (F19) (LRR P, T)			
	esence (A8) (LRR U)		Depleted Da				Anomalous Bright Floodplain Soils (F20)				
	ck (A9) (LRR P, T)	(0.4.4)	Redox Depre		(F8)		(MLRA 153B) Red Parent Material (F21)				
	Below Dark Surface rk Surface (A12)	(A11)	Marl (F10) (L	-	1) /MI D	\ 151\	Red Parent Material (F21) Very Shallow Dark Surface (F22)				
	airie Redox (A16) (M	I RA 1504	Depleted Oc Iron-Mangan								
	ucky Mineral (S1) (Li		Umbric Surfa				Barrier Islands Low Chroma Matrix (TS7)				
	eyed Matrix (S4)	, -,	Delta Ochric				(MLRA 153B, 153D)				
	edox (S5)		Reduced Ve	. , .		•		xplain in Remarks)			
Stripped	Matrix (S6)		Piedmont Flo	oodplain	Soils (F	19) (MLR	A 149A)				
Dark Sur	face (S7) (LRR P, S,	T, U)	Anomalous I	Bright Fl	oodplain	Soils (F2	(0)				
	e Below Surface (S8)		(MLRA 14				³ Indicators of hydrophytic vegetation and				
(LRR S	S, T, U)		Very Shallov			,		nd hydrology must be present,			
			(MLRA 13	8, 152A	in FL, 1	54)	unles	s disturbed or problematic.			
	ayer (if observed):										
Type: <u>r</u>											
Depth (in	ches):	10					Hydric Soil Preser	nt? Yes No X			
Remarks:											

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	ea Road	City/County: Memphis	, Shelby County	Sampling Date: 4-16-2020			
Applicant/Owner: Memphis - Shelby Cou	nty Airport Authority		State: TN	Sampling Point: UPL 4			
Investigator(s): Aaron Conti, Velita Thornton	Secti	ion, Township, Range:					
Landform (hillside, terrace, etc.): flat		elief (concave, convex,		Slope (%):			
Subregion (LRR or MLRA): LRR P, MLRA 1:			89.965499	Datum: NAD83			
Soil Map Unit Name: Gullied land, silty (udor			NWI classifica				
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)			
Are Vegetation, Soil, or Hydrol			Circumstances" present				
Are Vegetation, Soil, or Hydrol	<u> </u>		xplain any answers in Ro				
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locat	ions, transects, in	nportant teatures, etc.			
Hydrophytic Vegetation Present?	Yes X No I	Is the Sampled Area					
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X			
Wetland Hydrology Present?	Yes X No						
Remarks:							
Data was collected at Upland 4 to investigate 10' x 10') that drains into a nearby linear nor				I of a puddle (approximately			
10 X 10) that drains into a nearby intear nor	-Water or the O.S. Tryuno son	110t observed at opian	u 4.				
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	ks (B6)			
X Surface Water (A1)	Aquatic Fauna (B13)			ed Concave Surface (B8)			
High Water Table (A2)	Marl Deposits (B15) (LRF	-	X Drainage Patterns				
Saturation (A3)	Hydrogen Sulfide Odor (C						
Water Marks (B1)	Oxidized Rhizospheres o		Dry-Season Wate				
X Sediment Deposits (B2)	Presence of Reduced Iro	` '	Crayfish Burrows				
Drift Deposits (B3)	Recent Iron Reduction in	Tilled Soils (C6)		on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Thin Muck Surface (C7)		X Geomorphic Posi				
Iron Deposits (B5)	Other (Explain in Remark	(s)	Shallow Aquitard				
Inundation Visible on Aerial Imagery (B7)		FAC-Neutral Test	` '			
Water-Stained Leaves (B9)			Sphagnum Moss	(D8) (LRR T, U)			
Field Observations:							
Surface Water Present? Yes X	No Depth (inches):						
Water Table Present? Yes	No X Depth (inches):						
Saturation Present? Yes	No X Depth (inches):	Wetland	Hydrology Present?	Yes <u>X</u> No			
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mo		evious inspections), if a	available:				
NWI, NRCS Soil Survey, USGS, ESRI, Goog	gle Earth						
Remarks:							
There is a small (10' x 10') puddle next to Up	pland 4 data collection point that	at drains into linear noi	n-water of the U.S.				
• • • •							

EGETATION (Four Strata) – Use scier	Absolute	Dominant	Indicator	Sampling F	Point: UPL	
ree Stratum (Plot size: r = 30')	% Cover	Species?	Status	Dominance Test worksheet:		
. Pyrus calleryana	30	Yes	UPL	Number of Dominant Species		
. Populus deltoides	25	Yes	FAC	That Are OBL, FACW, or FAC:	5	(A)
. Liquidambar styraciflua	20	Yes	FAC	Total Number of Dominant		
·				Species Across All Strata:	7	(B)
·				Percent of Dominant Species		
				That Are OBL, FACW, or FAC:	71.4%	(A/
				Prevalence Index worksheet:		
				Total % Cover of:	Multiply by:	
	75	=Total Cover		OBL species	x 1 =	
50% of total cover:	38 20%	of total cover:	15	FACW species	x 2 =	
apling/Shrub Stratum (Plot size: r = 15'	_)			FAC species	x 3 =	
Ulmus americana	30	Yes	FAC	FACU species	x 4 =	
Diospyros virginiana	20	Yes	FAC	UPL species	x 5 =	
Carya glabra	15	No	FACU	Column Totals: (A	۸)	
Styrax americanus	15	No	FACW	Prevalence Index = B/A	\ =	
				Hydrophytic Vegetation Indic	ators:	-
				1 - Rapid Test for Hydroph	ytic Vegetation	
				X 2 - Dominance Test is >50	%	
				3 - Prevalence Index is ≤3.		
	80 :	=Total Cover		Problematic Hydrophytic V	egetation1 (Expl	ain)
Ligustrum sinense Carex blanda	5	No	FAC	¹ Indicators of hydric soil and we present, unless disturbed or pro	oblematic.	iiius
Lonicera japonica	5	No	FACU	Definitions of Four Vegetatio	n Strata:	
-				Tree – Woody plants, excluding more in diameter at breast height.	•	dless
				Tree – Woody plants, excluding more in diameter at breast heig	ht (DBH), regar	es, le
). 				Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants	ght (DBH), regards, excluding vine on 3.28 ft (1 m) to boody) plants, reg	es, le all.
). 	30	=Total Cover		Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater that Herb – All herbaceous (non-wood)	ght (DBH), regards, excluding vine on 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
). 		=Total Cover		Tree – Woody plants, excluding more in diameter at breast heigh height. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than 10 miles).	ght (DBH), regards, excluding vine on 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
50% of total cover:				Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine on 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
50% of total cover:			6	Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine on 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
50% of total cover:	15 20% 15	of total cover:		Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le: all. ardle
0. 1. 2. 50% of total cover: Voody Vine Stratum (Plot size: r = 30') Lonicera japonica	15 20% 15	of total cover:	6	Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
50% of total cover:	15 20% 15	of total cover:	6	Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le all. ardle
50% of total cover: Lonicera japonica	15 20% 15	of total cover:	6	Tree – Woody plants, excluding more in diameter at breast heigheight. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less than Woody Vine – All woody vines	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, le: all. ardle
1. 2. 50% of total cover: Voody Vine Stratum (Plot size: r = 30') Lonicera japonica	15 20% 15	of total cover: Yes	6	Tree – Woody plants, excluding more in diameter at breast height. Sapling/Shrub – Woody plants than 3 in. DBH and greater than Herb – All herbaceous (non-woof size, and woody plants less twoody Vine – All woody vines height.	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, les all. ardle
50% of total cover: Lonicera japonica Lonicera japonica	15 20% 15 15	of total cover:	6 FACU	Tree – Woody plants, excluding more in diameter at breast height. Sapling/Shrub – Woody plants than 3 in. DBH and greater that there – All herbaceous (non-woof size, and woody plants less twoody Vine – All woody vines height.	ght (DBH), regards, excluding vine in 3.28 ft (1 m) to body) plants, regithan 3.28 ft tall.	es, les all. ardle

Profile Desc	ription: (Describe t	o the depti	n needed to docu	ıment tl	he indica	tor or co	onfirm the	absence o	f indicators.)			
Depth	Matrix		Redox	x Featur	es							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Tex	ture	Remarks			
0-1	10YR 3/3	60	10YR 3/1	40	С	<u>M</u>	Loamy	/Clayey	Faint redox concentrations			
1-5	10YR 3/3		10YR 4/2	10	С	<u>M</u>	Loamy	/Clayey	Faint redox concentrations			
		60	10YR 2/1	35	С	<u>M</u>			Faint redox concentrations			
5-11	10YR 5/6		10YR 5/2	35	<u>C</u>	PL_	Loamy/Clayey Prominent redox concentration					
			10YR 5/1	5								
1												
	ncentration, D=Depl					d Grains.			L=Pore Lining, M=Matrix.			
-	ndicators: (Applica	ble to all L			-		ļ		or Problematic Hydric Soils ³ :			
Histosol (Thin Dark Su			-	_		ck (A9) (LRR O)			
	ipedon (A2)		Barrier Island			12)	_		ck (A10) (LRR S)			
Black His	` '		(MLRA 15		-		_		airie Redox (A16)			
	n Sulfide (A4)		Loamy Muck			RR O)		•	de MLRA 150A)			
	Layers (A5)		Loamy Gleye				_		l Vertic (F18)			
	Bodies (A6) (LRR P,		Depleted Ma	` ,				`	de MLRA 150A, 150B)			
	cky Mineral (A7) (LR		Redox Dark		` '		_		t Floodplain Soils (F19) (LRR P,	T)		
Muck Pre	esence (A8) (LRR U)		Depleted Da	rk Surfa	ce (F7)		Anomalous Bright Floodplain Soils (F20)					
	ck (A9) (LRR P, T)		Redox Depre		(F8)			(MLRA 153B)				
	Below Dark Surface	(A11)	Marl (F10) (L			_		ent Material (F21)				
	rk Surface (A12)		Depleted Oc	, .	•	_	Very Shallow Dark Surface (F22)					
	airie Redox (A16) (M	•	<u> </u>			O, P, T)						
	ucky Mineral (S1) (L l	RR O, S)	Umbric Surfa		-	Barrier Islands Low Chroma Matrix (TS7)						
	leyed Matrix (S4)		Delta Ochric			-		•	153B, 153D)			
	edox (S5)		Reduced Ve	,			_	Other (E	xplain in Remarks)			
	Matrix (S6)		Piedmont Flo									
	face (S7) (LRR P, S ,	-	Anomalous E	-			20)					
Polyvalue	e Below Surface (S8))	(MLRA 14	C, 153D))	³ Indicators of hydrophytic vegetation and						
(LRR S	S, T, U)		Very Shallow			wetland hydrology must be present,						
			(MLRA 13	8, 152A	in FL, 1	54)		unless	disturbed or problematic.			
Restrictive L Type:	.ayer (if observed):											
Depth (in	ches):						Hydric	Soil Preser	t? Yes No X			
Remarks:										_		
romano.												

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	ea Road City	City/County: Memphis, Shelby County Sampling Date: 4-16-2020						
Applicant/Owner: Memphis - Shelby Cour	nty Airport Authority		State: TN	Sampling Point: UPL 5				
Investigator(s): Aaron Conti, Velita Thornton	Section	, Township, Range:						
Landform (hillside, terrace, etc.): flat	Local relie	ef (concave, convex,	none): none	Slope (%):				
Subregion (LRR or MLRA): LRR P, MLRA 13	34 Lat: 35.001973	Long: -	39.964461	Datum: NAD83				
Soil Map Unit Name: Gullied land, silty (udort			NWI classificat					
Are climatic / hydrologic conditions on the site		Yes X		explain in Remarks.)				
			ircumstances" present					
Are Vegetation, Soil, or Hydrold	·		·					
Are Vegetation, Soil, or Hydrole			olain any answers in Re					
SUMMARY OF FINDINGS – Attach	site map showing sampl	ing point locati	ons, transects, im	portant features, etc.				
Hydrophytic Vegetation Present?	Yes No X Is t	the Sampled Area						
		thin a Wetland?	Yes	No X				
	Yes No X							
Remarks:								
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)				
Primary Indicators (minimum of one is require	ed: check all that apply)		Surface Soil Crac					
Surface Water (A1)	Aquatic Fauna (B13)			ed Concave Surface (B8)				
High Water Table (A2)	Marl Deposits (B15) (LRR U	J)	Drainage Patterns					
Saturation (A3)	Hydrogen Sulfide Odor (C1)	-	Moss Trim Lines (
Water Marks (B1)	Oxidized Rhizospheres on L		Dry-Season Wate					
Sediment Deposits (B2)	Presence of Reduced Iron (0							
Drift Deposits (B3)	Recent Iron Reduction in Till							
Algal Mat or Crust (B4)	Thin Muck Surface (C7)							
Iron Deposits (B5)	Other (Explain in Remarks)	· · · · · · · · · · · · · · · · · · ·						
Inundation Visible on Aerial Imagery (B7)			FAC-Neutral Test					
Water-Stained Leaves (B9)	,		Sphagnum Moss					
Field Observations:				(50) (2 , 5)				
	No X Depth (inches):							
	No X Depth (inches):							
Saturation Present? Yes	No X Depth (inches):	—— Wetland	Hydrology Present?	Yes No X				
(includes capillary fringe)	NO A Doput (monos).		nyurology i resent.	16310/				
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previo	ous inspections), if a	vailahle:					
NWI, NRCS Soil Survey, USGS, ESRI, Goog	• • •	703 113p000010110 _/ , 1	valiable.					
	•							
Remarks:								

	۸ ۱۰ -		Daminant	lastinatas			
ee Stratum (Plot size: r = 30')		olute Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
Cornus florida		20	Yes	UPL	Number of Dominant Species		
Juniperus virginiana		20	Yes	FACU	That Are OBL, FACW, or FAC:	1	(A)
Pyrus calleryana		20	Yes	UPL	Total Number of Dominant		_ ` ′
Ulmus alata		15	Yes	FACU	Species Across All Strata:	8	(B)
					Percent of Dominant Species That Are OBL, FACW, or FAC:	12.5%	(A/E
		J			Prevalence Index worksheet:		
		J			Total % Cover of:	Multiply by:	
		75	=Total Cover		OBL species x 1 =	=	
50% of total cover:	38	20%	of total cover:	15	FACW species x 2 =	=	
pling/Shrub Stratum (Plot size: r = 15')		•		FAC species x 3 =	=	
Carya illinoinensis		10	Yes	FACU	FACU species x 4 =	=	
Ilex vomitoria		5	Yes	FAC	UPL species x 5 =	=	
					Column Totals: (A)		(
					Prevalence Index = B/A =		<u> </u>
					Hydrophytic Vegetation Indicator	s:	
					1 - Rapid Test for Hydrophytic \		
					2 - Dominance Test is >50%	3	
					3 - Prevalence Index is ≤3.0 ¹		
		15	=Total Cover		Problematic Hydrophytic Veget	ation ¹ (Expl	ain)
50% of total cover:	8		of total cover:	3			,
rb Stratum (Plot size: r = 5')		2070	or total cover.				
Polytrichum commune		50	Yes	UPL	1		
Lespedeza cuneata		10	No	FACU	¹ Indicators of hydric soil and wetland present, unless disturbed or probler		must
Polystichum acrostichoides		10	No	FACU	Definitions of Four Vegetation Strata: Tree – Woody plants, excluding vines, 3 in. (7.6 cm more in diameter at breast height (DBH), regardless		
Ligustrum sinense		5	No	FAC			
Lonicera japonica		5	No	FACU			
Parthenocissus quinquefolia		5	No	FACU	height.	JBI I), Togai	uicoo
r arthenocissus quinquerolla		<u> </u>		TACO			
					Sapling/Shrub – Woody plants, extends 3 in. DBH and greater than 3.2		
· <u>.</u>					Herb – All herbaceous (non-woody)	plants, reg	ardles
					of size, and woody plants less than	3.28 ft tall.	
			 .			0.	00 (
	-		=Total Cover		Woody Vine – All woody vines greatheight.	ater than 3.2	28 π II
50% of total cover:	43	20%	of total cover:	17	g.m.		
oody Vine Stratum (Plot size: r = 30'	.)						
Lonicera japonica		10	Yes	FACU			
	_		-		Hydrophytic		
		10	=Total Cover		Vegetation		
	5	20%	of total cover:	2	Present? Yes N	lo X	

Profile Desc Depth	ription: (Describe t	o the dept		ument t x Featui		tor or co	onfirm the a	absence of i	indicators.)		
(inches)	Matrix Color (moist)	%	Color (moist)	x realui %	Type ¹	Loc ²	Textu	ıre	Rem	arks	
0-1	7.5YR 3/2	100	Color (melol)	70	.,,,,,		Loamy/C				
1-3	10YR 4/3	100	_				Loamy/C			_	
3-12	10YR 4/4	100					Loamy/C				
1- 0.0							2,				
	oncentration, D=Deplination					d Grains.			=Pore Lining, M=I Problematic Hy		
Histosol		Die to all L	Thin Dark S		-	S. T. U)	""		k (A9) (LRR O)	unc sons .	
	pipedon (A2)		Barrier Islan			-	-		k (A10) (LRR S)		
Black His			(MLRA 15			,			irie Redox (A16)		
Hydroge	n Sulfide (A4)		Loamy Muck	ky Miner	al (F1) (L	RR O)		(outside	e MLRA 150A)		
Stratified	I Layers (A5)		Loamy Gley	ed Matri	x (F2)			Reduced \	Vertic (F18)		
Organic	Bodies (A6) (LRR P,	T, U)	Depleted Ma	atrix (F3))			(outside	e MLRA 150A, 15	60B)	
	cky Mineral (A7) (LR	-	Redox Dark		` '		Piedmont Floodplain Soils (F19) (LRR P, T)				
	esence (A8) (LRR U)		Depleted Da				Anomalous Bright Floodplain Soils (F20)				
	ck (A9) (LRR P, T)	(444)	Redox Depre		(F8)		(MLRA 153B) Red Parent Material (F21)				
	d Below Dark Surface ark Surface (A12)	(A11)	Marl (F10) (I Depleted Oc	-	1) (MI D /	\ 151\	Very Shallow Dark Surface (F22)				
	rairie Redox (A16) (M	I RA 150A				-					
	lucky Mineral (S1) (L l		Umbric Surfa				Barrier Islands Low Chroma Matrix (TS7)				
	ileyed Matrix (S4)		Delta Ochric			-		(MLRA 153B, 153D)			
	edox (S5)		Reduced Ve	rtic (F18) (MLRA	150A, 1	50B)	Other (Ex	plain in Remarks)		
Stripped	Matrix (S6)		Piedmont Flo	oodplain	Soils (F	19) (MLR	A 149A)				
Dark Sur	rface (S7) (LRR P, S,	T, U)	Anomalous I	Bright FI	oodplain	Soils (F2	20)				
	e Below Surface (S8))	(MLRA 14		-				s of hydrophytic ve	=	
(LRR	S, T, U)		Very Shallov		`	,	wetland hydrology must be present, unless disturbed or problematic.				
			(MLRA 13	88, 152A	in FL, 1	54)	I	unless	disturbed or probl	ematic.	
Type:	_ayer (if observed):										
Depth (ir	nches):						Hydric S	Soil Present	? Yes	No X	
Remarks:							1			<u> </u>	

WETLAND DETERMINATION DATA SHEET – Atlantic and Gulf Coastal Plain Region

See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

Project/Site: East Holmes Road and Swinne	a Road C	City/County: Memphis,	Shelby County	Sampling Date: 4-15-2020			
Applicant/Owner: Memphis - Shelby Cour	nty Airport Authority		State: TN	Sampling Point: UPL 6			
Investigator(s): Aaron Conti, Velita Thornton	Section	on, Township, Range:					
Landform (hillside, terrace, etc.): berm	Local rel	ief (concave, convex,	none): convex	Slope (%):			
Subregion (LRR or MLRA): LRR P, MLRA 13			39.969516	Datum: NAD83			
Soil Map Unit Name: Water	<u> </u>		NWI classifica				
Are climatic / hydrologic conditions on the site	tunical for this time of year?	Voc. V		-			
		Yes X		explain in Remarks.)			
Are Vegetation, Soil, or Hydrole			ircumstances" present				
Are Vegetation, Soil, or Hydrolo	ogynaturally problemation	c? (If needed, ex	plain any answers in R	emarks.)			
SUMMARY OF FINDINGS – Attach	site map showing samp	oling point locati	ons, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present?	Yes X No Is	the Sampled Area					
		ithin a Wetland?	Yes	No X			
Wetland Hydrology Present?	Yes No X						
Remarks:							
Upland 6 was taken as an upland reference of	data point for Wetland 9, on top	of a berm that nearly	bisects Wetland 9.				
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Crac	•			
Surface Water (A1)	Aquatic Fauna (B13)		Sparsely Vegetate	ed Concave Surface (B8)			
High Water Table (A2)	Marl Deposits (B15) (LRR	U)	Drainage Patterns	s (B10)			
Saturation (A3)	Hydrogen Sulfide Odor (C						
Water Marks (B1)	Oxidized Rhizospheres on						
Sediment Deposits (B2)	Presence of Reduced Iron						
Drift Deposits (B3)	Recent Iron Reduction in T						
Algal Mat or Crust (B4)	Thin Muck Surface (C7)	· · · · · · · · · · · · · · · · · · ·					
Iron Deposits (B5)	Other (Explain in Remarks	narks) Shallow Aquitard (D3) FAC-Neutral Test (D5)					
Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9))		Sphagnum Moss	` '			
		T	Spriagrium Moss	(D6) (LRR 1, 0)			
Field Observations: Surface Water Present? Yes	NI- V Donth (inches):						
	No X Depth (inches):						
	No X Depth (inches):		Hydrology Present?	Yes No X			
(includes capillary fringe)	NO A Deput (mones).		nyurology i resent.	16310			
Describe Recorded Data (stream gauge, mor	nitoring well. aerial photos, prev	vious inspections), if a	vailable:				
NWI, NRCS Soil Survey, USGS, ESRI, Goog		,,,	V (11.55.5.				
Remarks:							

VEGETATION (Four Strata) - Use scie	ntific	ic names of plants.			Sampling Po	int: UI	PL 6	
<u>Tree Stratum</u> (Plot size: r = 30')		Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:			
1. Liquidambar styraciflua	_	35	Yes	FAC	Number of Dominant Species			
2. Ulmus americana		15	Yes	FAC	That Are OBL, FACW, or FAC:	7	(A)	
3. Quercus michauxii		10	No	FAC			`	
4.					Total Number of Dominant Species Across All Strata:	10	(B)	
5					Percent of Dominant Species			
6.					That Are OBL, FACW, or FAC:	70.0%	(A/B)	
7					Prevalence Index worksheet:			
8					Total % Cover of:	Multiply b	y:	
	_	60	=Total Cover		OBL species x	1 =		
50% of total cover:	30	20%	of total cover:	12	FACW species x	2 =		
Sapling/Shrub Stratum (Plot size: r = 15')				FAC species x	3 =		
Ligustrum sinense		10	Yes	FAC		4 =		
2. Ulmus americana		10	Yes	FAC	UPL species x	5 =		
3. Quercus nigra		10	Yes	FAC	Column Totals: (A)		(B)	
4.					Prevalence Index = B/A =	:		
5.					Hydrophytic Vegetation Indicat	ors:		
6.					1 - Rapid Test for Hydrophyti	c Vegetatio	n	
7.					X 2 - Dominance Test is >50%			
8.					3 - Prevalence Index is ≤3.0 ¹			
		30	=Total Cover		Problematic Hydrophytic Veg	etation1 (E)	(plain)	
50% of total cover:	15		of total cover:	6	<u> </u>		' /	
Herb Stratum (Plot size: r = 5')								
1. Podophyllum peltatum		45	Yes	FACU	1 a diagrams of budding a ill and weeth			
Parthenocissus quinquefolia		25	Yes	FACU	Indicators of hydric soil and wetland hydrology must present, unless disturbed or problematic.			
3. Toxicodendron radicans		20	Yes	FAC	Definitions of Four Vegetation Strata:			
4. Lonicera japonica		5	No	FACU			7.6 cm) or	
5. Galium aparine		3	No	FACU	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) more in diameter at breast height (DBH), regardless			
6. Acer negundo		2	No	FAC	height.	`		
7.				- 17.0				
8.					Sapling/Shrub – Woody plants,			
9					than 3 in. DBH and greater than 3	3.28 ft (1 m)	tall.	
10.								
44					Herb – All herbaceous (non-wood	,,,	J	
12.					of size, and woody plants less that	an 3.28 ft ta	II.	
12.		100	=Total Cover		Woody Vine – All woody vines gr	roator than	2 20 ft in	
50% of total cover:	- 50		of total cover:	20	height.	leater triair	3.20 It III	
Woody Vine Stratum (Plot size: r = 30'	1		or total cover.		-			
	,	15	Voc	EAC				
Toxicodendron radicans Daythawa signing a suing wafa lin		15	Yes	FAC				
2. Parthenocissus quinquefolia		5	Yes	FACU				
3.								
4								
5					Hydrophytic			
	. –		=Total Cover		Vegetation			
50% of total cover:	10	20%	of total cover:	4	Present? Yes X	No		
Remarks: (If observed, list morphological adapta	tions	below.)						

Profile Desc	cription: (Describe t	o the dep	th needed to docu	ıment tl	ne indica	ator or co	onfirm the absence	of indicators.)				
Depth	Matrix		Redox	x Featur	es							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rer	marks			
0-2	10YR 5/4	83	10YR 3/2	10	С	М	Loamy/Clayey	Distinct redox	concentrations			
			10YR 5/3	5	С	M		Faint redox	concentrations			
			10YR 5/8	2	<u>C</u>	<u>M</u>		Prominent redo	ox concentrations			
2-10	10YR 5/6	92	10YR 3/3	5	С	M	Loamy/Clayey Distinct redox concentration					
			10YR 2/2	3	С	<u>M</u>		Prominent redo	ox concentrations			
1												
1- 0.0							2,					
	oncentration, D=Depl					d Grains.		PL=Pore Lining, M=				
-	Indicators: (Application)	ble to all l			-			for Problematic H	ydric Soils*:			
Histosol	` '		Thin Dark Su			-		luck (A9) (LRR O)				
	pipedon (A2)		Barrier Island			12)		luck (A10) (LRR S)				
	istic (A3)		(MLRA 15					Prairie Redox (A16)				
	en Sulfide (A4)		Loamy Muck	•	· , •	.RR O)	•	side MLRA 150A)				
	d Layers (A5)		Loamy Gleye					ed Vertic (F18)				
	Bodies (A6) (LRR P,		Depleted Ma	` '			•	side MLRA 150A, 1	•			
	ucky Mineral (A7) (LR	-			` '			ont Floodplain Soils				
	resence (A8) (LRR U)		Depleted Da	rk Surfa	ce (F7)			lous Bright Floodpla	ain Soils (F20)			
	uck (A9) (LRR P, T)		Redox Depre		(F8)		•	(MLRA 153B)				
	d Below Dark Surface	(A11)	Marl (F10) (L	-				arent Material (F21)				
	ark Surface (A12)		Depleted Oc	`	, .	,	 ·	hallow Dark Surface	` '			
	rairie Redox (A16) (M		·—				•					
	/lucky Mineral (S1) (L l	RR O, S)	Umbric Surfa			-	Barrier Islands Low Chroma Matrix (TS7)					
	Gleyed Matrix (S4)		Delta Ochric			-	•	A 153B, 153D)				
	Redox (S5)		Reduced Ver	,			· — `	Explain in Remarks	5)			
	Matrix (S6)		Piedmont Flo									
	rface (S7) (LRR P, S,	-	Anomalous E	•	•	,	•					
	ue Below Surface (S8)		(MLRA 14				³ Indicators of hydrophytic vegetation and					
(LRR	S, T, U)		Very Shallow				wetland hydrology must be present,					
			(MLRA 13	8, 152A	in FL, 1	54)	unles	ss disturbed or prob	olematic.			
_	Layer (if observed):											
Type:												
Depth (i	nches):						Hydric Soil Prese	ent? Yes	No _X			
Remarks:			(0.00) 5									
Roots and o	rganic debris present	in top laye	er (0-2"). Berm may	be histo	orically co	onstructe	d from fill material.					

Attachment C Photo Log

Photo 1: Photo of wet weather conveyance (WWC) 1, facing north. (35.003335°, -89.970269°)

Photo 2: Photo of pond 1, facing north. (35.002988°, -89.969974°)

Photo 3: Overview of WWC 2 (and Upland 3 data point), taken from the Pond 1 south berm, facing south. (35.002988°, -89.969974°)

Photo 4: Overview of WWC 3, facing south. (35.002716°, -89.970382°)

Photo 5: Representative overview photo of Stream 1, facing northwest. (35.001349°, -89.970553°)

Photo 6: Overview of WWC 4, facing north. (35.001296°, -89.970704°)

Photo 7: Overview of Pond 2, which drains via a seep into WWC 5, facing south. (35.000748°, -89.970652°)

Photo 8: Overview of WWC 5, facing north. (35.001265°, -89.970543°)

Photo 9: View of breach in Pond 3 berm, which drains into WWC 7, facing south. (34.99942°, -89.969566°)

Photo 10: Overview of WWC 7, which receives drainage from Pond 3 breach, facing west (34.999476°, -89.969582°).

Photo 11: Overview of Wetland 2, which receives drainage from WWC 7 and drains into Stream 1, facing south. (34.99977°, -89.969094°)

Photo 12: Overview of upland "island" (Upland 2) within Wetland 2, facing south. (34.999704°, -89.969185°)

Photo 13: Representative view of WWC 8, facing west. (34.999498°, -89.96831°)

Photo 14:Overview of Wetland 1, a mostly 60%/40% wetland/upland mosaic wetland, facing south. Wetland 1 is located within a drainageway absent of stream morphology. (34.99763°, -89.965424°)

Photo 15: Overview of Upland 1, taken within the wetland/upland mosaic area, facing south. (34.997301°, -89.965408°)

Photo 16: Overview of Wetland 3, facing north. (35.004463°, -89.96676°)

Photo 17: Representative view of WWC 6, facing east. (35.004929°, -89.966132°)

Photo 18: Overview of Upland 4, adjacent to a small puddle (left) near WWC 6, facing southeast. (35.004841°, -89.965494°)

Photo 19: Overview of Wetland 4, a 60%/40% wetland/upland mosaic wetland, which drains into Stream 2, facing north. (35.001611°, -89.964722°)

Photo 20: Representative view of Stream 2 flowing out of the forested area, facing south. (35.005294°, -89.964738°)

Photo 21: Overview of Wetland 5, which drains into Stream 3, facing east. (35.001478°, -89.964156°)

Photo 22: View of Stream 3 gaining morphology between Wetlands 5 and 6, facing south. (35.001614°, -89.963828°)

Photo 23: Overview of Wetland 6, in a drainageway lacking stream morphology, facing south. (35.002064°, -89.963546°)

Photo 24: Overview of Wetland 7, a geomorphically-positioned drainageway lacking stream morphology, facing north. (35.00305°, -89.963707°)

Photo 25: View of Stream 4, which receives drainage from Streams 2 and 3, facing south. (35.005933°, -89.965021°)

Photo 26: Overview of Wetland 9, which drains into WWC 9, facing east. (34.996997°, -89.968798°)

Photo 27: Representative view of WWC 9, facing east. (34.996751°, -89.969106°)

Photo 28: View of Wetland 10, which drains into Stream 5, facing east. (34.996613°, -89.969307°)

Photo 29: View of the berm (Upland 6) bisected by Wetland 10. (34.996672°, -89.969509°)

Photo 30: View of Stream 5, showing a reach with weak bed and bank demarcation, facing east. (34.996663°, -89.970313°)

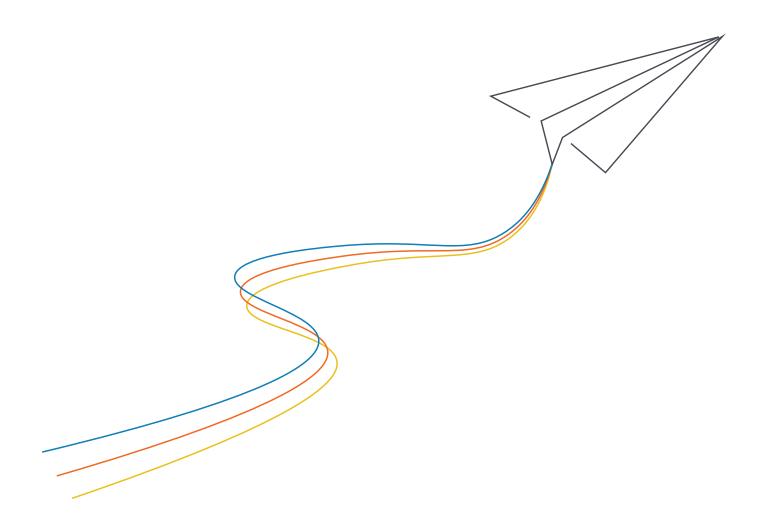

Photo 31: View of Stream 6, showing a reach with strong bed and bank demarcation. (34.995628°, -89.970949°)

Photo 32: View of no stream feature at northwest corner of Site, facing south. The topographic map shows a blue line stream leaving the Site in the northwest corner, but the stream feature is no longer present. (35.006216°, -89.972039°)

Photo 33: View of Stream 1 historical impact, where it enters an approximately 200-foot-long culvert at the south utility line easement, facing south. (34.997768°, -89.96608°)

